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1 Algorithms of our proposed methods1

The forward propagation of a 2-layer graph convolutional network (GCN) [10] is2

3

Z = softmax

(
Ā ReLU

(
ĀXΘ(1)

)
Θ(2)

)
4

where Ā = D̃−
1
2 ÃD̃−

1
2 , Ã = A + I, and D̃ii =

∑N
j=1 Ãij and D = diag(d1, · · · , dN ) is5

the diagonal degree matrix with elements di =
∑N
j=1,j 6=iAji. We provide algorithms for our three6

proposed methods:7

• HyperGCN - Algorithm 18

• FastHyperGCN - Algorithm 29

• 1-HyperGCN - Algorithm 310

Algorithm 1 Algorithm for HyperGCN
Input: An attributed hypergraphH = (V,E,X), with attributes X , a set of labelled vertices VL
Output All hypernodes in V − VL labelled

1: for each epoch τ of training do
2: for layer l = 1, 2 of the network do
3: set A(l)

vv = 1 For all hypernodes v ∈ V
4: let Θ = Θτ be the parameters For the current epoch
5: for e ∈ E do
6: H ← hidden representation matrix of layer l − 1
7: ie, je := argmaxi,j∈e||Hi(Θ

(l))−Hj(Θ
(l))||2

8: A
(l)
ie,je

= A
(l)
je,ie

= 1
2|e|−3

9: Ke := {k ∈ e : k 6= ie, k 6= je}
10: for k ∈ Ke do
11: A

(l)
ie,k

= A
(l)
k,ie

= 1
2|e|−3

12: A
(l)
je,k

= A
(l)
k,je

= 1
2|e|−3

13: end for
14: end for
15: end for

16: Z = softmax

(
Ā(2) ReLU

(
Ā(1)XΘ(1)

)
Θ(2)

)
17: update parameters Θτ to minimise cross entropy loss on the set of labelled hypernodes VL
18: end for
19: label the hypernodes in V − VL using Z
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Algorithm 2 Algorithm for FastHyperGCN
Input: An attributed hypergraphH = (V,E,X), with attributes X , a set of labelled vertices VL
Output All hypernodes in V − VL labelled

set Avv = 1 for all hypernodes v ∈ V
ie, je := argmaxi,j∈e||Xi −Xj ||2
for e ∈ E do

Aie,je = Aje,ie = 1
2|e|−3

Ke := {k ∈ e : k 6= ie, k 6= je}
for k ∈ Ke do

Aie,k = Ak,ie = 1
2|e|−3

Aje,k = Ak,je = 1
2|e|−3

end for
end for
for each epoch τ of training do

let Θ = Θτ be the parameters for the current epoch

Z = softmax

(
Ā ReLU

(
ĀXΘ(1)

)
Θ(2)

)
update parameters Θτ to minimise cross entropy loss on the set of labelled hypernodes VL

end for
label the hypernodes in V − VL using Z

Algorithm 3 Algorithm for 1-HyperGCN
Input: An attributed hypergraphH = (V,E,X), with attributes X , a set of labelled vertices VL
Output All hypernodes in V − VL labelled

for each epoch τ of training do
for layer l = 1, 2 of the network do

set A(l)
vv = 1 for all hypernodes v ∈ V

let Θ = Θτ be the parameters for the current epoch
for e ∈ E do

H ← hidden representation matrix of layer l − 1
ie, je := argmaxi,j∈e||Hi(Θ

(l))−Hj(Θ
(l))||2

A
(l)
ie,je

= A
(l)
je,ie

= 1
|e|

end for
end for

Z = softmax

(
Ā(2) ReLU

(
Ā(1)XΘ(1)

)
Θ(2)

)
update parameters Θτ to minimise cross entropy loss on the set of labelled hypernodes VL

end for
label the hypernodes in V − VL using Z

1.1 Time complexity11

Given an attributed hypergraph (V,E,X), let d be the number of initial features, h be the number of12

hidden units, and l be the number of labels. Further, let T be the total number of epochs of training.13

Define14

N :=
∑
e∈E
|e|, Nm :=

∑
e∈E

(
2|e| − 3

)
, Nc :=

∑
e∈E

|e|C2

• HyperGCN takes O
(
T
(
N +Nmh(d+ c)

))
time15

• 1-HyperGCN takes O
(
TN

(
1 + h(d+ c)

))
time16
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• FastHyperGCN takes O
(
TNmh

(
d+ c

))
time17

• HGNN takes O
(
TNch

(
d+ c

))
time18

2 HyperGCN for combinatorial optimisation19

Inspired by the recent sucesses of deep graph models as learning-based approaches for NP-hard20

problems [13, 15, 11, 7], we have used HyperGCN as a learning-based approach for the densest21

k-subhypergraph problem [3], an NP-hard hypergraph problem. The problem is given a hypergraph22

(V,E), find a subset W ⊆ V of k hypernodes so as to maximise the number of hyperedges contained23

in (induced by) V i.e. we intend to maximise the density given by24

|e ∈ E : e ⊆W |

One natural greedy heuristic approach for the problem is to select the k hypernodes of the maximum25

degree. We call this approach “MaxDegree". Another greedy heuristic approach is to iteratively26

remove all the hyperedges from the current (residual) hypergraph containing a hypernode of the27

minimum degree. We repeat the procedure n− k times and consider the density of the remaining k28

hypernodes. We call this approach “RemoveMinDegree".29

2.1 Our approach30

A natural approach to the problem is to train HyperGCN to perform the labelling. In other words,31

HyperGCN would take an input hypergraph (V,E) as input and output a binary labelling of the32

hypernodes v ∈ V . A natural output representation is a probability map in [0, 1]|V | that indicates how33

likely each hypernode is to belong to W .34

Let D = {(Vi, Ei), li} be a training set, where (Vi, Ei) is an input hypergraph and li ∈ {0, 1}|V |×135

is one of the optimal solutions for the NP-hard hypergraph problem. The HyperGCN model learns36

its parameters Θ and is trained to predict li given (Vi, Ei). During training we minimise the binary37

cross-entropy loss L for each training sample {(Vi, Ei), li} Additionally we generate M different38

probability maps to minimise the hindsight loss i.e.
∑
i minm L

(m) where L(m) is the cross-entropy39

loss corresponding to the m-th probability map. Generating multiple probability maps has the40

advantage of generating diverse solutions [13].41

2.2 Experiments: Training data42

To generate a sample {(V,E), l} in the training set D, we fix a vertex set W of k vertices chosen43

uniformly randomly. We generate each hyperedge e ∈ E such that e ⊆W with high probability p.44

Note that e ⊆ V −W with probability 1− p. We give the algorithm to generate a sample {(V,E), l}.45

Algorithm 4 Algorithm for generating a training sample
Input: A hypergraph (V,E) and a dense set of vertices W VL
Output A hypergraph (V,E) and a dense set of vertices W

|E| ← |V |
2

W ← subset of V of size k chosen uniformly randomly
for i = 1, 2, · · · , |E| do
|e| ∼ {2, 3, · · · 10} chosen uniformly randomly
sample e from W with probability p
sample e from V −W with probability 1− p

end for

2.3 Experiments: Results46

We generated 5000 training samples with the number of hypernodes |V | uniformly randomly chosen47

from {1000, 2000, · · · , 5000}. We fix |E| = |V |
2 as this is mostly the case for real-world hypergraphs.48
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Table 1: Results on the densest k-subhypergraph problem. We report density (higher is better) of the
set of vertices obtained by each of the proposed approaches for k = 3|V |

4 . See Section 2 for details.

Dataset→ Synthetic DBLP Pubmed Cora Cora Citeseer
Approach↓ test set co-authorship co-citation co-authorship co-citation co-citation
MaxDegree 174± 50 4840 1306 194 544 507
RemoveMinDegree 147± 48 7714 7963 450 1369 843
MLP 174± 56 5580 1206 238 550 534

MLP + HLR 231± 46 5821 3462 297 952 764
HGNN 337± 49 6274 7865 437 1408 969
1-HyperGCN 207± 52 5624 1761 251 563 509
FastHyperGCN 352± 45 7342 7893 452 1419 969
HyperGCN 359± 49 7720 7928 504 1431 971
# hyperedges, |E| 500 22535 7963 1072 1579 1079

(a) RemoveMinDegree (b) HyperGCN

Figure 1: Green / pink hypernodes denote those the algorithm labels as positive / negative respectively.

Further we chose e ∈ E such that |e| is uniformly randomly chosen from {2, · · · , 10} as this is49

also mostly the case for real-world hypergraphs. We compared all our proposed approaches viz.50

1-HyperGCN, HyperGCN, and FastHyperGCN against the baselines MLP, MLP+HLR and the state-51

of-the art HGNN. We also compared against the greedy heuristics MaxDegree and RemoveMinDegree.52

We train all the deep models using the same hyperparameters of [13] and report the results for p = 0.7553

and k = 3|V |
4 in Table 1. We test all the models on a synthetically generated test set of hypergraphs54

with 1000 vertices for each. We also test the models on the five real-world hypergraphs used for55

SSL experiments. As we can see in the table our proposed HyperGCN outperforms all the other56

approaches except for the pubmed dataset which contains a small number of vertices with large57

degrees and a large number of vertices with small degrees. The RemoveMinDegree baseline is able58

to recover all the hyperedges in the pubmed dataset. Moreover FastHyperGCN is competitive with59

HyperGCN as the number of hypergraphs in the training data is large.60

2.4 Qualitative analysis61

Figure 1 shows the visualisations given by RemoveMinDegree and HyperGCN on the Cora co-62

authorship hypergraph. We used Gephi’s Force Atlas to space out the vertices. In general, a cluster of63

nearby vertices has multiple hyperedges connecting them. Clusters of only green vertices indicate64

the method has likely included all vertices within the hyperedges induced by the cluster. The figure65

of HyperGCN has more dense green clusters than that of RemoveMinDegree. Figure 2 shows the66

results of HGNN vs. HyperGCN.67
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(a) HGNN (b) HyperGCN

Figure 2: Green / pink hypernodes denote those the algorithm labels as positive / negative respectively.

3 Sources of the real-world datasets68

Co-authorship data: All documents co-authored by an author are in one hyperedge. We used the69

author data1to get the co-authorship hypergraph for cora. We manually constructed the DBLP dataset70

from Arnetminer2.71

Co-citation data: All documents cited by a document are connected by a hyperedge. We used cora,72

citeseer, pubmed from 3 for co-citation relationships. We removed hyperedges which had exactly one73

hypernode as our focus in this work is on hyperedges with two or more hypernodes. Each hypernode74

(document) is represented by bag-of-words features (feature matrix X).75

3.1 Construction of the DBLP dataset76

We downloaded the entire dblp data from https://aminer.org/lab-datasets/citation/77

DBLP-citation-Jan8.tar.bz. The steps for constructing the dblp dataset used in the paper78

are as follows:79

• We defined a set of 6 conference categories (classes for the SSL task) as “algorithms",80

“database", “programming", “datamining", “intelligence", and “vision"81

• For a total of 4304 venues in the entire dblp dataset we took papers from only a sub-82

set of venues from https://en.wikipedia.org/wiki/List_of_computer_science_83

conferences corresponding to the above 6 conferences84

• From the venues of the above 6 conference categories, we got 22535 authors publishing at85

least two documents for a total of 4341386

• We took the abstracts of all these 43413 documents, constructed a dictionary of the most87

frequent words (words with frequency more than 100) and this gave us a dictionary size of88

142589

4 Experiments on datasets with categorical attributes90

We closely followed the experimental setup of the baseline model [19]. We experimented on three91

different datasets viz., mushroom, covertype45, and covertype67 from the UCI machine learning92

repository [5]. Properties of the datasets are summarised in Table 2. The task for each of the three93

datasets is to predict one of two labels (binary classification) for each unlabelled instance (hypernode).94

The datasets contain instances with categorical attributes. To construct the hypergraph, we treat95

each attribute value as a hyperedge, i.e., all instances (hypernodes) with the same attribute value96

are contained in a hyperedge. Because of this particular definition of a hyperedge clique expansion97

1https://people.cs.umass.edu/ mccallum/data.html
2https://aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz
3https://linqs.soe.ucsc.edu/data
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Table 2: Summary of the three UCI datasets used in the experiments in Section 4

property/dataset mushroom covertype45 covertype67
number of hypernodes, |V | 8124 12240 37877
number of hyperedges, |E| 112 104 125

number of edges in clique expansion 65, 999, 376 143, 008, 092 1, 348, 219, 153
number of classes, q 2 2 2

Figure 3: Test errors (lower is better) comparing HyperGCN_with_mediators with the non-neural
baseline [19] on the UCI datasets. HyperGCN_with_mediators offers superior performance. Compar-
ing against GCN on Clique Expansion is unfair. Please see below for details.

is destined to produce an almost fully connected graph and hence GCN on clique expansion will98

be unfair to compare against. Having shown that HyperGCN is superior to 1-HyperGCN in the99

relational experiments, we compare only the former and the non-neural baseline [19]. We have100

calledHyperGCN as HyperGCN_with_mediators. We used the incidence matrix (that encodes the101

hypergraph structure) as the data matrix X . We trained HyperGCN_with_mediators for the full 200102

epochs and we used the same hyperparameters as in [10].103

As in [19], we performed 100 trials for each |VL| and report the mean accuracy (averaged over the 100104

trials). The results are shown in Figure 3. We find that HyperGCN_with_mediators model generally105

does better than the baselines. We believe that this is because of the powerful feature extraction106

capability of HyperGCN_with_mediators.107

4.1 GCN on clique expansion108

We reiterate that clique expansion, i.e., HGNN [6] for all the three datasets produce almost fuly109

connected graphs and hence clique expansion does not have any useful information. So, GCN110

on clique expansion is unfair to compare against (HGNN does not learn any useful weights for111

classification because of the fully connected nature of the graph).112

4.2 Relevance of SSL113

The main reason for performing these experiments, as pointed out in the publicly accessible NIPS114

reviews4 of the total variation on hypergraphs [9], is to show that the proposed method (the primal-115

dual hybrid gradient method in their case and the HyperGCN_with_mediators method in our case)116

has improved results on SSL, even if SSL is not very relevant in the first place.117

We do not claim that SSL with HyperGCN_with_mediators is the best way to go about handling118

these categorical data but we do claim that, given this built hypergraph albeit from non-relational119

data, it has superior results compared to the previous best non-neural hypergraph-based SSL method120

[19] in the literature and that is why we have followed their experimental setup.121

5 Derivations122

We show how the graph convolutional network (GCN) [10] has its roots from the convolution theorem123

[14].124

4https://papers.nips.cc/paper/4914-the-total-variation-on-hypergraphs-learning-on-hypergraphs-revisited
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Table 3: Results on Pubmed co-citation hypergraph. Mean test error ± standard deviation (lower is
better) over 100 trials for different values of |VL|. We randomly sampled the same number of labelled
hypernodes from each class and hence we chose each |VL| to be divisible by q with |VL|

|V | 0.2 to 1%.

Available data Method 39 78 120 159 198
0.2% 0.4% 0.6% 0.8% 1%

H CI 62.61± 1.69 58.53± 1.25 55.71± 1.03 52.96± 0.79 50.21± 0.56
X MLP 43.85± 7.80 35.17± 4.92 32.04± 2.31 30.70± 1.61 28.87± 1.16

H,X MLP + HLR 42.31± 6.99 33.69± 4.49 31.79± 2.38 30.18± 1.54 28.09± 1.29
H,X HGNN 37.99± 6.45 33.01± 4.25 31.14± 2.23 29.41± 1.47 26.96± 1.35

H,X 1-HyperGCN 43.62± 7.18 34.58± 4.24 31.88± 2.78 30.08± 1.53 28.90± 1.29
H,X FastHyperGCN 39.72± 6.45 32.67± 3.91 30.66± 2.45 29.48± 1.60 26.55± 1.31
H,X HyperGCN 33.33± 7.01 31.71± 4.37 28.84± 2.60 25.56± 1.55 23.97± 1.24

5.1 Graph signal processing125

We now briefly review essential concepts of graph signal processing that are important in the126

construction of ChebNet and graph convolutional networks. We need convolutions on graphs defined127

in the spectral domain. Similar to regular 1-D or 2-D signals, real-valued graph signals can be128

efficiently analysed via harmonic analysis and processed in the spectral domain [17]. To define129

spectral convolution, we note that the convolution theorem [14] generalises from classical discrete130

signal processing to take into account arbitrary graphs [16].131

Informally, the convolution theorem says the convolution of two signals in one domain (say time132

domain) equals point-wise multiplication of the signals in the other domain (frequency domain).133

More formally, given a graph signal, S : V → R, S ∈ RN , and a filter signal, F : V → R, F ∈ RN ,134

both of which are defined in the vertex domain (time domain), the convolution of the two signals,135

C = S ? F , satisfies136

Ĉ = Ŝ � F̂ (1)
where Ŝ, F̂ , Ĉ are the graph signals in the spectral domain (frequency domain) corresponding,137

respectively, to S, F and S ? F .138

An essential operator for computing graph signals in the spectral domain is the symmetrically139

normalised graph Laplacian operator of G, defined as140

L = I −D− 1
2AD−

1
2 (2)

where D = diag(d1, · · · , dN ) is the diagonal degree matrix with elements di =
∑N
j=1,j 6=iAji.141

As the above graph Laplacian operator, L, is a real symmetric and positive semidefinite matrix, it142

admits spectral eigen decomposition of the form L = UΛUT , where, U = [u1, · · · , uN ] forms143

an orthonormal basis of eigenvectors and Λ = diag(λ1, · · · , λN ) is the diagonal matrix of the144

corresponding eigenvalues with 0 = λ1 ≤ · · · ≤ λN ≤ 2.145

The eigenvectors form a Fourier basis and the eigenvalues carry a notion of frequencies as in classical146

Fourier analysis. The graph Fourier transform of a graph signal S = (S1, · · · , SN ) ∈ RN , is thus147

defined as Ŝ = UTS and the inverse graph Fourier transform turns out to be S = UŜ , which is the148

same as,149

Si =

N∑
j=1

Ŝ(λj)uj(i) for i ∈ V = {1, · · · , N} (3)

The convolution theorem generalised to graph signals 1 can thus be rewritten as UTC = Ŝ � F̂ . It150

follows that C = U(Ŝ � F̂ ), which is the same as151

Ci =

N∑
j=1

Ŝ(λj)F̂ (λj)uj(i) for i ∈ V = {1, · · · , N} (4)
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Table 4: Results on DBLP co-authorship hypergraph. Mean test error ± standard deviation (lower
is better) over 100 trials for different values of |VL|. We randomly sampled the same number of
labelled hypernodes from each class and hence we chose each |VL| to be divisible by q with |VL|

|V | 1 to
5%.

Available data Method 438 870 1302 1740 2172
1% 2% 3% 4% 5%

H CI 61.32± 1.58 59.39± 1.37 56.95± 1.12 54.81± 0.94 51.33± 0.66
X MLP 44.57± 7.19 42.23± 4.88 38.89± 3.62 37.77± 2.02 35.12± 1.57

H,X MLP + HLR 34.54± 7.49 33.50± 4.17 32.77± 3.16 30.42± 2.07 29.21± 1.94
H,X HGNN 30.62± 8.02 27.09± 4.48 26.18± 3.29 25.65± 2.08 24.02± 1.91

H,X 1-HyperGCN 40.17± 6.99 36.99± 4.78 34.44± 3.43 33.87± 2.39 32.11± 1.96
H,X FastHyperGCN 34.03± 7.59 29.93± 4.35 28.57± 3.13 27.34± 2.06 25.23± 1.84
H,X HyperGCN 28.51± 7.73 25.45± 4.32 24.69± 3.08 24.09± 2.02 23.96± 1.98

5.2 ChebNet convolution152

We could use a non-parametric filter F̂ (λj) = θj for j ∈ {1, · · · , N} but there are two limitations:153

(i) they are not localised in space (ii) their learning complexity is O(N). The two limitations above154

contrast with with traditional CNNs where the filters are localised in space and the learning complexity155

is independent of the input size. It is proposed by [4] to use a polynomial filter to overcome the156

limitations. A polynomial filter is defined as:157

F̂ (λj) =

K∑
k=0

wkλ
k
j for j ∈ {1, · · · , N} (5)

Using 5 in 4, we get Ci =
∑N
j=1 Ŝ(λj)

(∑K
k=0 wkλ

k
j

)
uj(i) for i ∈ V = {1, · · · , N}. From158

the definition of an eigenvalue, we have Luj = λjuj and hence Lkuj = λkjuj for a positive integer159

k and for j ∈ {1, · · · , N}. Therefore,160

Ci =

N∑
j=1

Ŝ(λj)

( K∑
k=0

wkL
k
i

)
uj(i)

=

( K∑
k=0

wkL
k
i

) N∑
j=1

Ŝ(λj)uj(i)

=

( K∑
k=0

wkL
k
i

)
Si

(6)

Hence,161

C =

( K∑
k=0

wkL
k

)
S (7)

The graph convolution provided by Eq. 7 uses the monomial basis 1, x, · · · , xK to learn filter162

weights. Monomial bases are not optimal for training and not stable under perturbations because they163

do not form an orthogonal basis. It is proposed by [4] to use the orthogonal Chebyshev polynomials164

[8] (and hence the name ChebNet) to recursively compute the powers of the graph Laplacian.165

A Chebyshev polynomial Tk(x) of order k can be computed recursively by the stable recurrence166

relation Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x. These polynomials form167

an orthogonal basis in [−1, 1]. Note that the eigenvalues of the symmetrically normalised graph168

Laplacian 2 lie in the range [0, 2]. Through appropriate scaling of eigenvalues from [0, 2] to [−1, 1]169
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Table 5: Results on Cora co-authorship hypergraph. Mean test error ± standard deviation (lower is
better) over 100 trials for different values of |VL|. We randomly sampled the same number of labelled
hypernodes from each class and hence we chose each |VL| to be divisible by q.

Available data Method 42 98 140 203

H CI 67.72± 0.60 58.55± 0.53 55.45± 0.55 51.44± 0.32
X MLP 61.32± 4.86 47.69± 2.36 41.25± 1.85 37.76± 1.32

H,X MLP + HLR 54.31± 5.12 41.06± 2.53 34.87± 1.78 32.21± 1.43
H,X HGNN 45.23± 5.03 34.08± 2.40 31.90± 1.87 28.92± 1.49

H,X 1-HyperGCN 50.26± 4.78 39.01± 1.76 36.22± 2.21 32.78± 1.63
H,X HyperGCN 43.86± 4.78 33.83± 1.81 30.08± 1.80 29.08± 1.44

i.e. λ̃j =
2λj

λN
− 1 for j = {1, · · · , N}, where λN is the largest eigenvalue, the filter in 5 can be170

parametrised as the truncated expansion171

F̂ (λj) =

K∑
k=0

wkTk(λ̃j) for j ∈ {1, · · · , N} (8)

From Eq. 6, it follows that172

C =

( K∑
k=0

wkTk(L̃)

)
S where L̃ =

2L

λN
− I (9)

5.3 Graph convolutional network (GCN): first-order approximation of ChebNet173

The spectral convolution of 9 is K-localised since it is a Kth-order polynomial in the Laplacian174

i.e. it depends only on nodes that are at most K hops away. [10] simplify 9 to K = 1 i.e. they use175

simple filters operating on 1-hop neighbourhoods of the graph. More formally,176

C =

(
w0 + w1L̃

)
S (10)

and also,177

F̂ (λj) = w0 + w1λ̃j for j ∈ {1, · · · , N} (11)
The main motivation here is that 10 is not limited to the explicit parameterisation given by the178

Chebyshev polynomials. Intuitively such a model cannot overfit on local neighbourhood structures179

for graphs with very wide node degree distributions, common in real-world graph datasets such as180

citation networks, social networks, and knowledge graphs.181

In this formulation, [10] further approximate λN ≈ 2, as the neural network parameters can adapt182

to the change in scale during training. To address overfitting issues and to minimise the number of183

matrix multiplications, they set w0 = −w1 = θ. 10 now reduces to184

C = θ(I − L̃)S = θ(2I − L)S = θ(I +D−
1
2AD−

1
2 )S (12)

The filter parameter θ is shared over the whole graph and successive application of a filter of this form185

K times then effectively convolves the Kth-order neighbourhood of a node, where K is the number186

of convolutional layers (depth) of the neural network model. We note that the eigenvalues of L are in187

[0, 2] and hence the eigenvalues of 2I − L = I +D−
1
2AD−

1
2 are also in the range [0, 2]. Repeated188

application of this operator can therefore lead to numerical instabilities and exploding/vanishing189

gradients. To alleviate this problem, a renormalisation trick can be used [10]:190

I +D−
1
2AD−

1
2 → D̃−

1
2 ÃD̃−

1
2 (13)
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Table 6: Results on Cora co-citation hypergraph. Mean test error ± standard deviation (lower is
better) over 100 trials for different values of |VL|. We randomly sampled the same number of labelled
hypernodes from each class and hence we chose each |VL| to be divisible by q.

Available data Method 42 98 140 203

H CI 79.25± 1.34 70.89± 1.94 64.40± 0.81 62.22± 0.72
X MLP 63.31± 5.23 47.97± 3.15 42.14± 1.78 40.05± 1.58

H,X MLP + HLR 56.21± 5.65 43.32± 3.27 36.98± 1.83 33.88± 1.46
H,X HGNN 50.39± 5.42 35.62± 3.11 32.41± 1.82 29.78± 1.55

H,X 1-HyperGCN 50.39± 5.41 38.01± 3.12 34.45± 2.05 31.67± 1.57
H,X HyperGCN 47.00± 5.32 35.76± 2.60 32.37± 1.71 29.98± 1.45

with Ã = A+ I and D̃ii =
∑N
j=1 Ãij . Generalising the above to p signals contained in the matrix191

X ∈ RN×p (also called the data matrix), and r filter maps contained in the matrix Θ ∈ Rp×r, the192

output convolved signal matrix will be:193

ĀXΘ where Ā = D̃−
1
2 ÃD̃−

1
2 (14)

5.4 GCNs for graph-based semi-supervised node classification194

The GCN is conditioned on both the adjacency matrix A (underlying graph structure) and the data195

matrix X (input features). This allows us to relax certain assumptions typically made in graph-based196

SSL, for example, the cluster assumption [2] made by the explicit Laplacian-based regularisation197

methods. This setting is especially powerful in scenarios where the adjacency matrix contains198

information not present in the data (such as citation links between documents in a citation network or199

relations in a knowledge graph). The forward model for a simple two-layer GCN takes the following200

simple form:201

Z = fGCN (X,A) = softmax

(
Ā ReLU

(
ĀXΘ(0)

)
Θ(1)

)
(15)

where Θ(0) ∈ Rp×h is an input-to-hidden weight matrix for a hidden layer with h hidden units202

and Θ(1) ∈ Rh×r is a hidden-to-output weight matrix. The softmax activation function defined as203

softmax(xi) = exp(xi)∑
i exp(xi)

is applied row-wise.204

Training For semi-supervised multi-class classification with q classes, we then evaluate the cross-205

entropy error over all the set of labelled examples, VL:206

L = −
∑
i∈VL

q∑
j=1

Yij lnZij (16)

The weights of the graph convolutional network, viz. Θ(0) and Θ(1), are trained using gradient descent.207

Using efficient sparse-dense matrix multiplications for computing, the computational complexity of208

evaluating Eq. 15 is O(|E|phr) which is linear in the number of graph edges.209

5.5 GCN as a special form of Laplacian smoothing210

GCNs can be interpreted as a special form of symmetric Laplacian smoothing [12]. The Laplacian211

smoothing [18] on each of the p input channels in the input feature matrix X ∈ RN×p is defined as:212

χi = (1− γ)xi + γ
∑
j

Ãij
di
xj i = 1, · · · , N (17)
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Table 7: Results on Citeseer co-citation hypergraph. Mean test error ± standard deviation (lower is
better) over 100 trials for different values of |VL|. We randomly sampled the same number of labelled
hypernodes from each class and hence we chose each |VL| to be divisible by q.

Available data Method 42 102 138 198

H CI 74.68± 1.02 71.90± 0.82 70.37± 0.29 68.84± 0.24
X MLP 57.14± 4.87 45.80± 2.43 41.12± 1.65 39.09± 1.32

H,X MLP + HLR 53.21± 4.65 43.21± 2.35 37.75± 1.59 36.01± 1.29
H,X HGNN 50.75± 4.73 39.67± 2.21 37.40± 1.61 35.20± 1.35

H,X 1-HyperGCN 52.48± 5.43 41.26± 2.54 38.87± 1.93 36.46± 1.46
H,X HyperGCN 50.39± 5.13 39.68± 2.27 37.35± 1.62 35.40± 1.22

here Ã = A+ I and di is the degree of node i. Equivalently the Laplacian smoothing can be written213

as χ = X − γD̃−1L̃X = (I − γD̃−1L̃)X where L̃ = D̃− Ã. Here 0 ≤ γ ≤ 1 is a parameter which214

controls the weighting between the feature of the current vertex and those of its neighbours. If we215

let γ = 1, and replace the normalised Laplacian D̃−1L̃ by the symmetrically normalised Laplacian216

D̃−
1
2 L̃D̃−

1
2 , then χ = (I − D̃− 1

2 L̃D̃−
1
2 )X = ĀX , the same as in the expression 14.217

Hence the graph convolution in the GCN is a special form of (symmetric) Laplacian smoothing. The218

Laplacian smoothing of Eq. 17 computes the new features of a node as the weighted average of itself219

and its neighbours. Since nodes in the same cluster tend to be densely connected, the smoothing220

makes their features similar, which makes the subsequent classification task much easier. Repeated221

application of Laplacian smoothing many times over leads to over-smoothing - the node features222

within each connected component of the graph will converge to the same values [12].223

6 Hyperparameters and more experiments on SSL224

Please see tables 3, 4, 5, 6, and 7 for the results on all the real-world hypergraph datasets.225

Following a prior work [10], we used the following hyperparameters for all the models:226

• hidden layer size: 32227

• dropout rate: 0.5228

• learning rate: 0.01229

• weight decay: 0.0005230

• number of training epochs: 200231

• λ for explicit Laplacian regularisation: 0.001232

The Laplacian with mediators [1] allows a general set fo weights. We tried one other set of weights233

which assigns uniform weights on the edges to the mediators but zero weight on the edge between234

the maximally disparate vertices. On the sDBLP dataset, this approach achieves an accuracy of235

41.71± 2.9. HyperGCN achieves 41.64± 2.6 and FastHyperGCN achieves 41.79± 2.8.236
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