
We thank the reviewers for careful examination of our paper. Since there are no common concerns, we address individual1

concerns. For the rebuttal, we use references from the main paper plus some references added here.2

Reviewer 1. 1. LFPM Elicitation and Significant Contributions: In our experience, linear metrics are by far the3

most used in practice (see [A, 21] and references therein), so we chose to focus on this case. Even for the linear case,4

there are many subtle issues that we address – including a novel characterization of the space of confusion matrices,5

introducing and analysing restricted Bayes optimal classifiers, developing algorithms with theoretical guarantees, and6

showing robustness for the practical applications (noise analysis). We hope the reviewer agrees, in accord with the other7

reviewers, that these are significant contributions. We also note that the linear case is important for understanding more8

complex settings, though all the additional details are difficult to compress into eight pages. However, we agree with9

the reviewer that LFPM elicitation is still important, and therefore, instead of discarding it completely, we summarized10

it in Section 7 and discussed it thoroughly in the appendix to conclude our scientific contributions.11

2. Assumption 3 and 4: These are sufficient conditions for DLFPMs (LFPMs) to be bounded and monotonically12

increasing (decreasing) in diagonal (off-diagonal) elements of the confusion matrices. This is detailed in proof of13

Proposition 5 (Proposition 7). It is equivalent to fixing ‖a‖1 = 1, ai ≥ 0 for the diagonal linear case (Section 2.2).14

The only additional restriction for the linear-fractional case is b0 =
∑
i(ai − bi)ζi, instead of the derived condition15

b0 ≥
∑
i(ai − bi)ζi (see line 614), which is sufficient to guarantee a unique metric bounded in [0, 1] (instead of one of16

the equivalent alternatives). Note that most existing linear-fractional metrics satisfy these conditions [7, 11, 12].17

3. Lower Bound: We conjecture that our bounds are tight (section 7), but we leave a proof for future work. Our initial18

analysis says that it requires an additional understanding of the query space. We hope the reviewer agrees that query19

complexity bounds are important even when lower bounds are yet unknown.20

4. Factor of k: Notice that the error guarantee in Theorem 1 is in ‖ · ‖∞-norm; whereas, it is in ‖ · ‖2-norm in Theorem21

2. Thus, using standard norm bounds, it is clear that both have square root dependence on the number of unknown22

terms in ‖ · ‖2-norm. We thank the reviewer for pointing this out and will clarify in the final version.23

Figure 9: Passive Learning.

Reviewer 2. 1. Experiments: Our experiments are primarily designed to empirically24

validate our theory. Since this is the first work on multiclass ME, we are unaware of25

any baselines. The suggested strategy of posing random queries is easily shown to26

require exponential time to achieve ε error (using ε-ball finite parcellation of the space of27

confusion matrices), thus is extremely query-inefficient. In Section 8, we outline several28

approaches which learn linear functions from pairwise comparisons in a passive manner29

[9, 6, 14] i.e. by first randomly collecting pairwise comparisons and then learning a30

linear function âT c. To verify the inferiority of the passive approach, we present the31

performance of [9] for the two metrics (for k = 3, 4) in row 1 of Table 2, and plot the32

error ‖a∗ − â‖∞ in Figure 9. The plot is averaged over 5 random runs. We see that even after 400 queries the error is33

greater than 0.1 for the baseline; whereas, we only require 56 (resp. 84) queries for k = 3 (resp. k = 4) to achieve 0.0134

error. While we chose not to compare to these trivial baselines, if the reviewer strongly feels these experiments are35

helpful for a broad audience, we are happy to add such experiments in the additional page of the final version.36

2. Relevant Paper [B]: Comparison queries in [B] solve a different problem of actively finding a good classifier (wrt.37

the accuracy metric), compared to our problem of finding the oracle’s metric. However, we believe some ideas from [B]38

may be relevant, and we would like to thank the reviewer for the reference. We will add it in the final version.39
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Figure 10: Two Queries

Reviewer 4. 1. Four Queries in Algorithm 1: Unlike the standard binary search, we want to40

find the mode of a unimodal function using pairwise comparisons. Note that posing two queries41

in each iteration does not achieve the goal. As an example, compare the solid and dotted functions42

in Figure 10. Since the query responses will be same for both functions, we cannot decide the next43

search interval. Thus, we need more than two queries. On the other hand, we would like to thank44

the reviewer for pointing our unclear description of unimodal. Notice that due to Assumption45

1, every supporting hyperplane of Dk1,k2 supports a unique point on the boundary ∂D+
k1,k2

and46

vice-versa (Proposition 1); therefore, we indeed do not have flat regions. We will clarify this in the final version.47

2. Difference in norms: The norms were chosen to best complement the underlying metric elicitation algorithm and48

vice-versa. For example, wlog, we can assume ‖ · ‖2 normalization in Definition 1, but then the form of the solution49

becomes a little complex. If desired, we are happy to transform results to various norms using standard norm bounds.50

3. ν, µ details: Thank you for the suggestion. We will add these details in the final version.51

4. With high probability argument: When working with finite samples, we cannot guarantee that the estimate of52

confusion matrix ĉ will converge to the true c with probability 1 due to finite sample effects. Now notice that since53

the oracle response Ω(ĉ, ĉ′) = 1[φ(ĉ) > φ(ĉ′)] is a 1-Lipschitz function of the confusion matrices, we can guarantee54

correct feedback i.e. Ω(c, c′) = 1[φ(c) > φ(c′)] only with high probability (not with probability 1).55
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