
A Algorithms in Section 3

We present the algorithms for solving the subproblems of policy improvement and policy evaluation
in Section 3.

Algorithm 2 Policy Improvement via SGD
1: Require: MDP (S,A,P, r, �), current energy function f✓k , initial weights bi, [✓(0)]i (i 2

[mf ]), number of iterations T , sample {(st, a0t )}
T
t=1

2: Set stepsize ⌘  T
�1/2

3: for t = 0, . . . , T � 1 do

4: (s, a) (st+1, a
0
t+1)

5: ✓(t+1/2) ✓(t)�⌘ ·
�
f✓(t)(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a)+ ⌧

�1
k f✓k(s, a))

�
·r✓f✓(t)(s, a)

6: ✓(t+ 1) argmin✓2B0(Rf )

�
k✓ � ✓(t+ 1/2)k2

 

7: end for

8: Average over path ✓  1/T ·
PT�1

t=0 ✓(t)
9: Output: f✓

Algorithm 3 Policy Evaluation via TD
1: Require: MDP (S,A,P, r, �), initial weights bi, [!(0)]i (i 2 [mQ]), number of iterations T ,

sample {(st, at, s0t, a
0
t)}

T
t=1

2: Set stepsize ⌘  T
�1/2

3: for t = 0, . . . , T � 1 do

4: (s, a, s0, a0) (st+1, at+1, s
0
t+1, a

0
t+1)

5: !(t+ 1/2) !(t)� ⌘ ·
�
Q!(t)(s, a)� (1� �) · r(s, a)� �Q!(t)(s

0
, a

0)
�
·r!Q!(t)(s, a)

6: !(t+ 1) argmin!2B0(RQ)

�
k! � !(t+ 1/2)k2

 

7: end for

8: Average over path !  1/T ·
PT�1

t=0 !(t)
9: Output: Q!

B Supplementary Lemma in Section 3

The following lemma quantifies the policy improvement error in terms of the distance between
polices, which is induced by solving (3.5).

Lemma B.1. Suppose that ⇡✓k+1 / exp{⌧�1
k+1f✓k+1} satisfies

Ee�k

⇥�
f✓k+1(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤
 ✏k+1.

We have
Ee�k

[(⇡✓k+1(a | s)� b⇡k+1(a | s))
2]  ⌧�2

k+1✏k+1/16,
where b⇡k+1 is defined in (3.4).

Proof. Let ⌧�1
k+1

bfk+1 = �
�1
k Q!k + ⌧

�1
k f✓k . Since an energy-based policy ⇡ / exp{⌧�1

f} is
continuous with respect to f , by the mean value theorem, we have

|⇡✓k+1(a | s)� b⇡k+1(a | s)| =

����
exp{⌧�1

k+1f✓k+1(s, a)}P
a02A exp{⌧�1

k+1f✓k+1(s, a
0)}
�

exp{⌧�1
k+1

bfk+1(s, a)}
P

a02A exp{⌧�1
k+1

bfk+1(s, a0)}

����

=

����
@

@f(s, a)

✓
exp{⌧�1

k+1
ef(s, a)}

P
a02A exp{⌧�1

k+1
ef(s, a0)}

◆���� · |f✓k+1(s, a)� bfk+1(s, a)|,

where ef is a function determined by f✓k+1 and bfk+1. Furthermore, we have
����

@

@f(s, a)

✓
exp{⌧�1

k+1f(s, a)}P
a02A exp{⌧�1

k+1f(s, a
0)}

◆���� = ⌧
�1
k+1 · ⇡(a | s) · (1� ⇡(a | s))  ⌧

�1
k+1/4.
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Therefore, we obtain
(⇡✓k+1(a | s)� b⇡k+1(a | s))

2

 ⌧
�2
k+1/16 ·

�
f✓k+1(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2
. (B.1)

Taking expectation Ee�k
[ · ] on the both sides of (B.1), we finally obtain

Ee�k
[(⇡✓k+1(a | s)� b⇡k+1(a | s))

2]

 ⌧
�2
k+1/16 · Ee�k

⇥�
f✓k+1(s, a)� ⌧k+1 · (�

�1
k Q!0(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤
 ⌧

�2
k+1✏k+1/16,

which concludes the proof of Lemma B.1.

Lemma B.1 ensures that if the policy improvement error ✏k+1 is small, then the corresponding
improved policy ⇡✓k+1 is close to the ideal improved policy b⇡k+1, which justifies solving the sub-
problem in (3.5) for policy improvement.

C Proof of Proposition 3.1

Proof. The subproblem of policy improvement for solving b⇡k+1 takes the form
max
⇡

E⌫k

⇥
h⇡(· | s), Q!k(s, ·)i � �k ·KL(⇡(· | s) k⇡✓k(· | s))

⇤

subject to
X

a2A
⇡(a | s) = 1, for any s 2 S.

The Lagrangian of the above maximization problem takes the formZ

s2S

⇥
h⇡(· | s), Q!k(s, ·)i � �k ·KL(⇡(· | s) k⇡✓k(· | s))

⇤
⌫k(ds) +

Z

s2S

✓X

a2A
⇡(a | s)� 1

◆
�(ds).

Plugging in ⇡✓k(s, a) = exp{⌧�1
k f✓k(s, a)}/

P
a02A exp{⌧�1

k f✓k(s, a
0)}, we obtain the optimality

condition

Q!k(s, a) + �k⌧
�1
k f✓k(s, a)� �k ·


log

✓X

a02A
exp{⌧�1

k f✓k(s, a
0)}

◆
+ log ⇡(a |s) + 1

�
+

�(s)

⌫k(s)
= 0,

for any a 2 A and s 2 S . Note that log(
P

a02A exp{⌧�1
k f✓k(s, a

0)}) is determined by the state s

only. Hence, we have b⇡k+1(a | s) / exp{��1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a)} for any a 2 A and s 2 S ,

which concludes the proof of Proposition 3.1.

D Proofs for Section 4.1

The proofs in this section generalizes those of [7, 5] under a unified framework, which accounts for
both SGD, and TD, which uses stochastic semi-gradient. In particular, we develop a unified global
convergence analysis of a meta-algorithm with the following update,

↵(t+ 1/2) ↵(t)� ⌘ · (u↵(t)(s, a)� v(s, a)� µ · u↵(t)(s
0
, a

0)) ·r↵u↵(t)(s, a), (D.1)
↵(t+ 1) ⇧B0(Ru)(↵(1 + 1/2)) = argmin

↵2B0(Ru)
k↵� ↵(t+ 1/2)k2, (D.2)

where µ 2 [0, 1) is a constant, (s, a, s0, a0) is sampled from a stationary distribution ⇢, and u↵ is
parametrized by the two-layer neural network NN(↵;m) defined in (3.1). The random initialization
of u↵ is given in (3.2). We denote by Einit[ · ] the expectation over such random initialization and
E⇢[ · ] the expectation over (s, a) conditional on the random initialization.

Such a meta-algorithm recovers SGD for policy improvement in (3.5) when we set ⇢ = e�k, u↵ = f✓,
v = ⌧k+1 · (�

�1
k Q!k + ⌧

�1
k f✓k), µ = 0, and Ru = Rf , and recovers TD for policy evaluation in

(3.8) when we set ⇢ = �k, u↵ = Q! , v = (1� �) · r, µ = �, and Ru = RQ.

To unify our analysis for SGD and TD, we assume that v in (D.1) satisfies
E⇢[(v(s, a))

2]  v1 · E⇢[(u↵(0)(s, a))
2] + v2 ·R

2
u + v3

for constants v1, v2, v3 � 0. Also, without loss of generality, we assume that k(s, a)k2  1 for any
s 2 S and a 2 A. In Section D.2, we set v1 = 4, v2 = 4, and v3 = 0 for SGD, and v1 = 0, v2 = 0,
and v3 = Rmax for TD, respectively.
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For notational simplicity, we define the residual �↵(s, a, s0, a0) = u↵(s, a)�v(s, a)�µ ·u↵(s0, a0).
We denote by

g↵(t)(s, a, s
0
, a

0) = �↵(t)(s, a, s
0
, a

0) ·r↵u↵(t)(s, a), ḡ↵(t) = E⇢[gt(s, a, s
0
, a

0)] (D.3)
the stochastic update vector at the t-th iteration and its population mean, respectively. For SGD,
g↵(t)(s, a, s

0
, a

0) corresponds to the stochastic gradient, while for TD, g↵(t)(s, a, s0, a0) corresponds
to the stochastic semigradient.

Note that the gradient of u↵(s, a) with respect to ↵ takes the form
r↵u↵(s, a) = 1/

p
m ·

�
b1 · 1

�
[↵]>1 (s, a) > 0

 
· (s, a)>, . . . , bm · 1

�
[↵]>m(s, a) > 0

 
· (s, a)>

�>
2 Rmd

almost everywhere, which yields

kr↵u↵(s, a)k
2
2 =

1

m

mX

i=1

1
�
[↵]>i (s, a) > 0

 
· k(s, a)k22  1.

Therefore, u↵(s, a) is 1-Lipschitz continuous with respect to ↵.

In the following, we first show in Section D.1 that the overparametrization of u↵ ensures that it
behaves similarly as its local linearization at the random initialization ↵(0) defined in (3.2). Then in
Section D.2, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2),
which implies the global convergence of SGD and TD.

D.1 Local Linearization

In this section, we first define a local linearization of the two-layer neural network u↵ at its random
initialization and then characterize the error induced by local linearization. We define

u
0
↵(s, a) =

1
p
m

mX

i=1

bi · 1
�
[↵(0)]>i (s, a) > 0

 
· [↵]>i (s, a). (D.4)

The linearity of u0
↵ with respect to ↵ yields

hr↵u
0
↵(s, a),↵i = u

0
↵(s, a). (D.5)

The following lemma characterizes how far u0
↵(t) deviates from u↵(t) for ↵(t) 2 B

0(Ru).

Lemma D.1. For any ↵0
2 B

0(Ru), we have
Einit,⇢[(u↵0(s, a)� u

0
↵0(s, a))2] = O(R3

um
�1/2).

Proof. By the definition of u↵ in (3.1), we have
|u↵0(s, a)� u

0
↵0(s, a)| (D.6)


1
p
m

����
mX

i=1

bi ·
�
1
�
[↵(0)]>i (s, a) > 0

 
� 1

�
[↵(0)]>i (s, a) > 0

 �
·
�
|[↵(0)]>i (s, a)|+ k[↵

0]i � [↵(0)]ik2
�����


1
p
m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵

0]i � [↵(0)]ik2
 
·
�
|[↵(0)]>i (s, a)|+ k[↵

0]i � [↵(0)]ik2
�
,

where the second inequality follows from |bi| = 1 and the fact that
1
�
[↵(t)]>i (s, a) > 0

 
6= 1

�
[↵(0)]>i (s, a) > 0

 

implies
|[↵(0)]>i (s, a)|  |[↵(t)]>i (s, a)� [↵(0)]>i (s, a)|  k[↵(0)]i � [↵(t)]ik2.

Next, applying the inequality 1{|z|  y}|z|  1{|z|  y}y to the right-hand side of (D.6), we
obtain

|u↵0(s, a)� u
0
↵0(s, a)|


2
p
m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵

0]i � [↵(0)]ik2
 
· k[↵0]i � [↵(0)]ik2. (D.7)

Further applying the Cauchy-Schwarz inequality to (D.7) and invoking the upper bound k↵0
�

↵(0)k2  Ru, we obtain

|u↵0(s, a)� u
0
↵0(s, a)|2 

4R2
u

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵

0]i � [↵(0)]ik2
 
. (D.8)
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Taking expectation on the both sides and invoking Assumption 4.4, we obtain

Einit,⇢[(u↵0(s, a)� u
0
↵0(s, a))2] 

4cR2
u

m
· Einit

 mX

i=1

k[↵0]i � [↵(0)]ik2/k[↵(0)]ik2

�
. (D.9)

By the Cauchy-Schwartz inequality, we have

Einit

 mX

i=1

k[↵0]i � [↵(0)]ik2/k[↵(0)]ik2

�
 Einit

 mX

i=1

k[↵0]i � [↵(0)]ik
2
2

�1/2
· Einit

 mX

i=1

k[↵(0)]ik
�2
2

�1/2

 Ru · Einit

 mX

i=1

k[↵(0)]ik
�2
2

�1/2
,

where the second inequality follows from
Pm

i=1 k[↵
0]i�[↵(0)]ik22 = k↵0

�↵(0)k22  R
2
u. Therefore,

we have that the right-hand side of (D.9) is O(R3
um

�1/2). Thus, we obtain
Einit,⇢[(u↵0(s, a)� u

0
↵0(s, a))2] = O(R3

um
�1/2),

which concludes the proof of Lemma D.1.

Corresponding to u
0
↵ defined in (D.4), let �0↵(s, a, s0, a0) = u

0
↵(s, a) � v(s, a) � µ · u

0
↵(s

0
, a

0). We
define the local linearization of ḡ↵(t), which is defined in (D.3), as

ḡ
0
↵(t) = E⇢[�

0
↵(t)(s, a, s

0
, a

0) ·r↵u
0
↵(t)(s, a)]. (D.10)

The following lemma characterizes the difference between ḡ
0
↵(t) and ḡ↵(t).

Lemma D.2. For any t 2 [T ], we have
Einit[kḡ↵(t) � ḡ

0
↵(t)k

2
2] = O(R3

um
�1/2).

Proof. By the definition of ḡ0↵(t) and ḡ↵(t) in (D.10) and (D.3), we have
kḡ↵(t) � ḡ

0
↵(t)k

2
2 = kE⇢[�↵(t)(s, a, s

0
, a

0) ·r↵u↵(t)(s, a)� �
0
↵(t)(s, a, s

0
, a

0) ·r↵u
0
↵(t)(s, a)]k

2
2

 2E⇢

⇥
|�↵(t)(s, a, s

0
, a

0)� �0↵(t)(s, a, s
0
, a

0)|2 · kr↵u↵(t)(s, a)k
2
2

⇤
| {z }

(i)

(D.11)

+ 2E⇢

⇥
|�

0
↵(t)(s, a, s

0
, a

0)| · kr↵u↵(t)(s, a)�r↵u
0
↵(t)(s, a)k2

⇤2
| {z }

(ii)

.

Upper Bounding (i): We have kr↵u↵(t)(s, a)k2  1 as k(s, a)k2  1. Note that the difference
between �↵(t) and �0↵(t) takes the form
�↵(t)(s, a, s

0
, a

0)� �0↵(t)(s, a, s
0
, a

0) = (u↵(t)(s, a)� u
0
↵(t)(s, a))� µ · (u↵(t)(s

0
, a

0)� u
0
↵(t)(s

0
, a

0)).

Taking expectation on the both sides, we obtain
Einit,⇢[|�↵(t)(s, a, s

0
, a

0)� �0↵(t)(s, a, s
0
, a

0)|2]

 2Einit,⇢[(u↵(t)(s, a)� u
0
↵(t)(s, a))

2] + 2µ2
· Einit,⇢[(u↵(t)(s

0
, a

0)� u
0
↵(t)(s

0
, a

0))2]

= 4Einit,⇢[(u↵(t)(s, a)� u
0
↵(t)(s, a))

2],

where the equality follows from |µ|  1 and the fact that (s, a) and (s0, a0) have the same marginal
distribution. Thus, by Lemma D.1, we have that (i) in (D.11) is O(R3

um
�1/2).

Upper Bounding (ii): First, by the Hölder’s inequality, we have
E⇢

⇥
|�

0
↵(t)(s, a, s

0
, a

0)| · kr↵u↵(t)(s, a)�r↵u
0
↵(t)(s, a)k2

⇤2

 E⇢[|�
0
↵(t)(s, a, s

0
, a

0)|2] · E⇢[kr↵u↵(t)(s, a)�r↵u
0
↵(t)(s, a)k

2
2].

We use |u
0
↵(t)(s, a)� u

0
↵(0)(s, a)|  k↵(t)� ↵(0)k2  Ru to obtain

|�
0
↵(t)(s, a, s

0
, a

0)|2 = (u0
↵(t)(s, a)� v(s, a)� µ · u

0
↵(t)(s

0
, a

0))2

 3
�
(u0

↵(t)(s, a))
2 + (v(s, a))2 + µ

2
· (u0

↵(t)(s
0
, a

0))2
�

 3(u0
↵(0)(s, a))

2 + 3(u0
↵(0)(s

0
, a

0))2 + 6R2
u + 3(v(s, a))2. (D.12)
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Next we characterize kr↵u↵(t)(s, a)�r↵u
0
↵(t)(s, a)k2 in (ii). Recall that

r↵u↵(s, a) = 1/
p
m ·

�
b1 · 1

�
[↵]>1 (s, a) > 0

 
· (s, a)>, . . . , bm · 1

�
[↵]>m(s, a) > 0

 
· (s, a)>

�>
,

and
r↵u

0
↵(s, a) = 1/

p
m ·

�
b1 · 1

�
[↵(0)]>1 (s, a) > 0

 
· (s, a)>, . . . , bm · 1

�
[↵(0)]>m(s, a) > 0

 
· (s, a)>

�>
.

We have

kr↵u↵(t)(s, a)�r↵u
0
↵(t)(s, a)k

2
2 =

1

m

mX

i=1

�
1
�
[↵(t)]>i (s, a) > 0

 
� 1

�
[↵(0)]>i (s, a) > 0

 �2
· k(s, a)k22


1

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵(t)]i � [↵(0)]ik2

 
, (D.13)

where the inequality follows from the same arguments used to derive (D.6). Plugging (D.12) and
(D.13) into (ii) and recalling that

E⇢[(v(s, a))
2]  v1 · E⇢[(u↵(0)(s, a))

2] + v2 ·R
2
u + v3,

we find that it remains to upper bound the following two terms

Einit,⇢


1

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵(t)]i � [↵(0)]ik2

 �
, (D.14)

and

Einit


E⇢[(u

0
↵(0)(s, a))

2] · E⇢


1

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵(t)]i � [↵(0)]ik2

 ��
. (D.15)

We already show in the proof of Lemma D.1 that (D.14) is O(Rum
�1/2). We characterize (D.15)

in the following. For the random initialization of u↵(s, a) in (3.2), we have

E⇢[(u
0
↵(0)(s, a))

2] =
1

m
· E⇢

 mX

i=1

�([↵(0)]>i (s, a))
2 +

X

1i 6=jm

bibj · �([↵(0)]
>
i (s, a)) · �([↵(0)]

>
j (s, a))

�
,

plugging which into (D.15) gives

Einit


E⇢[(u

0
↵(0)(s, a))

2] · E⇢


1

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k↵(t)� ↵(0)k2

 ��

 Einit


1

m
· E⇢

 mX

i=1

�([↵(0)]>i (s, a))
2 +

X

1i 6=jm

bibj · �([↵(0)]
>
i (s, a)) · �([↵(0)]

>
j (s, a))

�

·
c

m
·

✓ mX

i=1

k[↵(t)]i � [↵(0)]ik
2
2

◆1/2

·

✓ mX

i=1

1

k[↵(0)]ik22

◆1/2�
,

where we use the same arguments applied to (D.8) in the proof of Lemma D.1. Note that bi, bj are
independent of ↵(0), Einit[bibj ] = 0, and

Pm
i=1 k[↵(t)]i � [↵(0)]ik22 = k↵(t) � ↵(0)k22  R

2
u. We

further obtain

Einit


E⇢[(u

0
↵(0)(s, a))

2] · E⇢


1

m

mX

i=1

1
�
[↵(0)]>i (s, a)  k[↵(t)]i � [↵(0)]ik2

 ��


cRu

m2
· Einit


E⇢

 mX

i=1

�
�
[↵(0)]>i (s, a)

�2
�
·

✓ mX

i=1

1

k[↵(0)]ik22

◆1/2�


cRu

m2
· Einit

✓ mX

i=1

k[↵(0)]ik
2
2

◆
·

✓ mX

i=1

1

k[↵(0)]ik22

◆1/2�
.

Finally, by the Cauchy-Schwarz inequality, we have

Einit

✓ mX

i=1

k[↵(0)]ik
2
2

◆
·

✓ mX

i=1

1

k[↵(0)]ik22

◆1/2�

 Einit

✓ mX

i=1

k[↵(0)]ik
2
2

◆2�1/2
· Einit

 mX

i=1

1

k[↵(0)]ik22

�1/2
,

whose right-hand side is O(m3/2). Thus, we obtain that (D.15) is O(Rum
�1/2) and (ii) in (D.11)

is O(R3
um

�1/2), which concludes the proof of Lemma D.2.
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D.2 Global Convergence

In this section, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2).
We first present the following lemma for characterizing the variance of the stochastic update vector
g↵(t)(s, a, s

0
, a

0) defined in (D.3), which later allows us to focus on tracking its mean in the global
convergence analysis.
Lemma D.3 (Variance of the Stochastic Update Vector). There exists a constant ⇠2g = O(R2

u)
independent of t, such that for any t  T , it holds that

Einit,⇢[kg↵(t)(s, a, s
0
, a

0)� ḡ↵(t)k
2
2]  ⇠

2
g .

Proof. Since we have
Einit,⇢[kg↵(t)(s, a, s

0
, a

0)� ḡ↵(t)k
2
2] = Einit

⇥
E⇢[kg↵(t)(s, a, s

0
, a

0)� ḡ↵(t)k
2
2]
⇤

 Einit
⇥
E⇢[kg↵(t)(s, a, s

0
, a

0)k22]
⇤
= Einit,⇢[kg↵(t)(s, a, s

0
, a

0)k22],

it suffices to prove that E[kg↵(t)(s, a, s0, a0)k22] = O(R2
u). By the definition of

E⇢[kg↵(t)(s, a, s
0
, a

0)k22] in (D.3), using kr↵(t)u↵(t)(s, a)k
2
2  1, we obtain

E⇢[kg↵(t)(s, a, s
0
, a

0)k22] = E⇢[k�↵(t)(s, a, s
0
, s

0) ·r↵u↵(t)(s, a)k
2
2]

 E⇢[|�↵(t)(s, a, s
0
, s

0)|2]. (D.16)
Then, by similar arguments used in the derivation of (D.12), we obtain

Einit,⇢[|�↵(t)(s, a, s
0
, s

0)|2]  6Einit,⇢[(u↵(0)(s, a))
2] + 6R2

u + 3Einit,⇢[(v(s, a))
2]

 (6 + 3v1) · Einit,⇢[(u↵(0)(s, a))
2] + (6 + v2)R

2
u + 3v3

2
. (D.17)

Note that by k(s, a)k2  1, we have
Einit,⇢[(u↵(0)(s, a))

2] = Ez⇠N (0,Id/d),⇢[�(z
>(s, a))2]  Ez⇠N (0,Id/d)[kzk

2
2] = 1,

which together with (D.16) and (D.17) implies Einit,⇢[kg↵(t)(s, a, s
0
, a

0)k22] = O(R2
u). Thus, we

complete the proof of Lemma D.3.

Before presenting the global convergence result of the meta-algorithm defined in (D.1), we first
define u

0
↵⇤ , which later become the exact learning target of the meta-algorithm defined in (D.1) and

(D.2). In specific, we define the approximate stationary point as ↵⇤
2 B

0(Ru) such that
↵
⇤ = ⇧B0(Ru)(↵

⇤
� ⌘ · ḡ

0
↵⇤), (D.18)

which is equivalent to the condition
hḡ

0
↵⇤ ,↵� ↵

⇤
i � 0, for any ↵ 2 B

0(Ru). (D.19)
Then we establish the uniqueness and existence of u0

↵⇤ with ↵⇤ defined in D.18. We first define the
operator

T u(s, a) = E[v(s, a) + µ · u(s0, a0) | s0 ⇠ P(· | s, a), a ⇠ ⇡(· | s0)]. (D.20)
Then using the definition of T in (D.20) and plugging the definition of ḡ0↵⇤ in (D.4) into (D.19), we
obtain

hu
0
↵⇤ � T u

0
↵⇤ , u

0
↵ � u

0
↵⇤i⇢ � 0, for any u

0
↵ 2 FB,m,

which is equivalent to u
0
↵⇤ = ⇧FB,mT u

0
↵⇤ . Here the projection ⇧FB,m is defined with respect to

the `2-distance under measure ⇢. Finally, as we have the following contraction inequality
E⇢[(⇧FB,mT u

0
↵(s, a)�⇧FB,mT u

0
↵0(s, a))2]

 E⇢[(T u
0
↵(s, a)� T u

0
↵0(s, a))2]

= µ
2
· E⇢

⇥�
E[u0

↵(s
0
, a

0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(· | s0)]� E[u0
↵0(s0, a0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(· | s0)]

�2⇤

 µ
2
· E⇢[(u

0
↵(s, a)� u

0
↵0(s, a))2],

we know that such fixed-point solution u
0
↵⇤ uniquely exists.

Now, with a well-defined learning target u0
↵⇤ , we are ready to prove the the global convergence of

the meta-algorithm defined in (D.1) and (D.2) with two-layer neural network approximation.
Theorem D.4. Suppose that we run T � 64/(1 � µ)2 iterations of the meta-algorithm defined in
(D.1) and (D.2). Setting the stepsize ⌘ = T

�1/2, we have
Einit,⇢[(u↵(s, a)� u

0
↵⇤(s, a))2] = O(R2

uT
�1/2 +R

5/2
u m

�1/4 +R
3
um

�1/2),

where ↵ = 1/T ·
PT�1

t=0 ↵(t) and ↵⇤ is the approximate stationary point defined in (D.18).
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Proof. The proof of the theorem consists of two parts. We first analyze the progress of each step.
Then based on such one-step analysis, we establish the error bound of the approximation via two-
layer neural network u↵.

One-Step Analysis: For any t < T , using the stationarity condition in (D.18) and the convexity of
B
0(Ru), we obtain
E⇢[k↵(t+ 1)� ↵⇤

k
2
2 |↵(t)] (D.21)

= E⇢

⇥��⇧B0(Ru)(↵(t)� ⌘ · g↵(t)(s, a, s
0
, a

0))�⇧B0(Ru)(↵
⇤
� ⌘ḡ

0
↵⇤)

��2
2

��↵(t)
⇤

 E⇢

⇥��(↵(t)� ↵⇤)� ⌘ · (g↵(t)(s, a, s
0
, a

0)� ḡ
0
↵⇤)

��2
2

��↵(t)
⇤

= k↵(t)� ↵⇤
k
2
2 � 2⌘ · hḡ↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i+ ⌘
2
· E⇢[kg↵(t)(s, a, s

0
, a

0)� ḡ
0
↵⇤k

2
2 |↵(t)].

In the following, we upper bound the last two terms in (D.21). First, to upper bound
E⇢[kg↵(t)(s, a, s

0
, a

0)� ḡ
0
↵⇤k

2
2 |↵(t)], by the Cauchy-Schwarz inequality we have

E⇢[kg↵(t)(s, a, s
0
, a

0)� ḡ
0
↵⇤k

2
2 |↵(t)]

 2E⇢[kg↵(t)(s, a, s
0
, a

0)� ḡ↵(t)k
2
2 |↵(t)] + 2kḡ↵(t) � ḡ

0
↵⇤k

2
2

 2E⇢[kg↵(t)(s, a, s
0
, a

0)� ḡ↵(t)k
2
2 |↵(t)] + 4kḡ↵(t) � ḡ

0
↵(t)k

2
2 + 4kḡ0↵(t) � ḡ

0
↵⇤k

2
2, (D.22)

where the total expectation on the first two terms on the right-hand side are characterized in Lemmas
D.3 and D.2, respectively. To characterize kḡ0↵(t) � ḡ

0
↵⇤k

2
2, again using k(s, a)k2  1, we have

kḡ
0
↵(t) � ḡ

0
↵⇤k

2
2 = E⇢

⇥
(�↵(t)(s, a, s

0
, a

0)� �↵⇤(s, a, s0, a0))2 · kr↵u
0
↵(t)(s, a)k

2
2

⇤

 E⇢

⇥�
(u0

↵(t)(s, a)� u
0
↵⇤(s, a))� µ · (u0

↵(t)(s
0
, a

0)� u
0
↵⇤(s0, a0))

�2⇤
. (D.23)

For the right-hand side of (D.23), we use the Cauchy-Schwarz inequality on the interaction term and
obtain

E⇢

⇥
(u0

↵(t)(s
0
, a

0)� u
0
↵⇤(s0, a0)) · (u0

↵(t)(s, a)� u
0
↵⇤(s, a))

⇤

 E⇢[(u
0
↵(t)(s

0
, a

0)� u
0
↵⇤(s0, a0))2]1/2 · E⇢[(u

0
↵(t)(s, a)� u

0
↵⇤(s, a))2]1/2

= E⇢[(u
0
↵(t)(s, a)� u

0
↵⇤(s, a))2], (D.24)

where in the last line we use the fact that (s, a) and (s0, a0) have the same marginal distribution.
Thus, we obtain

kḡ
0
↵(t) � ḡ

0
↵⇤k

2
2  4E⇢[(u

0
↵(t)(s, a)� u

0
↵⇤(s, a))2]. (D.25)

Next, to upper bound hḡ↵(t) � ḡ
0
↵⇤ ,↵(t)� ↵⇤

i, we use the Hölder’s inequality to obtain
hḡ↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i = hḡ↵(t) � ḡ
0
↵(t),↵(t)� ↵

⇤
i+ hḡ0↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i

� �kḡ↵(t) � ḡ
0
↵(t)k2 · k↵(t)� ↵

⇤
k2 + hḡ

0
↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i

� �Rukḡ↵(t) � ḡ
0
↵(t)k2 + hḡ

0
↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i, (D.26)
where the second inequality follows from k↵(t)�↵⇤

k2  Ru. For the term hḡ0↵(t)� ḡ
0
↵⇤ ,↵(t)�↵⇤

i

on the right-hand side of (D.26), we have
hḡ

0
↵(t) � ḡ

0
↵⇤ ,↵(t)� ↵⇤

i

= E⇢

h�
(u0

↵(t)(s, a)� u
0
↵⇤(s, a))� µ · (u0

↵(t)(s
0
, a

0)� u
0
↵⇤(s0, a0))

�
· hr↵u

0
↵(t)(s, a),↵(t)� ↵

⇤
i

i

= E⇢

h�
(u0

↵(t)(s, a)� u
0
↵⇤(s, a))� µ · (u0

↵(t)(s
0
, a

0)� u
0
↵⇤(s0, a0))

�
· (u0

↵(t)(s, a)� u
0
↵⇤(s, a))

i

� E⇢[(u
0
↵(t)(s, a)� u

0
↵⇤(s, a))2]� µ · E⇢[(u

0
↵(t)(s, a)� u

0
↵⇤(s, a))]2

� (1� µ) · E⇢[(u
0
↵(t)(s, a)� u

0
↵⇤(s, a))2], (D.27)

where the second equality and the first inequality follow from (D.5) and (D.24), respectively.

Therefore, combining (D.21) with (D.22), (E.4), (D.26), and (D.27), we obtain
E⇢[k↵(t+ 1)� ↵⇤

k
2
2 |↵(t)]

 k↵(t)� ↵⇤
k
2
2 �

�
2⌘(1� �)� 8⌘2

�
· E⇢[(u

0
↵(t)(s, a)� u

0
↵⇤(s, a))2 |↵(t)] (D.28)

+ 2⌘2kḡ↵(t) � ḡ
0
↵(t)k

2
2 + 2⌘Rukḡ↵(t) � ḡ

0
↵(t)k2 + ⌘

2
· E⇢[kg↵(t)(s, a, s

0
, a

0)� ḡ↵(t)k
2
2 |↵(t)].
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Error Bound: Rearranging (D.28), we obtain
E⇢[(u↵(t)(s, a)� u

0
↵⇤(s, a))2 |↵(t)]

 E⇢

⇥
2(u↵(t)(s, a)� u

0
↵(t)(s, a))

2 + 2(u0
↵(t)(s, a)� u

0
↵⇤(s, a))2

��↵(t)
⇤


�
⌘(1� �)� 4⌘2

��1
·
�
k↵(t)� ↵⇤

k
2
2 � E⇢[k↵(t+ 1)� ↵⇤

k
2
2 |↵(t)] + ⇠

2
↵⌘

2
�

(D.29)

+O(R5/2
u m

�1/4 +R
3
um

�1/2).
Taking total expectation on both sides of (D.29) and telescoping for t+ 1 2 [T ], we further obtain

Einit,⇢[(u↵(s, a)� u
0
↵⇤(s, a))2] 

1

T

T�1X

t=0

Einit,⇢[(u↵(t)(s, a)� u↵⇤(s, a))2] (D.30)

 T
�1

·
�
⌘(1� �)� 4⌘2

��1
·
�
Einit[k↵(0)� ↵

⇤
k
2
2] + T ⇠

2
↵⌘

2
�

+O(R5/2
u m

�1/4 +R
3
um

�1/2).

Let T � 64/(1 � µ)2 and ⌘ = T
�1/2, it holds that T�1/2

· (⌘(1 � �) � 4⌘2)�1
 16(1 � �)�1/2

and T⌘
2
 1, which together with (D.30) implies

Einit,⇢[(u↵(t)(s, a)� u
0
↵⇤(s, a))2 |↵(t)]


16

(1� µ)2
p
T

·
�
Einit[k↵(0)� ↵

⇤
k
2
2] + ⇠

2
↵

�
+O(R5/2

u m
�1/4 +R

3
um

�1/2)


16(R2

↵ + ⇠
2
↵)

(1� µ)2
p
T

+O(R5/2
u m

�1/4 +R
3
um

�1/2) = O(R2
uT

�1/2 +R
5/2
u m

�1/4 +R
3
um

�1/2),

where in the second inequality we use k↵(0)� ↵⇤
k2  Ru and in the equality we use Lemma D.3.

Thus, we conclude the proof of Theorem D.4.

Following the definition of u0
↵ in (D.4), we define the local linearization of Q! at the initialization

as

Q
0
!(s, a) =

1
p
mQ

mQX

i=1

bi · 1
�
[!(0)]>i (s, a) � 0

 
· [!]>i (s, a).

Similarly, for f✓ we define

f
0
✓ (s, a) =

1
p
mf

mfX

i=1

bi · 1
�
[✓(0)]>i (s, a) � 0

 
· [✓]>i (s, a).

In the sequel, we show that Theorem D.4 implies both Theorems 4.5 and 4.6.

To obtain Theorem 4.5, we set ⇢ = e�k, u↵ = f✓, v = ⌧k+1 · (��1
k Q!k + ⌧

�1
k f✓k), µ = 0, and

Ru = Rf . Using ⌧k+1, ⌧k, and �k specified in Algorithm 1, we have
Ee�k

[(v(s, a))2]  2⌧2k+1 ·
�
�
�2
k · Ee�k

[(Q!k(s, a))
2] + ⌧

�2
k · Ee�k

[(f✓k(s, a))
2]
�

 4Ee�k
[(f✓(0)(s, a))

2] + 4R2
f ,

where in the second inequality we use ⌧2k+1�
�2
k + ⌧

2
k+1⌧

�2
k  1 and the fact that (Q!k(s, a))

2


2(Q!(0)(s, a))
2 +2R2

Q and (f✓k(s, a))
2
 2(f✓(0)(s, a))

2 +2R2
f , which is a consequence of the 1-

Lipschitz continuity of the neural network with respect to the weights. Also note that Q!(0)(s, a) =
f✓(0)(s, a) due to the fact that Q!k and f✓k share the same initialization. Thus, we have v1 = 4,
v2 = 4, and v3 = 0. Moreover, by f

0
✓⇤ = ⇧FRf ,mf

T f
0
✓⇤ = ⇧FRf ,m(⌧k+1 · (�

�1
k Q!k + ⌧

�1
k f✓k)),

we have
f
0
✓⇤ = argmin

f2FRf ,mf

���f � ⌧k+1 · (�
�1
k Q!k + ⌧

�1
k f✓k)

��
2,e�k

 
,

which together with the fact that ⌧k+1 · (�
�1
k Q

0
!k
(s, a) + ⌧

�1
k f

0
✓k
(s, a)) 2 FRf ,mf implies

Einit,e�k

⇥�
f
0
✓⇤(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤

 Einit,e�k

⇥�
⌧k+1 · (�

�1
k Q

0
!k
(s, a) + ⌧

�1
k f

0
✓k(s, a))� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤

 ⌧
2
k+1�

�2
k · Einit,e�k

[(Q0
!k
(s, a)�Q!k(s, a))

2] + ⌧
2
k+1⌧

�2
k · Einit,e�k

[(f0
✓k(s, a)� f✓k(s, a))

2]

= O(R3
fm

�1/2
f ). (D.31)
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Finally, plugging (D.31) into Theorem D.4 for f✓, we obtain
Einit,e�k

⇥�
f✓(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤

 2Einit,e�k
[(f✓(s, a)� f

0
✓⇤(s, a))2] + 2Einit,e�k

⇥�
f
0
✓⇤(s, a)� ⌧k+1 · (�

�1
k Q!k(s, a) + ⌧

�1
k f✓k(s, a))

�2⇤

= O(R2
fT

�1/2 +R
5/2
f m

�1/4
f +R

3
fm

�1/2
f )

which gives Theorem 4.5.

To obtain Theorem 4.6, we set ⇢ = �k, u↵ = Q! , v = (1 � �) · r, µ = � and Ru = RQ. Corre-
spondingly, we have v1 = 0, v2 = 0, v3 = R

2
max and u

0
↵⇤ = Q

0
!⇤ . Moreover, by the definition of the

operator T in (D.20), we have T = T
⇡✓k , which implies Q⇡✓k = T Q

⇡✓k . Meanwhile, by Assump-
tion 4.3, we have Q

⇡✓k 2 FRQ,mQ , which implies Q
⇡✓k = ⇧FRQ,mQ

Q
⇡✓k = ⇧FRQ,mQ

T Q
⇡✓k .

Since we already show that Q0
!⇤ is the unique solution to the equation Q = ⇧FRQ,mQ

T Q, we obtain
Q

0
↵⇤ = Q

⇡✓k . Therefore, we can substitute Q
0
↵⇤ with Q

⇡✓k in Theorem D.4 to obtain Theorem 4.6.

E Proofs for Section 4.2

Proof of Lemma 4.7. We first have
⇡k+1(a | s) = exp{��1

k Q
⇡✓k (s, a) + ⌧

�1
k f✓k(s, a)}/Zk+1(s),

and
⇡✓k+1(a | s) = exp{⌧�1

k+1f✓k+1(s, a)}/Z✓k+1(s).

Here Zk+1(s), Z✓k+1(s) 2 R are normalization factors, which are defined as

Zk+1(s) =
X

a02A
exp{��1

k Q
⇡✓k (s, a0) + ⌧

�1
k f✓k(s, a

0)},

Z✓k+1(s) =
X

a02A
exp{⌧�1

k+1f✓k+1(s, a
0)}, (E.1)

respectively. Thus, we reformulate the inner product in (4.5) as
hlog ⇡✓k+1(· | s)� log ⇡k+1(· | s),⇡

⇤(· | s)� ⇡✓k(· | s)i

=
⌦
⌧
�1
k+1f✓k+1(s, ·)� (��1

k Q
⇡✓k (s, ·) + ⌧

�1
k f✓k(s, ·)),⇡

⇤(· | s)� ⇡✓k(· | s)
↵
, (E.2)

where we use the fact that
hlogZk+1(s)� logZ✓k+1(s),⇡

⇤(· | s)� ⇡✓k(· | s)i

= (logZk+1(s)� logZ✓k+1(s))
X

a02A
(⇡⇤(a0 | s)� ⇡✓k(a

0
| s)) = 0.

Thus, it remains to upper bound the right-hand side of (E.2). We first decompose it to two terms,
namely the error from learning the Q-function and the error from fitting the improved policy, that is,⌦

⌧
�1
k+1f✓k+1(s, ·)� (��1

k Q
⇡✓k (s, ·) + ⌧

�1
k f✓k(s, ·)),⇡

⇤(· | s)� ⇡✓k(· | s)
↵

=
⌦
⌧
�1
k+1f✓k+1(s, ·)� (��1

k Q!k(s, ·) + ⌧
�1
k f✓k(s, ·)),⇡

⇤(· | s)� ⇡✓k(· | s)
↵

| {z }
(i)

+ h��1
k Q!k(s, ·)� �

�1
k Q

⇡✓k (s, ·),⇡⇤(· | s)� ⇡✓k(· | s)i| {z }
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Taking expectation with respect to s ⇠ ⌫
⇤ on the both sides of (E.4) and using the Cauchy-Schwarz
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where in the last inequality we use the error bound in (4.3) and the definition of �⇤k in (4.2).

Upper Bounding (ii): By the Cauchy-Schwartz inequality, we have
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where in the last inequality we use the error bound in (4.4) and the definition of  ⇤
k in (4.2). Finally,

combining (E.2), (E.3), (E.5), and (E.6), we have
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which concludes the proof of Lemma 4.7.

Proof of Lemma 4.8. By the triangle inequality, we have
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For the first term on the right-hand side of (E.7), we have
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For the second term on the right-hand side of (E.7), we have
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where we use the 1-Lipschitz continuity of Q! in ! and the constraint k!k � !0k2  R! . Then,
taking expectation with respect to s ⇠ ⌫

⇤ on the both sides of (E.7) and plugging in (E.8) and (E.9),
we finish the proof of Lemma 4.8.

F Proof of Corollary 4.10

Proof. By Theorems 4.5 and 4.6, we have ✏k+1 = O(R2
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when mf = ⌦(R2
f ) and mQ = ⌦(R2

Q).
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Next, setting mf = R
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Meanwhile, setting mf = ⌦(K4
R
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4
f · |A|), we have
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Summing up (F.1) and (F.2) for k + 1 2 [K] and plugging it into Theorem 4.9, we obtain

min
0kK

�
L(⇡⇤)� L(⇡✓k)

 

�
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(1� �)� ·
p
K

,

which completes the proof of Corollary 4.10.

G Proofs of Section 5

Proof of Lemma 5.1. The proof follows that of Lemma 6.1 in [24]. By the definition of V ⇡(s) in
(2.1), we have
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where the third inequality is obtained by taking E⌫⇤ [V ⇡(s0)] = E⌫⇤ [V ⇡(s)] out and, correspond-
ingly, delaying V

⇡(st) by one time step to V
⇡(st+1) in each term of the summation. Note that for

the advantage function, by definition of the action-value function, we have
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which together with (G.1) implies
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Here the second equality follows from (P⇡⇤
)t⌫⇤ = ⌫

⇤ for any t � 0 and �⇤ = ⇡
⇤
⌫
⇤. Finally, note
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Plugging (G.3) into (G.2) and recalling the definition of L(⇡) in (4.6), we finish the proof of Lemma
5.1.

Proof of Lemma 5.2. First, we have
KL(⇡⇤(· | s) k⇡✓k(· | s))�KL(⇡⇤(· | s) k⇡✓k+1(· | s))

=
⌦
log(⇡✓k+1(· | s)/⇡✓k(· | s)),⇡

⇤(· | s)
↵

=
⌦
log(⇡✓k+1(· | s)/⇡✓k(· | s)),⇡

⇤(· | s)� ⇡✓k+1(· | s)
↵
+KL(⇡✓k+1(· | s) k⇡✓k(· | s))

=
⌦
log(⇡✓k+1(· | s)/⇡✓k(· | s))� �

�1
k Q

⇡✓k (s, ·),⇡⇤(· | s)� ⇡✓k(· | s)
↵

+ �
�1
k · hQ

⇡✓k (s, ·),⇡⇤(· | s)� ⇡✓k(· | s)i+KL(⇡✓k+1(· | s) k⇡✓k(· | s))

+
⌦
log(⇡✓k+1(· | s)/⇡✓k(· | s)),⇡✓k(· | s)� ⇡✓k+1(· | s)

↵
. (G.4)

Recall that ⇡k+1 / exp{⌧�1
k f✓k + �
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⇡✓k } and Zk+1(s) and Z✓k(s) are defined in (E.1). Also
recall that we have hlogZ✓k(s),⇡(· | s) � ⇡

0(· | s)i = hlogZk(s),⇡(· | s) � ⇡0(· | s)i = 0 for all k,
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⇡, and ⇡0, which implies that, on the right-hand-side of (G.4),
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Plugging (G.5) and (G.6) into (G.4), we obtain
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where in the last inequality we use the Pinsker’s inequality. Rearranging the terms in (G.7), we
finish the proof of Lemma 5.2.
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