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Abstract

A proper understanding of the striking generalization abilities of deep neural net-
works presents an enduring puzzle. Recently, there has been a growing body of
numerically-grounded theoretical work that has contributed important insights to
the theory of learning in deep neural nets. There has also been a recent interest
in extending these analyses to understanding how multitask learning can further
improve the generalization capacity of deep neural nets. These studies deal almost
exclusively with regression tasks which are amenable to existing analytical tech-
niques. We develop an analytic theory of the nonlinear dynamics of generalization
of deep neural networks trained to solve classification tasks using softmax outputs
and cross-entropy loss, addressing both single task and multitask settings. We do
so by adapting techniques from the statistical physics of disordered systems, ac-
counting for both finite size datasets and correlated outputs induced by the training
dynamics. We discuss the validity of our theoretical results in comparison to a
comprehensive suite of numerical experiments. Our analysis provides theoretical
support for the intuition that the performance of multitask learning is determined
by the noisiness of the tasks and how well their input features align with each other.
Highly related, clean tasks benefit each other, whereas unrelated, clean tasks can
be detrimental to individual task performance.

1 Introduction

Despite the remarkable string of successful results demonstrated by deep learning practitioners, we
still do not have a clear understanding of how these models manage to generalize so well, effectively
evading many of the intuitions expected from statistical learning theory. The enigma is further
heightened when one considers multitask learning, especially in regimes where labeled data is scarce.
In order to make specific assertions about the effective transfer of knowledge across tasks, one
needs a predictive framework to address generalization in a multitask setting. There has been a
noticeable uptick in recent efforts to build a rigorous theoretical foundation for deep learning (see,
e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for a sampling of this trend). To the best of our knowledge (with one
exception, described below), none of the existing analytical work deals with multitask learning.

Multitask learning holds promise for training more generalized and intelligent learning systems
[11]. It comprises a broad set of strategies loosely defined by the presence of multiple objective
functions and a set of shared parameters optimized for those objective functions. The most prevalent
formulation of multitask learning in the literature is the addition of supervised auxiliary task(s) to
assist in training a network to better perform a target task of interest (main task)[12, 13, 14, 15].
In this framework the only purpose of the auxiliary task(s) is to produce improved generalization
performance on the main task. This benefit is thought to arise from an inductive bias placed on the
learning of the main task towards learning more general features [11]. Since the features learned
through multitask learning blend the optimal features for all of the optimized tasks, there is an
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assumed dependence of the multitask benefit on the relatedness of the auxiliary tasks to the main
task (e.g. if the optimal features for the auxiliary task are orthogonal to those of the main task, then
the main task will be best optimized by ignoring the auxiliary task entirely). How exactly to define
"relatedness" in the context of multitask learning in deep neural networks remains unknown. The
most explicit definition to date, to our knowledge, comes from [16], where it is described as the
angles between the singular vectors of the implicit input-output function learned by the network.
While this definition is narrow, it lends a nice starting point for a theoretical analysis in the multitask
setting. Outside of the work done in [16] on multitask learning in linear regression networks, the
theory of multitask learning in neural networks remains unexplored. In this work we hope to further
the theoretical understanding of multitask benefits to multiclass classification problems, a much more
common class of problems in modern machine learning.

To narrow the scope of this study, we have chosen to focus on the formulation of multitask learning
where the neural network is defined as having a single shared trunk and multiple task-specific heads.
Many recent studies have sought to explore alternative methods of parameter sharing, though these do
not usually lend themselves as easily to this form of theoretical analysis [17, 18]. Further, multitask
learning also provides an interesting strategy for learning a single universal representation for many
tasks possibly across multiple domains [19, 20, 21]. In this strategy there is often no clear "main"
task and it is not clear that the benefit to be gained is even improved generalization performance on
any of the trained tasks. Instead the benefit could be seen as improved performance over a set of
problems given a fixed parameter budget or improved transfer learning to unseen tasks [22]. While
these are certainly exciting research directions and could benefit from careful theoretical scrutiny, we
leave them for future work.

This manuscript is structured as follows: in section 2 we describe the theory behind single task
learning in classification networks. In section 3 we describe, both analytically and empirically, the
training dynamics of such networks. In section 4 we extend this work to account for multitask learning
of simple classification tasks. Finally, in section 5 discuss interesting leads and future directions.

2 Theoretical Underpinnings

A convenient framework for analyzing multitask problems was introduced in [16], addressing
regression problems in deep linear neural networks. Given the success of that approach, could the
techniques in [16] be generalized to deep neural net classifiers with softmax outputs? Our analysis
provides an affirmative answer to this question, albeit at considerable technical cost: despite a strong
conceptual similarity between analyzing regression and softmax classification problems, the structure
of the solutions to the classification problem differ markedly from those obtained in the regression
case. On the other hand, and perhaps unsurprisingly, the intuition gleaned from [16] about the
conditions required for effective multitask learning carry over to the classification problems, in spite
of the technical differences between the analysis of classification and regression tasks.

We adopt the student-teacher setup popularized several decades ago in early attempts to theoretically
understand the generalization abilities of neural networks (see, e.g. [23]) and recently revisited in [16].
We will attempt to closely follow the notational conventions in [16] with the hope of establishing
a common language for analyzing these sorts of problems. The key insight behind the analysis of
softmax classifiers is the uncanny resemblance of the training dynamics of deep neural nets to the
physical dynamics of disordered systems. In particular, we take advantage of a formal similarity
between deep neural softmax classifers and a generalized version of Derrida’s Random Energy Model
(REM) [24]. A generalization of the REM is required because the outputs of a deep neural network
are correlated random variables, in contrast to the i.i.d conditions that render the original REM
solvable. Furthermore, deep learning practitioners do not work with infinite size models, so we also
have to take into account finite size effects.

2.1 Teacher Network

Following [16], we consider low rank teacher networks which serve to provide a training signal to
arbitrary student networks. We begin with a 3-layer teacher network defined by N ` units in layer
` and weight matrices W

21
2 RN2⇥N1 between the input and hidden layer and W

32
2 RN3⇥N2
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between the hidden layer and an argmax output layer. We also define W ⌘ W
32
W

21
2 RN3⇥N1

for the teacher’s composite weight.

We consider teachers that produce noisy outputs using a noise perturbed composite weight matrix
⌃̂ ⌘ W + ⇠, where ⇠ 2 RN3⇥N1 has i.i.d elements.

During training, the teacher network takes in an input data matrix X 2 RN1⇥Ndata , and produces
noisy vector outputs ŷ ⌘ argmax

over rows

�
⌃̂X

 
2 RNdata

thereby furnishing a rule for producing (noisy) labels ŷ from inputs X. At test time, the student is
tested against noise-free labels generated via y ⌘ argmax

over rows

�
WX

 
2 RNdata

At this point, we take a slight departure from the setup in [16]: in their setup, the data matrix is
taken to be orthonormal, whereas we take X to have entries drawn independently from a standard
Gaussian distribution. Similarly, the elements of the noise matrix ⇠ are i.i.d centered normal variables
with variance �̂

2
/N1. The scale of �̂ is chosen in such a way that there is a non-zero probability for

label-flipping, i.e. Prob(ŷ 6= y) > 0.

2.2 Student Network

We first consider a 3-layer student network. In general, the student network has the same number
of input and output units as the teacher since these are defined by the specifics of the task at hand.
However, the student has no knowledge of the teacher’s internal architecture. Thus, the number of
hidden units in the student’s network will almost surely be different from the teacher’s. Writing N2

for the student’s number of hidden units, we have student weight matrices W21
2 RN2⇥N1 between

the input and hidden layer and W32
2 RN3⇥N2 between the hidden layer and the softmax output

layer. We also define W ⌘ W32W21
2 RN3⇥N1 for the student’s composite weight.

Given an input data matrix X 2 RN1⇥Ndata , the student computes a matrix output

Y(WX) = softmax
�
WX

�

Note that Y 2 RN3⇥N1 is a matrix with elements

Ycµ(WX) = softmax

0

@
N1X

k=1

WckXkµ

1

A , 1  c  N3, 1  µ  Ndata

which is interpreted as the probability that the student assigns a class label c given an input xµ drawn
from the µ

th column of X.

The student is trained by minimizing a cross-entropy loss

Ltrain = �
1

Ndata

NdataX

µ=1

N3X

c=1

�c,ŷµ(X) lnYcµ(WX), (where � is the Kronecker delta.) (1)

3 Training Dynamics: Theory v/s Experiment

We use vanilla SGD to train the student network. A detailed derivation of the dynamics of training is
presented in appendix A. The relevant equations are given by

⌧
d

dt
W32 =

⇣
G(⌃̂)⌃̂�G(W)W

⌘
W21T

⌧
d

dt
W21 = W32T

⇣
G(⌃̂)⌃̂�G(W)W

⌘
(2)
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where 1/⌧ is the SGD learning rate, and G : RN3⇥N1 7! RN3⇥N3 is a non-linear, positive semi-
definite matrix-valued function which captures the gradient of the softmax function averaged over the
training data (see appendix A:13 for a precise definition). The solutions to (2) are very different from
those obtained for the regression case in [16].

Further insight into the dynamics (2) is provided by considering the so-called training aligned (TA)
case as defined in [16] where one initializes the student’s weights such that the initial value of the
student’s composite weight is W0 = ÛS0V̂

T
given the noisy teacher’s SVD ⌃̂ = Û Ŝ V̂

T
, where

S0 is the student’s initial singular value matrix.

A detailed analysis of the TA dynamics is presented in full generality in appendix B. For a rank one
teacher in the TA case, i.e. if the noisy teacher’s SVD is ⌃̂ = ŝûv̂T , equation (2) simplifies further
to an equation for the student’s largest singular value, with all the other singular values exponentially
suppressed in time. Explicitly, writing s ⌘ maxS for the student’s largest singular value, equation
(2) becomes

⌧
d

dt
s = 2sû ·

⇣
ŝG(ŝûv̂T )� sG(sûv̂T )

⌘
û (3)

Numerically integrating equation (3) yields the graphs shown in Figure 1. The figure reveals excellent
agreement between theory and experiment over a wide range of initial conditions.

4 Multitask Generalization Dynamics: Theory v/s Experiment

4.1 Teacher Networks

In the multitask setting, we have two teacher networks represented by N3 ⇥ N1 weight matrices
WA and WB with ranks N

A
2 and N

B
2 respectively. Their noise-perturbed versions, ⌃̂A, ⌃̂B are

defined as before, so that the teachers produce noisy labels ŷA/B ⌘ argmax
over rows

�
⌃̂A/BX

 
and noise

free labels yA/B ⌘ argmax
over rows

�
WA/BX

 
.

4.2 Student Network

In the multitask setting, a composite student network is designed to learn multiple tasks jointly from
the teachers. In general, the student network will consist of a trunk comprised of a stack of hidden
layers shared across tasks, augmented by a set of specialized heads specific to individual tasks. This
setup is identical to the one used in [16].

For three-layer students, we continue to denote the trunk’s composite weight matrix by W21 and
write WA

32, WB
32 for the weights in the heads, and WA ⌘ WA

32W21, WB ⌘ WB
32W21 for the

corresponding composite weights. Note that, crucially, both students share the trunk weights W21.

The students are trained to minimize a weighted sum of the cross-entropy losses pertaining to each
task, i.e. L = ↵ALA + ↵BLB . In general, the weighting coefficients ↵A, ↵B can be chosen via
some optimization method or even learned as part of the model’s training procedure. However, we
will only consider the simplest case where ↵A = ↵B = 1.

We arbitrarily pick task A as the main task that we’re interested in, and consider task B as an auxiliary
task whose sole purpose is to improve the performance of task A. We are thus interested in finding
out what properties of task B are required in order to improve the student’s learning of task A. This
naturally leads to the idea of task-relatedness, a well-known, though loosely-defined, concept in the
literature on multitask learning [11].

4.3 Task Relatedness

As noted in the introduction, we currently lack a precise definition of task-relatedness in the context of
multitask learning in deep neural networks. The authors of [16] propose defining task-relatedness as
a function of the angles between the singular vectors of the implicit input-output function learned by
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Figure 1: Comparing the theoretical predictions in (3) to empirical results. 1/⌧ = 10�3 is the
learning rate, so the figure shows training for 5k steps (chosen as the minimum of the validation
error). The empirical results are obtained using 10 different random seeds. The results shown are for
a 2-class and 20-class classification task using 100 training data points to highlight the fact that the
theory agrees with experiment over a wide range of class sizes.

the network. As it turns out, as a direct consequence of the SGD dynamics in (2), the same definition
appears naturally in the student-teacher framework for multitask classifiers.

Given two tasks A and B defined by two teachers with weight matrices WA and WB respectively,
we denote their SVDs by WA/B = UA/B SA/B V

T
A/B. We define the relatedness rAB between

tasks A and B as

rAB := V
T
BV A (4)

4.4 Multitask Benefit

Table 1: Key takeaways from multitask analysis
independent variables
rAB sB Ndata effect on MTA B analytical explanation

(a) 0 any any 0 sA = esA
(b) > 0 % any % (sA � esA) & as sB %

(c) rAB % (0 < rAB ⌧ 1) any limited % appendix:C.1, eqn. (36)
(d) any any abundant small esAg(esA) ! sAg(sA)

For the purposes of quantifying any gains in performance from multitask learning relative to models
trained on a single task, we introduce the notion of a multitask benefit. We arrive at our multitask
benefit by comparing the optimal performance of the multitask model on the main task, say A to the
optimal performance of a baseline model trained only on task A.

Given the multitask generalization loss LAB = LA + LB , we define LA|B := LAB � LB as
the generalization loss on task A when task A is trained jointly with task B. This quantity is to
be compared to the generalization loss eLA defined as the loss when task A is trained on its own.
Following [16], we define the multitask benefit conferred on task A by task B via

MTA B ⌘ min
t

n
eLA(t)

o
�min

t

�
LA|B(t)

 

Remarkably, one can place a tight bound on the multitask benefit using a relatively simple argument
based on the concavity of the logarithm function. We present here the result for the simpler case of a
TA model with rank one teachers and relegate the general case to appendix C. For a TA model with
rank one teachers with SVD WA = suAvA

T , we abbreviate g(s) := uA ·G(suAvA
T )uA � 0,
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with G as featured in the training dynamics in equation (2) and defined in appendix A:13. The key
takeaways of this analysis are summarized in Table 1 and described more fully below.

As derived in Appendix C (cf. equations C:24 and C:25), the bound on the multitask benefit is

(sA � esA)
⇣
sAg(sA)� sAg(sA)

⌘
 MTA B  (sA � esA)

⇣
sAg(sA)� esAg(esA)

⌘
(5)

Notice that the factor
�
sAg(sA) � esAg(esA)

�
on the RHS of equation (5) depends only quantities

pertaining to the baseline single task case, and hence is entirely independent of the training dynamics
of the multitask case.

In contrast, the sign of (sA � esA) depends on the multitask teachers’ singular values for tasks
A and B, their correspponding SNRs, and the relatedness rAB between tasks A and B (see the
discussion surrounding equations 28-37 in Appendix C.1). For unrelated tasks, viz. rAB = 0, one
obtains sA = esA (cf. C.1:28) and so the multitask benefit vanishes. For “weakly related” tasks, viz.
0 < rAB ⌧ 1, (C.1:35) shows that high SNR auxiliary tasks have a deleterious effect on MTA B .

In the high SNR regime, the noisy teacher’s singular values are larger than the noise-free case. Since
the student’s dynamics is driven by the noisy teacher, sA ! ŝA � sA in the high SNR regime. Under
these conditions, equation (C.1:31) implies that MTA B � 0.

In the low SNR regime, the noisy teacher’s singular values lie in the bulk of the MP sea [25].
In this case, the student’s dynamics is driven by noise, so that sA ! ŝA < sA for low SNRs.
Under these conditions, a positive MTA B occurs only if the constraints on rAB and sB leading to
equation (C.1:33) are satisfied.

In regimes where labeled training data is abundant, the factor
�
sAg(sA)� esAg(esA)

�
! 0 in which

case MTA B ! 0, regardless of the relatedness between tasks (cf. equation C.1:37).

To summarize, the TA model predicts that multitask learning will have the largest impact under
conditions mimicking scarce labeled data such that the baseline model underperforms on the main
task, as long as the auxiliary tasks have some relatedness to the main task. Thus, coming up with
auxiliary tasks that have a high degree of relatedness to the main task will be crucial to observing a
positive multitask benefit.

While the results in this section have only been demonstrated for the special case of TA models, we
will shortly see that the predictions are realized empirically in a wide variety of scenarios.

4.5 Data vs model uncertainty

Using the framework described above, we set out to describe the relationship between multitask
benefit and several key factors that influence training of both the single task baseline - the amount and
quality of the main task data - and multitask training - the amount, quality and relatedness of auxiliary
task data. We systematically varied1 these factors and computed the multitask benefit for 5 different
training datasets, the results of which are summarized in Figure 2. To ensure that we had roughly
class-balanced training datasets, we fixed N3 = N2, and set both to 10 for the experiments here.
Other values for the rank showed similar results and data for rank 3 teacher networks can be found in
Figure A2. The signal-to-noise ratio (SNR) of the data in each dataset is directly proportional to the
singular value of the teacher network that generated each task’s data.

We kept all singular values for a given teacher network the same and varied this value from .01 to 100.
Similarly, we fixed the relatedness of teacher network B to V

T
BV A = rABI , such that the singular

vectors V B were orthogonal to V A with constant inner product. We varied this value from 0 to 1.
This work demonstrates several interesting dependencies:

1. Multitask benefit increases with increasing task relatedness and SNR of the auxiliary data.
This mirrors the finding from row (b) of Table 1.

2. Unrelated, high SNR auxiliary tasks are actually destructive to the learning process of the
main task. Our theoretical framework provides an explanation for this observation in C.1:35.

1Code supporting this paper is available upon request
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Figure 2: (Left) Summary of multitask benefits gained when the student network was trained with
increasing signal-to-noise ratio (SNR). With constant noise levels, the SNR increases with the singular
values for teacher A, SA, were increased from .01 to 10 (alternating stripes, left-to-right). For each
value of SA (x-axis), the average multitask benefit was computed for low SNR auxiliary tasks (SB)
and high SNR auxiliary tasks (each line segment, left-to-right) across 5 levels of task relatedness
(rAB). Data is plotted for 800 training points. This demonstrates that multitask benefit is correlated
with task relatedness and SNR for related tasks, yet negatively correlated with SNR for unrelated
tasks. (Right) Summary of multitask benefits with increasing amount of training data (alternating
stripes, left-to-right). At 100 training points the network still struggles to train and does not gain a
generalization benefit from auxiliary data. For > 200 training points, the network begins to leverage
the related auxiliary data to improve performance. When the dataset is very large, performance nearly
reaches its ceiling and the auxiliary data has little effect. See Figure A1 for the complete set of
interactions among these variables.
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1 3 5
# Layers
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.34

M
T A

←
B

Aux Training Pts
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.01 10
rABSB

Figure 3: (Left) Summary of multitask benefits gained when the student network was trained with
increasing amounts of auxiliary task data . For each quantity of auxiliary task data (x-axis), the
average multitask benefit was computed for low SNR aux tasks and high SNR aux tasks (each
line segment, left-to-right) across 5 levels of task relatedness. All the data shown is for high SNR
main tasks, and demonstrates that increasing relatedness and auxiliary task data give large multitask
benefits. For more details see Figure A3. (Right) Summary of multitask benefits gained for nonlinear
student networks of increasing depth (x-axis). Deeper nonlinear networks show similar trends to
shallow linear networks. For more details see Figure A4.

In contrast, unrelated, noisy auxiliary tasks are readily ignored. This mirrors the findings
from rows (a) and (c) of Table 1.

3. The main task must have a certain level of base performance either from clean data or
larger amounts of data before multitask learning can help. This holds up to the point where
single task performance nears optimal performance on the main task, as is the case when the
amount of training data supplied is large. These statements mirror the findings from rows
(c) and (d) of Table 1.
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4.6 Auxiliary task data efficiency

Multitask learning is a popular strategy for extending the utility of a limited amount of main task data.
This is often an interesting choice when auxiliary task data is easy to come by but main task data is
expensive. To gauge the value of additional auxiliary task data while holding main task data fixed,
we trained multitask student networks on 100 main task data points and up to 800 auxiliary task data
points. These results are summarized in Figure 3 (left) and full results can be found in Figure A3. As
auxiliary task data quantities increase we see similar trade-offs to those above, where related, high
quality data provides a large multitask benefit, while unrelated, high quality data proves increasingly
detrimental.

4.7 Multitask learning in deeper, nonlinear student networks

To ensure that our results can generalize to nonlinear and deeper networks, we varied the number
of hidden layers in the student network and included a ReLU nonlinearity between each hidden
layer. While this situation does not lend itself to clean theoretical analysis, we found that these
networks behave qualitatively similar to the linear network results described above. These results are
summarized in Figure 3 (right) and full results can be found in Figure A4. Again, multitask benefit is
strongly correlated with relatedness and the SNR of both datasets. Interestingly, there is a general
shift downwards in multitask benefit, suggesting that nonlinear networks require more highly related
tasks in order to generate a significant performance increase.

5 Discussion and future directions

Here we demonstrate that, for linear classifier networks with a softmax output nonlinearity, general-
ization performance can be computed analytically. We extend the analysis in [16] to classification
problems and show both theoretically and empirically that improvements from multitask learning
are heavily related to training set size, task relatedness, and the noise levels inherent in the data.
Networks given sufficient data to train well show improved performance when supplemented with
related, high signal-to-noise ratio auxiliary tasks. Unrelated auxiliary tasks show little benefit and can
be actively detrimental if they provide a strong enough training signal.

The problem of increasing the range of parameters from which one gets a multitask benefit and
decreasing potential harms has received increasing interest in recent years, often through clever loss
or gradient weighting strategies [26, 27, 28]. A careful interrogation of (5) should provide some
insight on methods for maximizing the possible multitask benefit, a direction we leave for future
work. Additionally, we have shown that our results generalize to deeper, more nonlinear student
networks, though these networks are still quite different from networks used in practice. We expect
the insights gained in this work, especially with regard to the critical properties of main and auxiliary
task datasets will generalize well to more complex networks. Generalizing our results regarding task
relatedness poses an interesting challenge for future research.
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