
We would like to thank the reviewers for their comments and remarks. We will gladly follow the suggestions for1

clarifying the paper.2

Reviewers #1 and #4 inquired about the quality of our method with smaller training sets. The table below shows the3

average output quality in dB with various training set sizes on Gaussian noise (σ = 25). In these tests, our method4

always performs roughly on par with the baseline supervised training, and with very small training sets appears to5

consistently outperform it. This may suggest that our method is less prone to overfitting, but investigating the effect6

further would require additional study. CBM3D yields 30.96 dB in this setup.7

Training images
Method all 10 000 1000 500 300 200 100 (10 runs)

Baseline, N2C 31.60 31.59 31.53 31.44 31.35 31.21 30.86 (± 0.02)
Our 31.58 31.58 31.53 31.48 31.40 31.29 31.03 (± 0.02)

Reviewer #1 remarked that our experiments are performed on synthetic data only. This decision was motivated by the8

need to measure denoising quality reliably against a known ground truth, and to compare our method to previous work9

that commonly follows the same approach of corrupting clean natural images with controlled amounts of synthetic10

noise. As the non-learned CBM3D method is also designed for natural images, we feel that our comparisons are fair.11

We agree that experimenting with real medical data would be an important next step.12

We would like to thank Reviewer #1 for bringing the SURE-based unsupervised denoising work to our attention. These13

papers should certainly be cited in our related work section. However, it is not the case that the referred unsupervised14

SURE-based methods reach similar quality as training an equivalent network in a supervised fashion. Both [1] and [2]15

as well as our paper contain results in the case of Gaussian noise, σ = 25. In [1], the average output quality suffers by16

0.23 dB in BSD68 (Table 4 in [1], DnCNN-Sure vs. DnCNN-MSE-GT) and by 0.33 dB in SET12 (Table 3) compared17

to supervised training. In [2] the gap is 0.32 dB averaged over the six test images. As shown in Table 1 of our paper,18

our method has just a 0.01 dB quality gap to the baseline in KODAK and SET14, and 0.05 dB in BSD300 in the same19

conditions. This is a much better result than demonstrated in the SURE-based methods. The FC-AIDE method in [3] is20

not a fully unsupervised method, as it requires ground truth data for training the base network in a supervised fashion,21

which is then fine-tuned in an unsupervised fashion using the noisy test image at test time. As such, we do not feel that22

FC-AIDE would be fair as a comparison method, but it could serve as a high-quality baseline.23

Reviewers #2 and #4 asked about comparisons to NOISE2VOID. We shall incorporate more of our comparison between24

masking-based training and architecturally enforced blind spot into the main text as suggested. It is true that we do not25

compare against plain NOISE2VOID — as we provide two improvements over it, we measure their effects separately.26

The µ-only ablations are a proxy for NOISE2VOID in that the center pixel is ignored and posterior mean estimation is27

not done, while we still employ an architectural blind spot. Correspondingly, the masking experiments in Appendix B28

test the effectiveness of the architecture. We have run an experiment with masking-based training and without posterior29

mean, i.e., equivalent to the original NOISE2VOID except that the network architecture was the same as in other30

experiments. In a setting similar to Appendix B, this test converged to 30.31 dB quality at equivalent training time, thus31

yielding a gap of ∼2.1 dB to our result of 32.39 dB. After submission we have extended the training runs in Appendix B32

considerably further, and as Reviewer #4 suggests, it indeed appears that masking-based training cannot quite match our33

architecturally enforced blind spot even in the limit. We hypothesize that the network fails to be truly independent of the34

center pixel, and some noise propagates to the output image, but analyzing this further would be a topic for future work.35

Reviewer #4 called for comparisons against state-of-the-art denoising methods. Like in [1] and [2], our focus is36

on studying the relative efficacy of different training schemes using a known, well-performing network architecture.37

Answering a question by Reviewer #2, we thus consider the baseline to be the same network trained in a traditional,38

supervised fashion using clean images as targets, indicated as “Baseline, N2C” in our tables. Achieving absolute39

state-of-the-art denoising results would likely require significantly more complex architectures, and the increased40

computational cost makes experimentation difficult (e.g., the NOISE2NOISE paper quotes the training cost of RED30 to41

be 10× higher than the U-net architecture). However, it would be interesting to evaluate our method with higher-quality42

architectures in the future and see, e.g., if our ideas could be combined with FC-AIDE [3].43
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