A Algorithms in Section 3

We present the algorithms for solving the subproblems of policy improvement and policy evaluation
in Section 3.

Algorithm 2 Policy Improvement via SGD
1: Require: MDP (S, A, P,r,), current energy function fp,, initial weights b;, [6(0)]; (i €
[m]), number of iterations 7', sample {(s;,a?)}7_;
Set stepsize 1 < T~ /2
fort=0,...,T —1do
(5’ CL) — (St-‘rla ag—&-l)
0(t+1/2) = 0(t) =1 (for) (5, 0) = Tig1 - (B ' Qui(5,0) + 75 fo (5,0))) - Vo fory (s,a)
Ot +1) + argmineeBO(Rf){HG —0(t+ 1/2)||2}
end for
Average over path 6 < 1/T - 3" 6(t)
Output: f5

R AN A i

Algorithm 3 Policy Evaluation via TD

1: Require: MDP (S, A, P, r, ), initial weights b;, [w(0)]; (¢ € [mg]), number of iterations 7T,
sample {(s¢, at, s}, a}) .,
Set stepsize 17 < T~1/2
fort=0,...,7T—1do

(87 a, SI7 al) — (St+17 At4+1; sff+1v a';:Jrl)

w(t+1/2) « w(t) =1 (Queey(s,a) — (1 =) - 7(s,a) = 1Qu(r) (s',@)) - VuQur) (s, a)

wt+1)« argminweBO(RQ){Hw —w(t+1/2)[]2}
end for
Average over pathw < 1/T - ZtT;()l w(t)
Output: Q7

R AN A

B Supplementary Lemma in Section 3

The following lemma quantifies the policy improvement error in terms of the distance between
polices, which is induced by solving (3.5).

Lemma B.1. Suppose that 7, ,, o exp{7;_"; fo,,, } satisfies
_ _ 2
EEk [(f9k+l (S,CL) = Tk+1 (5k 1ka (570‘) + Tk 1f9k- (Sa a))) ] < €pt1-
We have
Es,[(moy.: (a]8) = Turi(a]9))?) < 72 €1 /16,
where 71 is defined in (3.4).

Proof. Let T];_:lﬁc+1 = B Qu, + 7 ' fa,. Since an energy-based policy m oc exp{7 ' f} is
continuous with respect to f, by the mean value theorem, we have

exp{ri 1 foui (5,0} exp{r 1 frs1(s,0)}

-] ! !
Za/eA eXp{Tk+11f9k+1 (Sa al)} Za/EA eXp{T];_llfk+1<S, a’)}

9 ( exp{ri 1 f(s.a)} )’ -

= ‘fe (Saa)_fk: 1(5704)‘7
‘3f(s,a) Saeaxpin i f(s a')} o "
where f is a function determined by fy, ., and fj 1. Furthermore, we have
9 ( exp{ri . f(s,0)} )‘
2

‘af(&a) a’'e A eXp{Tk_.&lf(Saa/)}

|7T0k+1 ((l ‘ S) - /ﬂ:k+1<a‘ | $

=Ty o m(als) - (L—m(als) <7y /4.
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Therefore, we obtain
(7T9k+1 (a | S) - 7/T\-%’€-§-1(a | S))2
- - - 2
< Tk—fl/lG . (f9k+1 (8’ a) — Tk+1 " (ﬁk 1ka (87 (L) + Tr 1f9k (87 a))) . (B.1)
Taking expectation E;, [ - | on the both sides of (B.1), we finally obtain
Ez, [(ﬂ9k+1 (CL | s) — %k+1(a | S))z]

- - - 2 _
< ka1/16 : ]Eﬁk [(f9k+1 (Sa a) — Tk41 * (ﬁk 1Qwo (57 a) + T 1f9k (57 a))) } < kalek—&-l/]ﬁ,
which concludes the proof of Lemma B.1. O

Lemma B.1 ensures that if the policy improvement error €4 is small, then the corresponding
improved policy 7y, ,, is close to the ideal improved policy 7y 1, which justifies solving the sub-
problem in (3.5) for policy improvement.

C Proof of Proposition 3.1

Proof. The subproblem of policy improvement for solving 7. 1 takes the form

max By, [(7(-|5), Qu,(5,7)) = Bk - KL( (-] ) || mo, (-] 5))]

subject to Z m(a|s) =1, foranys € S.
acA
The Lagrangian of the above maximization problem takes the form

/ [(7(-18), Qun (5:)) — B - KL(m(- | 5) | 70, - | 9))] (ds) + /
SES

seS

(Z m(a|s) — 1>)\(ds).

acA
Plugging in 7, (s, a) = exp{7;, ' fo,(5,0)}/ 3 c 4 exp{7;, ' fo, (s, a’)}, we obtain the optimality
condition
- _ A(s
Qun 61 + B o (5,0) = - | 108 3 expr (5.} ) +log(als) +1] + 26—
a’'€eA
forany a € Aand s € S. Note that log(3",, 4 exp{7; ' fo, (s,a’)}) is determined by the state s

only. Hence, we have 71 (a | s) o< exp{B; 'Qu, (s,a) + 7, ' fo,(s,a)} forany a € Aand s € S,
which concludes the proof of Proposition 3.1. O

D Proofs for Section 4.1

The proofs in this section generalizes those of [7, 5] under a unified framework, which accounts for
both SGD, and TD, which uses stochastic semi-gradient. In particular, we develop a unified global
convergence analysis of a meta-algorithm with the following update,
ot +1/2)  aft) =0+ (ua@(s,a) —v(s,a) — - ua@(s',a")) - Vaua) (s, a), (D.1)
a(t +1) < Ilgo(g,)(a(l +1/2)) = argmin | — a(t +1/2)]2, (D.2)
a€BO(R,)
where p € [0,1) is a constant, (s,a,s’,a’) is sampled from a stationary distribution p, and u,, is
parametrized by the two-layer neural network NN(«; m) defined in (3.1). The random initialization
of u, is given in (3.2). We denote by Eiy,[-] the expectation over such random initialization and
E,[-] the expectation over (s, a) conditional on the random initialization.

Such a meta-algorithm recovers SGD for policy improvement in (3.5) when we set p = o, uq = fo,
V= T4 (ﬁ;lek + Tl;lfgk), = 0,and R, = Ry, and recovers TD for policy evaluation in
(3.8) when we set p = o, uq = Qu,v = (1 —7) -7, =, and R, = Ryg.
To unify our analysis for SGD and TD, we assume that v in (D.1) satisfies

E,[(v(s,a))*] < U1 - Ep[(ua(o)(s,))?] + T2 - R, + 73
for constants U1, Ta, T3 > 0. Also, without loss of generality, we assume that ||(s,a)||2 < 1 for any
se€ Sanda € A. In Section D.2, we set v; = 4, U5 = 4, and 73 = 0 for SGD, and v; = 0,7, = 0,
and U3 = Ry,,x for TD, respectively.
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For notational simplicity, we define the residual 6, (s, a, s’,a’) = ua(s,a) —v(s,a) — p-ua(s',a’).
We denote by

ga(t)(svavslval) = 6(1(1‘) (S,Q,S/,(l/) . vaua(t) (s,a), ga(t) = Ep[gt(svaa Slva,)] (D.3)
the stochastic update vector at the ¢-th iteration and its population mean, respectively. For SGD,
Ja(t)(s,a, ', a’) corresponds to the stochastic gradient, while for TD, g4 (s, a, s, a’) corresponds
to the stochastic semigradient.
Note that the gradient of u,, (s, a) with respect to « takes the form

Vata(s,a) =1/vm- (b - 1{[a]] (s,a) > 0} - (s,a) ", ..., bm - 1{[a],(s,a) > 0} - (s,a)T)T e R™4
almost everywhere, which yields
Vot (s, a)? Zn{ (s,a) >0} - ||(s,a)[3 < 1.

i=1
Therefore, u,, (s, a) is 1-Lipschitz continuous with respect to .

In the following, we first show in Section D.1 that the overparametrization of u, ensures that it
behaves similarly as its local linearization at the random initialization «(0) defined in (3.2). Then in
Section D.2, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2),
which implies the global convergence of SGD and TD.

D.1 Local Linearization

In this section, we first define a local linearization of the two-layer neural network u,, at its random
initialization and then characterize the error induced by local linearization. We define

ul (s Zb 1{[a(0))] (s,a) > 0} - [a]] (s, ). (D.4)

The linearity of u%, with respect to « ylelds
(Vo (s,a),a) = ul(s,a). (D.5)
The following lemma characterizes how far u.° o(r) deviates from ) for a(t) € B°(R,).

Lemma D.1. For any o’ € B°(R, ), we have
Einit,p[ (tar (5,a) — 1 (5,a))%] = O(REm~1/?).

Proof. By the definition of u,, in (3.1), we have

[thar (s,a) —ul,(s,a)| (D.6)
Zb 1 (5,0) > 0} = 1{[a(0)}] (5,0) > 0}) - ([[2(O)}] (5,0)| + [[[a'): = [a(0)} )
fZﬂ{ (5,0) < llle’); = [2(O)ill2} - (I[2(O))] (5, )| + e} = [@(O)ll),
where th:e stecond inequality follows from |b;] = 1 and the fact that

]l{ (s,a >0}7é]1{ (s,a >O}
implies
[a(0)]]" (s, a)| < [[a(®)]] (5,0) = [(O)] (5,0)] < [[[a(O)]; = [e(®)]: |-
Next, applying the inequality 1{|z| < y}|z| < 1{|z| < y}y to the right-hand side of (D.6), we
obtain
[t (5,a) —ul,(s,a)|

<f§jﬂ{ (s,a) < /] = [a(O)ill2} - [e/]; = [a(O)]ill2. (D7D

Further applying the Cauchy Schwarz inequality to (D.7) and invoking the upper bound |jo/ —
a(0)[|2 < R, we obtain

2 Rzm

[war (s, a) — ugs (s, a)|* < ]1{ (s,a) <[] Nillz}. (D.8)
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Taking expectation on the both sides and invoking Assumption 4.4, we obtain
4cR?
Bt (5,) — 0 (5, 0))7] < 0% g [Z ) = @/ lfa @l @)

By the Cauchy-Schwartz inequality, we have

[Z Ifo Willa/[e(0) } < B [i ||2T/2-Em[f|[a<o>1i||52}1/2

—1 i=1

m 1/2
{Z Nillz ] ,
where the second inequality follows from Y., ||[e/];—[(0)];]|3 = ||/ —a(0)||3 < R2. Therefore,
we have that the right-hand side of (D.9) is O(R3m~1/2). Thus, we obtain
Einit,p[(uar (3, a) — ufs (s, 0))*] = O(Rym™'/?),
which concludes the proof of Lemma D.1. O

Corresponding to u?, defined in (D.4), let 62 (s, a, s',a’) = u(s,a) — v(s,a) — p - ul(s',a’). We
define the local linearization of g, (), which is defined in (D.3), as
gg(t) = Ep[ég(t)(s, a,s’,a’)- Vaug(t)(s, a)l. (D.10)
The following lemma characterizes the difference between gg t) and go(1)-
Lemma D.2. For any ¢ € [T], we have
Einit[[|Ga(ty — Gon 3] = O(REm™/?).

Proof. By the definition of gg(t) and ga(t) in (D.10) and (D.3), we have

1Fat) = Gay 12 = IEp[Baqey (5,0, 8", a") - Vatiaq) (s,a) = Gay(s,a,8",a") - Vaug ) (s, a)]ll3
< 2Ep[|6a(t)(s, a,s';a’) = 60 (s,a,8",a" )P - [[Vaua (s, a)l3] (D.11)
@)
+ 2Ep[|58(t)(s,a, s al)- IVataw (s, a) — Vaug(t)(s,a)ﬂg]z
(ii)

Upper Bounding (i): We have ||V uq (s, a)ll2 < 1as ||(s,a)|l2 < 1. Note that the difference
between 5a(t) and 5a(f) takes the form

5a(t)(s’ a, s' ya ) 6a(t)(57 a, 3/7 a/) = (ua(t)(sv a) - ug(t)(sv a)) — K (ua(t)(s/a a/) - ug(t)(s/’ a/))'
Taking expectation on the both sides, we obtain
Einit,o[|0a(t) (s, a, 8", a") — 5a(t)(s a,s',a")%]
< 2Binit [ (tar) (5, @) — gy (5,0))%] + 204% - Bini p[(Uaey (87, 0") — ugpy(s',0"))?)
= ABinitp[(Ua@ (s, a) — Ug(t)(é’, a))Q],
where the equality follows from || < 1 and the fact that (s, a) and (s’, a’) have the same marginal
distribution. Thus, by Lemma D.1, we have that (i) in (D.11) is O(R3m~1/2).
Upper Bounding (ii): First, by the Holder’s inequality, we have
2
]EP U(;g(t) (57 a, Slv al)| ! ||v(¥ua(t) (Sv a’) - vfxu?y(f) (Sv a’)HQ}
< EPH(Sg(t)(Sa a, S/a a/)|2] : EP[Hvaua(t) (S, a) - V(lug(t)(sa a) Hg}
We use [uf, ) (s, a) — ug,q)(s,a)| < [Ja(t) — a(0)]]2 < R, to obtain
[0y (5,0, 8", a")|? = (ugp)(s,0) = v(s,a) = p-ug ) (s',a'))?
< 3((uae (5,0))* + (v(s,0))* + p® - (ug ) (s',a"))?)
< ?)(ug(o)(s7 a))* + 3(ug(0)(3 ,a'))? +6R% +3(v(s,a))? (D.12)
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Next we characterize ||V uq 1) (5, a) — Vaug(t)(s, a)|l2 in (ii). Recall that

V,éua(s,a):l/\/ﬁ.(bl.]l{[a]r(s,a)>0}~(s, m - 1{[a](s,a) > 0} - ( T)T,
an
Voud(s,a) =1/vm- (by - ]l{[a(O)]I(s,a) >0} - (s,a) m - 1{a( (s,a) >0} - (
We have
IVataw (s, a) — Vaug(t)(s,a)ng = — Z(]l{ (s,a) > 0} — 1{[a(0)]/ (s,a) > O})
Zﬂ{ (s,0) < [[[a(®)] Nill2}, (©.13)
=1

where the inequality follows from the same arguments used to derive (D.6). Plugging (D.12) and
(D.13) into (ii) and recalling that

E,[(v(s,a))?] <71 - E,[(ta(o)(s,@))*] + 7 - B2 + 73,
we find that it remains to upper bound the following two terms

Bt | S 1 {00 (5,0) < a0 — [a(0)} ] }} (D.14)

=1
and

B[ (10 (500 B, | 21{ (5.0) < a0 - 2O} |- @15

We already show in the proof of Lemma D.1 that (D.14) is O(R,m~/ 2). We characterize (D.15)
in the following. For the random initialization of (s, a) in (3.2), we have
1 m
Epl(ud(o)(s:0)*] = — - E, [ZU([OL(O)]?(&@)Q + ) by o([a(0)]] (s,)) - o([a(0)]]
i=1 1<i#j<m
plugging which into (D.15) gives

BBl 0)7] B iﬂ{ (:0) < laf®) = a0}

SEmn[;~EP[Zo<[a<o>H<s,a>>2+ > bibj~o<[a<o>]Z<s,a>>-a([a<0>ﬂ<s,a>>]

i=1 1<i#j<m

% : (zi: [e(t)]; — [a(O)]ig)l/2 (Z e |2>1/2]7

where we use the same arguments applied to (D.8) in the proof of Lemma D.1. Note that b;, b; are
independent of «(0), Eiit[b;b;] = 0, and Y7, ||[a(®)]; — [a(0)];]|3 = [|a(t) — (0)]|3 < R2. We
further obtain

B[ (10 (50071 B | Zﬂ{ (5.0) < a0 - (012}
<% g, [ P[i“ a))ﬂ ' <Z Hk«(ol)hllé)l/z}

<o mn[(Z” ”2> (Z It ||2>1/T'

Finally, by the Cauchy-Schwarz inequality, we have

m[(Zn |2) (ZH ||2>1/T

<E‘““[<Z” ”Nm “‘“[Zn J/z’

whose right-hand side is O(m?/?). Thus, we obtain that (D.15) is O(Rum 1/2) and (ii) in (D.11)
is O(R3m~'/2), which concludes the proof of Lemma D.2. O
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D.2 Global Convergence

In this section, we establish the global convergence of the meta-algorithm defined in (D.1) and (D.2).
We first present the following lemma for characterizing the variance of the stochastic update vector
Ja(t)(s,a,s',a’) defined in (D.3), which later allows us to focus on tracking its mean in the global
convergence analysis.

Lemma D.3 (Variance of the Stochastic Update Vector). There exists a constant 53 = O(R?)
independent of ¢, such that for any ¢ < T, it holds that

Einil,ﬂ[”g(x(t)(sv a, S/a a/) - ga(t) ||§] < 53

Proof. Since we have
]Einit,p[Hga(t) (57 a, Sl7 a/) - ga(t) H%] = Einit []El’[”goc(t) (57 a, S/a a‘/) - ga(t) ||g]]
< Einit [Ep[Hga(t) (87 a, S/, Cl/) H%]] = ]Einil,p[Hga(t) (57 a, Sl) CL/) ||§}7
it suffices to prove that E[||ga)(s,a,s',a)[3] = O(R2). By the definition of
Eplllga(e) (s, a, 8, a')|[3] in (D.3), using ||V o) ta (5, a) |5 < 1, we obtain
Eﬂ[”g(x(t) (S, a, S/’ a/) Hg] = EP[”(soz(t)(sa a, S/, 3/) : vaua(t) (S’ a)”%]
< Epll0ar (s, a, 8", ") ). (D.16)
Then, by similar arguments used in the derivation of (D.12), we obtain
Einit o [|0at) (85 @, 8" 8") P] < 6Binit p[(ta(0) (5, @))?] + 6RE + 3Einit (v (s, )]
< (6 + 301) - Einit,p[(Ua(0) (s, @))] + (6 + D2) R, + 303, (D.17)
Note that by ||(s,a)||2 < 1, we have
Einit,o[(4a(0) (5, 0))?) = Eenr(0,14/0),pl0 (27 (5,0))%] < Eeronvio, 1) [lI2113] = 1,
which together with (D.16) and (D.17) implies Eiyit p||ga() (s, a, 8", a")[|3] = O(RZ). Thus, we
complete the proof of Lemma D.3. O]

Before presenting the global convergence result of the meta-algorithm defined in (D.1), we first

define uQ., which later become the exact learning target of the meta-algorithm defined in (D.1) and
(D.2). In specific, we define the approximate stationary point as a* € B°(R,,) such that
o =Tgo(g,)(a* — 1 gox), (D.18)
which is equivalent to the condition
(g%, a —a*) >0, forany a € B(R,). (D.19)

Then we establish the uniqueness and existence of u0. with o* defined in D.18. We first define the
operator

Tu(s,a) =Ev(s,a) +p-u(s',a’)|s ~P(-|s,a),a~n(]s). (D.20)
Then using the definition of 7 in (D.20) and plugging the definition of g%. in (D.4) into (D.19), we
obtain

(W — Tul. ,ud —ul.), >0, forany u) € Fgn,

which is equivalent to u0. = ILz,  Tul.. Here the projection Il 7, ,, is defined with respect to
the ¢5-distance under measure p. Finally, as we have the following contraction inequality

E,[(Ir, ,, Tua(s,a) =z, , Tua(s,a))’]

< EP[(Tug(& (L) - T’U/g/(S, a’))Q]

= 12 B, [(BLl (s, ') |5 ~ P(-|5,0),0' ~ (- | )] = B[u, (', ') | 5" ~ P(-|5,0), 0" ~7(-|5)])’]
< /~L2 ) EP[(ug(S’ a) — ug’(s’ a’))Q]a

we know that such fixed-point solution 0. uniquely exists.

Now, with a well-defined learning target uQ., we are ready to prove the the global convergence of
the meta-algorithm defined in (D.1) and (D.2) with two-layer neural network approximation.

Theorem D.4. Suppose that we run 7' > 64/(1 — u)? iterations of the meta-algorithm defined in
(D.1) and (D.2). Setting the stepsize n = T~'/2, we have

Einit o[ (ua(s, @) — ul. (s,a))%] = O(RZT/? 4 RS2m=14 4 R3m~1/2),
where @ = 1/T - ZZ:_()l «(t) and a* is the approximate stationary point defined in (D.18).
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Proof. The proof of the theorem consists of two parts. We first analyze the progress of each step.
Then based on such one-step analysis, we establish the error bound of the approximation via two-
layer neural network .

One-Step Analysis: For any ¢ < T, using the stationarity condition in (D.18) and the convexity of
B°(R,,), we obtain

Eoflle(t +1) — ™[5 ] a(t)] (D21)
5] ()]

= Ep [HHBO(RH)(OC(t) -1 ga(t) (S, a, 8/7 a’)) — HBD(RH)(Oé* - ngg*)
<E,[[|(a(t) = @) =0 (gaw (s, a,5', @) = 350 [5 | a(#)]

= lla(t) = *[13 = 20 (Fa@) = Ja= () — o) + 07 - Eylllgac (5,0, 5", ') — Ga- 13| o(t)]-
In the following, we upper bound the last two terms in (D.21). First, to upper bound
Eolllgact) (s, a,s’,a’) — go- |13 | a(t)], by the Cauchy-Schwarz inequality we have

]EP[”ga(t)(Sa a, 8/7 a’/) - gg* % l Oé(t)]
<2E,[||gag (s a, 8", @) = Ga) I3 | ()] + 2[|Gacr) — Go-

<2, ([ gag) (s, a,8",a") = Gaw I3 | ()] + 4 Gag) — G 12 + 41Gag) — Ga- 15, (D22)
where the total expectation on the first two terms on the right-hand side are characterized in Lemmas
D.3 and D.2, respectively. To characterize ||g5, ;y — ga- |13, again using [|(s, a)||2 < 1, we have

||g2¢(t) - gg* % = Ep [(6a(t) (57 a, 5/7 a/> - 50* <37 a, sl’ al>)2 ' Hvdug(t) (S’ a) H%}
< B, [((ul(5,0) = ule(5,0)) = - (udy(5', @) = ude (',0))) ], (D.23)
For t'he right-hand side of (D.23), we use the Cauchy-Schwarz inequality on the interaction term and
e Ep[(uaq (8" a') = ug-(s',a)) - (uge)(s,0) — ug- (s, a))]
< Epl(ugy (s a') —ug-(s',a))*] - Epl(ufy (5,0) — ug- (5,))*]'/?
= Ep[(ug(t) (s,a) —ul.(s,a))?], (D.24)

where in the last line we use the fact that (s,a) and (s’,a’) have the same marginal distribution.
Thus, we obtain

2
2

130w — Fa- 13 < 4B, [(uqq (s, @) — ug- (s, ))*]. (D.25)
Next, to upper bound (g (1) — ga-, a(t) — a*), we use the Holder’s inequality to obtain
(Ga() — Ga-s a(t) = @) = (Gaq) — gg(tya(t) —a”) + @g(t) — Gorr a(t) — )
> ~ga) = Jawllz - la(t) = a[l2 + (g0) — ga-s alt) — a”)
> —RullGa() = Gaqwllz + o) — Gor alt) — ), (D.26)
where the second inequality follows from || () —a*||2 < Ry. For the term (g, ) — Ga-, a(t) —a*)
on the right-hand side of (D.26), we have
(o) = o alt) —a”)
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[En—

> EP[(ug(t)(s, a) —ug-(s,a))?] — - Ep[(ug(t)(sv a)—u

> (1 - :u) : EP[(ug(t) (87 a) - u(c)y* (57 a))Q]v (D.27)
where the second equality and the first inequality follow from (D.5) and (D.24), respectively.

Therefore, combining (D.21) with (D.22), (E.4), (D.26), and (D.27), we obtain
Eplla(t+1) —a*[3 ] a()]

<la(t) = a3 = (20(1 =) = 8n%) - E,[(uay (s, a) — ug-(5,0))* | a(t)] (D.28)
+ 207 || Gae) — gg(t) 15 + 2nRul|Gac) — ?]g(t) 2 + 1% - Bylllga (s, a,8',a") = Gagy |15 | a(t)].
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Error Bound: Rearranging (D. 28), we obtain
Ep[(ta(e) (s, a) = ug-(s,a))* | a(t)]
< E,[2(uaq (s, a) — g(t)(s,a))2 + 2(ug(t)(s,a) —ul. (s,a))? |a ()]
)

< (=) —4) " (o) - a3~ Eflla(t +1) - a*[3 ()] + £20%)  (D.29)
+O(RY*m™"4 + RAm~1/?).
Taking total expectation on both sides of (D.29) and telescoping for ¢ + 1 € [T'], we further obtain
T—1

Bl (1(5,0) — 08 (5,0)] < 7 3 Bl (5:) = o (5,0))?) (D.30)

t=0
_ -1 .

<T U (1 =) =40*) - (Bawi[[|(0) — @™ |I3] + T€47°)
+ O(R32m~Y* 4 R3m~1/2).

Let T > 64/(1 — p)? and y = T—/2, it holds that T=/2 - (n(1 — ) — 4n?)~! < 16(1 — )~ /2
and Tn? < 1, which together with (D.30) implies

]Einil,p[(ua(t) (37 a) - ’U,g* (Sv a‘))2 | a(t)]

16
< —————  (Eie[fla(0) — a*||3] + €2) + O(RY*m~Y* + R3m~1/2
< o Emlla) — o'l +) + 0 )
2 ¢2
< 16(RZ, +&2) +O(Ri/2m_1/4 —l—Rim_l/g) _ O(RiT‘l/Q +Ri/2m_1/4 —&—Rim_l/Q),
(1—pwT
where in the second inequality we use ||a(0) — a*[|2 < R, and in the equality we use Lemma D.3.
Thus, we conclude the proof of Theorem D.4. O

Following the definition of 2 in (D.4), we define the local linearization of @, at the initialization
as

Q°(s,a) 7Zb 1{ [w( (s,a) >0} - [w 17 (s,a).
Similarly, for fy we define
fi(s,a) = 7217 L{[6( (s,a) >0}-[0 L (s,a).

In the sequel, we show that Theorem D 4 implies both Theorems 4.5 and 4.6.

To obtain Theorem 4.5, we set p = 0, Uy = fo, UV = Tha1 - (ﬂk_lek + Tk_lfgk), u = 0, and
R, = Rj. Using 74,41, Tk, and Sy, specified in Algorithm 1, we have

Ez, [(v(s,))?] < 27841 - (B - B, [(Quy (5,0)°] + 772 - Bz, [(fo (5,0))°])
< 4E5, [(fo) (s,))’] + 4R7,

where in the second inequality we use 77 +151;2 + Te T ? < 1 and the fact that (Q, (s,a))? <
2(Qu(0)(s,a))* + 2R and (fo, (s,a))* < 2(fo(0) (s, a))? + 2R3, which is a consequence of the 1-
Lipschitz continuity of the neural network with respect to the weights. Also note that Q) (s, a) =
Jo(0)(s,a) due to the fact that @, and fy, share the same initialization. Thus, we have 7; = 4,

Uy = 4, and U3 = 0. Moreover, by fJ. = Urs, m, Tf = Urn, 0 (Ther - (B ' Quy, + 71 M for))s
we have

f9. = argmin {Hf — Tha1 (5};1ka + Tk_lfgk)Hzak},
which together with the fact that 741 - (8,1 Q0 (s,a) + 7, lfgk (s,a)) € Fr;m, implies

Einit, 5 [(fél(s,a) — Tht1 - (5;1@% (s,a) + 75, fo (s, a)))Q]
< By [(Ti1 - (851 Q0 (5,0) + 7 15, (5,0)) = i1 - (B Quan(5,0) + 73 fo, (5,0))) ]
<187 - i ( gk( 5,a) = Quy (5,0))°] + 7017 2 - Banie, [(f, (5, @) — fo, (5, 0))]
= O(R3m;'?). (D31)
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Finally, plugging (D.31) into Theorem D.4 for fy, we obtain

Einie, [(f7(5,a) = Tit1 - (B " Quy (s, a) + Tglfak(&a)))ﬂ
< iy, [(f (5, @) = 5 (5,0))%] + 2Bimic i, [(£5-(5,0) = They1 - (B ' Quoy (5,.0) + 70 fo (5,))) "]
= ORIT ™2 4 RYm V" + Rim /)

which gives Theorem 4.5.

To obtain Theorem 4.6, we set p = o, g = Qu, v = (1 —7) -7, p = v and R, = Rg. Corre-
spondingly, we have v; = 0,72 = 0,73 = R2_andul. = Q.. Moreover, by the definition of the

max
operator 7 in (D.20), we have 7 = T "%, which implies Q7% = T Q™% . Meanwhile, by Assump-
tion 4.3, we have Q™ € FRg, m,, Which implies Q™% = H].-RQMQ Q% = H]:RQ,MQ TQm k.
e TQ, we obtain

Y. = Q™. Therefore, we can substitute Q°. with Q™ in Theorem D.4 to obtain Theorem 4.6.

Since we already show that Q" is the unique solution to the equation @ = TI Fry,

E Proofs for Section 4.2

Proof of Lemma 4.7. We first have

7rk+1(a | S) = eXp{ﬂk_lka (57 CL) + Tk_l-ka (Sa a)}/Zk+1($)v
and

1 (CL | 8) = eXp{T];Lllfngrl (57 a)}/Z9k+1 (3)
Here Zj41(s), Zs,,, (s) € R are normalization factors, which are defined as

Zipi(s) = exp{B; Q™ (s,a') + 75, " fo, (s,a')},

a’€A

Zoia(8) = Y expirl for (s,a)} (E.D)
a’'€A
respectively. Thus, we reformulate the inner product in (4.5) as
(log mg, (-] 8) —log msa (- | ), (- [ s) — 7o, (- 5))
= (T for (5,) = (B Q7% (s,) + 77 fo (5,)), 7 (| 8) = ma, (-] 5)), (E.2)

where we use the fact that
(log Zi+1(s) —log Zg, , (s), 7" (- | s) — ma, (- | 5))

= (log Zis1(s) —log Zo,, () Y (w*(d'| s) —mg, (a' | 8)) = 0.
a’'€ A
Thus, it remains to upper bound the right-hand side of (E.2). We first decompose it to two terms,
namely the error from learning the Q-function and the error from fitting the improved policy, that is,

<Tk_+11f9k+1 (8’ ) - (Bk:_lC?ﬂ-elC (S, ) + Tk_lka (57 '))’ﬂ-*(' | S) - 7rt9k(' | 8)>
= (i1 fornn (5:) = (B Quy () + 73 fou (5,)), 7 (| 5) — o, (- | 5))
(i)
+ (8 Qui(5,) = B QT (s,), " (| 8) — ma, (| 9)) . (E.3)
(i)

Upper Bounding (i): We have
<Tk-_.|.11f9k+1 (37 ) - (6/;1ka (87 ) + Tk_lka (Sa ))a ’/T*(' | S) - Wek(' | S

B <Tk+11fek+1(sv> = (B Qu sy ) 1 ) mol | S)'<m(: | 3 B 7:5((..|j>))>'

¥ ~—
g
~
e
~
N’
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Taking expectation with respect to s ~ v* on the both sides of (E.4) and using the Cauchy-Schwarz
inequality, we obatin

|]El’* [<Tk_-‘:1f9k+1(87) (ﬂk ka( )+Tk fgk( ))aﬂ—*('|5)*ﬂ9k('|5)>]|
- /S<m£1fek+l<s,-> (B Qi (5,) + 70 fon (s, >>,wo<-|s>~uk(s>-(” el —”"k=("s>)>-” (*) g

mo(-|s)  mol(-]s) vi(s)
_ ma(als) - v (

o — (Bt s,a) + 71! s,a))) - a*(als) ) or(s,a
A N O R O B R O Y e e e LAy
do*  d(me,v*)

271/2
< Egk [(Tlg—i}lfek-u(sﬂ a) - (/Bllewk (37‘1) + lelfek (87 a)))2]1/2 ' Egk |: doy, doy, ]

< T e ok, (E.5)
where in the last inequality we use the error bound in (4.3) and the definition of ¢;; in (4.2).

Upper Bounding (ii): By the Cauchy-Schwartz inequality, we have
By [(By ' Qu(5,) = B Q% (5,), @ (- | 8) — 7o, (- | )]

/ (6;1620%(8,0,) _5];1Q7r9k (s,a)) ) (’/T*(a|8) . 7T0k( : )) V*(S)dak(sva)
SxA

o), (a‘ ) 7T9k(
1/2
< EBo [(B7 1 Quy (5,a) — B 1 Q™ (s,a))?]V? - E, { ]

< Btk Ui, (E.6)
where in the last inequality we use the error bound in (4.4) and the definition of v}, in (4.2). Finally,
combining (E.2), (E.3), (E.5), and (E.6), we have

|EV* Klog T 41 ( ‘ S) — log 7Tk+1(' ‘ S), ﬂ—*(' | S) — oy ( | S)>]|
< Tkj_;,_llekJrl : ¢]t + 5;162 . 1/12»
which concludes the proof of Lemma 4.7. O

dO’k dl/k

Proof of Lemma 4.8. By the triangle inequality, we have
||Tl;~11f9k+1 (S, ) - lelf9k (57 ) ||:2>o

< 2HTI;—',}1f91«+1 (8, ) - Tlglka (37 ) - 5];1ka (87 )Hgo + 2Hﬂk71ka (87 )||c2>c (E.7)
For the first term on the right-hand side of (E.7), we have
B (171 forn (8:) = 7 o (5,) = By Quon (5, )I20) < Al -7 2 €41 (E.8)

For the second term on the right-hand side of (E.7), we have
By 18 Qu (s )] < 5 - Boe [ max2(Quu(s,0))? + 2R3 = M, (B9)

where we use the 1-Lipschitz continuity of @, in w and the constraint ||wy — wp|l2 < R,,. Then,
taking expectation with respect to s ~ v* on the both sides of (E.7) and plugging in (E.8) and (E.9),
we finish the proof of Lemma 4.8. O

F Proof of Corollary 4.10

Proof. By Theorems 4.5 and 4.6, we have €1 = O(R?T—lﬂ + R?/Qm_ + R3 1/2) and
€, = O(RéT_l/Q + R‘Z}/zmé”“ + R%mél/z), which gives
Thi1€hil Ohy1 = O(kK*1/2 Lgr - (RETV2 + R5/2 f1/4)),

|.A| Tk+1€k+1 (sz 1, (RQ 1/2+R5/2 1/4 2)’
B el = O(K2 - (RyT ”2+Ri{2mQ”4>)
when my = Q(R?) and mq = Q(RY).
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Next setting mf =R} -Q(K° - ot + K* - |A?), mg = Q(K?Rg - 1/1;;4) and T = Q(K°R} -
‘v K R{, +2), we further have

ek = Typaehe1 - O+ By el - v = O(K ), (1)
Meanwhile, setting m; = Q(K*R}° - |A|*) and T = Q(K’R} - | A[), we have
e = Al T e = O(K™). (F2)

Summing up (F.1) and (F.2) fork + 1 € [K ] and plugging it into Theorem 4.9, we obtain
21 M+ O(1
0<k<K —¥)3- VK
which completes the proof of Corollary 4.10. O

G Proofs of Section 5

Proof of Lemma 5.1. The proof follows that of Lemma 6.1 in [24]. By the definition of V™ (s) in
(2.1), we have

]EV* [VW* (5)] =

hE

YV By s0),sem(Pre )t (L =) - 751, a1)] G.1)

~+
Il
o

= th By (| s),sem(Pre )t (L =) - 7(8,a1) + VT (s) = V7 (51)]

= ZW’ B P( | stranyaimm (- | s0),seme(Pre )i (L =) -7 (s0,a0) + - VT (s141) — V7 (s1)]

+E,-[V7(s)],
where the third inequality is obtained by taking E,«[V™(sg)] = E,«[V™(s)] out and, correspond-
ingly, delaying V™ (s;) by one time step to V™ (s;41) in each term of the summation. Note that for
the advantage function, by definition of the action-value function, we have
A"(s,a) = Q" (s,a) = V7™(s) = (L —7) r(s,a) +7- Es/N’P(~ | s,a) [Vﬂ-(sl)] = V7™(s),
which together with (G.1) implies

E, - [Vﬂ'* (5)] = Z ’Yt . Eatwﬂ'*(- | 8¢),8e~(P™")tr* [Aﬂ(sta at)] +E,- [VW<S)]
t=0
=(1—-7)"" Ep[A7(s,a)] + E,« [V (s)]. (G.2)
Here the second equality follows from (P”* )iv* = v* forany t > 0 and o* = 7*v*. Finally, note
that for any given s € S,
) = (@7 (s,-), (- |9))

Er-[A7(s,0)] = Ex-[Q7(s,a) = V7 (s)] = (Q"(s,), 7"
) = 7(-]5))- (G.3)

(]
=(Q"(s,), 7 (- |
Plugging (G.3) into (G.2) and recalling the definition of £(7) in (4.6), we finish the proof of Lemma

5.1. O

S
S

Proof of Lemma 5.2. First, we have

KL("(- | ) || mo (- | 8)) — KL(m"(:

208

| 8) | 76142 (- [ 5))
=<log(7fek+1(\ s)/mo, (-] 5), 7" (-] 5))
= (log(mo,.., (- ]5) /70, (- 9)), 7" (-| 8) = 7o, (- 5)) + KL(mg,.,, (-] 5) | o, (- | 5))
= [5)) = By QT (s, ), 7 (| 8) — 7o, (-] 5))

(

(

(log(mg, ., (| s)/mo, (-
+ Bt QT (s, - *(|8)—Wek('|8)>+KL(779H1('|8)||7T9k('|8))

+ (log(m, ., (- | )/7T9 (1)), 70, (- 8) = Mo, (-] 5))- (G.4)

Recall that 7,11 o< exp{7;, ' fo, + B 'Q™ } and Zj,11(s) and Zg, (s) are defined in (E.1). Also
recall that we have (log Zy, (s),7(-|s) — 7' (- | s)) = (log Zx(s),7(-|s) — 7'(-]s)) = 0 for all k,
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m, and 7/, which implies that, on the right-hand-side of (G.4),
(log mo, (- | 5) + B 1 QT (s5,), 7" (- | ) — 7o, (-] 5))
= (1 fou(s,) + Bt Q7k (s,), 7 (- | 5) — ma, (| 8)) — (log Zg, (), 7" (- | 8) — ma, (-] 5))
= (1 fou(s,) + B Q7x (5,), 7 (- | 8) — m, (| 5)) — (log Zyy1(5), (- | 5) — ma, (- | 5))

= (log mi41(-|s), 7 (- | s) — mo, (- | 5)), (G.5)
and

(log(7a, ,, (- 8)/ma, (-] 5)), 0, (- 8) = oy, (-] 5))
= <T];J,}1f0k+1( ) T 1f9k( ) 7T9k(' | S) - 7T9k+1(' ‘ 8)>
— (log Zp, ., (s), 79, (- 8) = To,,., (-] 5)) + (log Zp, (s), 7o, (- | 5) — mg,,, (-] 5))

= <Tk+1f9k+1( 1) = un f9k( 8,°), T, (+]8) — MOk 41 (-]5))- (G.6)
Plugging (G.5) and (G.6) into (G.4), we obtain
KL(7" (-] 5) [ w9, (-] 5)) = KL(7"(- | 5) [| mg,..., (- 5)) (G.7)

= (log(mo, ., (- 8)/mh1(-18)), 7* (- | 8) = ma, (- [8)) + B ' - (Qk (s5,-), 7 (-] 5) — 7o, (- | 5))
+ <Tk;_+11f€k+1(57 ) - Tk_lfek (3’ ) 7T9k( | ) 7T9k:+1( | )> + KL(W9k+1( | ) H 7r9k(' | 8))

> (10g(To,y, (- | 8) /M1 (-] 8)), 7 (- | 8) =m0, (-] 8)) + Bt - (Q (5,-), 7 (| 8) — 7o, (-] 9))

)

+ (T fornn (5:) = 70 fou(5,7), mo, (| 8) = 70,1 (-] 8)) +1/2 Imo, 1, (| 8) — 70, (- | 8)]IF,
where in the last inequality we use the Pinsker’s inequality. Rearranging the terms in (G.7), we
finish the proof of Lemma 5.2. O

24



