
Reducing the variance in online optimization by
transporting past gradients

Anonymous Author(s)
Affiliation
Address
email

Abstract

Most stochastic optimization methods use gradients once before discarding them.1

While variance reduction methods have shown that reusing past gradients can be2

beneficial when there is a finite number of datapoints, they do not easily extend3

to the online setting. One issue is the staleness due to using past gradients. We4

propose to correct this staleness using the idea of implicit gradient transport (IGT)5

which transforms gradients computed at previous iterates into gradients evaluated6

at the current iterate without using the Hessian explicitly. In addition to reducing7

the variance and bias of our updates over time, IGT can be used as a drop-in8

replacement for the gradient estimate in a number of well-understood methods9

such as heavy ball or Adam. We show experimentally that it achieves state-of-10

the-art results on a wide range of architectures and benchmarks. Additionally,11

the IGT gradient estimator yields the optimal asymptotic convergence rate for12

online stochastic optimization in the restricted setting where the Hessians of all13

component functions are equal.14

1 Introduction15

We wish to solve the following minimization problem:16

θ∗ = arg min
θ
Ex∼p[f(θ, x)] , (1)

where we only have access to samples x and to a first-order oracle that gives us, for a given θ and a17

given x, the derivative of f(θ, x) with respect to θ, i.e. ∂f(θ,x)∂θ = g(θ, x). It is known [35] that, when18

f is smooth and strongly convex, there is a converging algorithm for Problem 1 that takes the form19

θt+1 = θt − αtg(θt, xt), where xt is a sample from p. This algorithm, dubbed stochastic gradient20

(SG), has a convergence rate of O(1/t) (see for instance [4]), within a constant factor of the minimax21

rate for this problem. When one has access to the true gradient g(θ) = Ex∼p[g(θ, x)] rather than just22

a sample, this rate dramatically improves to O(e−νt) for some ν > 0.23

In addition to hurting the convergence speed, noise in the gradient makes optimization algorithms24

harder to tune. Indeed, while full gradient descent is convergent for constant stepsize α, and also25

amenable to line searches to find a good value for that stepsize, the stochastic gradient method26

from [35] with a constant stepsize only converges to a ball around the optimum [38].1 Thus,27

to achieve convergence, one needs to use a decreasing stepsize. While this seems like a simple28

modification, the precise decrease schedule can have a dramatic impact on the convergence speed.29

While theory prescribes αt = O(t−α) with α ∈ (1/2, 1] in the smooth case, practictioners often use30

larger stepsizes like αt = O(t−1/2) or even constant stepsizes.31

1Under some conditions, it does converge linearly to the optimum [e.g., 45]

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

When the distribution p has finite support, Eq. 1 becomes a finite sum and, in that setting, it is possible32

to achieve efficient variance reduction and drive the noise to zero, allowing stochastic methods to33

achieve linear convergence rates [24, 17, 50, 28, 42, 5]. Unfortunately, the finite support assumption is34

critical to these algorithms which, while valid in many contexts, does not have the broad applicability35

of the standard SG algorithm. Several works have extended these approaches to the online setting by36

applying these algorithms while increasing N [2, 14] but they need to revisit past examples mutiple37

times and are not truly online.38

Another line of work reduces variance by averaging iterates [33, 22, 3, 10, 7, 6, 16]. While these39

methods converge for a constant stepsize in the stochastic case2, their practical speed is heavily40

dependent on the fraction of iterates kept in the averaging, a hyperparameter that is thus hard to tune,41

and they are rarely used in deep learning.42

Our work combines two existing ideas and adds a third: a) At every step, it updates the parameters43

using a weighted average of past gradients, like in SAG [24, 40], albeit with a different weighting44

scheme; b) It reduces the bias and variance induced by the use of these old gradients by transporting45

them to “equivalent” gradients computed at the current point, similar to [11]; c) It does so implicitly46

by computing the gradient at a parameter value different from the current one. The resulting gradient47

estimator can then be used as a plug-in replacement of the stochastic gradient within any optimization48

scheme. Experimentally, both SG using our estimator and its momentum variant outperform the most49

commonly used optimizers in deep learning.50

2 Momentum and other approaches to dealing with variance51

Stochastic variance reduction methods use an average of past gradients to reduce the variance of the52

gradient estimate. At first glance, it seems like their updates are similar to that of momentum [32],53

also known as the heavy ball method, which performs the following updates3:54

vt = γtvt−1 + (1− γt)g(θt, xt), v0 = g(θ0, x0)

θt+1 = θt − αtvt .

When γt = γ, this leads to θt+1 = θt − αt

(
γtg(θ0, x0) + (1− γ)

t∑
i=1

γt−ig(θi, xi)

)
. Hence, the55

heavy ball method updates the parameters of the model using an average of past gradients, bearing56

similarity with SAG [24], albeit with exponential instead of uniform weights.57

Interestingly, while momentum is a popular method for training deep networks, its theoretical analysis58

in the stochastic setting is limited [44], except in the particular setting when the noise converges59

to 0 at the optimum [26]. Also surprising is that, despite the apparent similarity with stochastic60

variance reduction methods, current convergence rates are slower when using γ > 0 in the presence61

of noise [39], although this might be a limitation of the analysis.62

2.1 Momentum and variance63

We propose here an analysis of how, on quadratics, using past gradients as done in momentum64

does not lead to a decrease in variance. If gradients are stochastic, then ∆t = θt − θ∗ is a random65

variable. Denoting εi the noise at timestep i, i.e. g(θi, xi) = g(θi) + εi, and writing ∆t −E[∆t] =66

α
∑t
i=0Ni,tεi, with Ni,t the impact of the noise of the i-th datapoint on the t-th iterate, we may now67

analyze the total impact of each εi on the iterates. Figure 1 shows the impact of εi on ∆t − E[∆t] as68

measured by N2
i,t for three datapoints (i = 1, i = 25 and i = 50) as a function of t for stochastic69

gradient (γ = 0, left) and momentum (γ = 0.9, right). As we can see, when using momentum, the70

variance due to a given datapoint first increases as the noise influences both the next iterate (through71

the parameter update) and the subsequent updates (through the velocity). Due to the weight 1− γ72

when a point is first sampled, a larger value of γ leads to a lower immediate impact of the noise of a73

given point on the iterates. However, a larger γ also means that the noise of a given gradient is kept74

longer, leading to little or no decrease of the total variance (dashed blue curve). Even in the case of75

stochastic gradient, the noise at a given timestep carries over to subsequent timesteps, even if the old76

gradients are not used for the update, as the iterate itself depends on the noise.77

2Under some conditions on f .
3This is slightly different from the standard formulation but equivalent for constant γt.

2

(a) Stochastic gradient (b) Momentum - γ = 0.9

(c) Momentum - γt = 1− 1
t

(d) Momentum - γt = 1− 1
t

with IGT.

Figure 1: Variance induced over time by the noise from three different datapoints (i = 1, i = 25 and
i = 50) as well as the total variance for SG (γ = 0, top left), momentum with fixed γ = 0.9 (top
right), momentum with increasing γt = 1− 1

t without (bottom left) and with (bottom right) transport.
The impact of the noise of each gradient εi increases for a few iterations then decreases. Although a
larger γ reduces the maximum impact of a given datapoint, the total variance does not decrease. With
transport, noises are now equal and total variance decreases. The y-axis is on a log scale.

At every timestep, the contribution to the noise of the 1st, the 25th and the 50th points in Fig. 1 is78

unequal. If we assume that the εi are i.i.d., then the total variance would be minimal if the contribution79

from each point was equal. Further, one can notice that the impact of datapoint i is only a function of80

t− i and not of t. This guarantees that the total noise will not decrease over time.81

To address these two points, one can increase the momentum parameter over time. In doing so,82

the noise of new datapoints will have a decreasing impact on the total variance as their gradient is83

multiplied by 1− γt. Figure 1c shows the impact N2
i,t of each noise εi for an increasing momentum84

γt = 1− 1
t . The peak of noise for i = 25 is indeed lower than that of i = 1. However, the variance85

still does not go to 0. This is because, as the momentum parameter increases, the update is an average86

of many gradients, including stale ones. Since these gradients were computed at iterates already87

influenced by the noise over previous datapoints, that past noise is amplified, as testified by the higher88

peak at i = 1 for the increasing momentum. Ultimately, increasing momentum does not lead to a89

convergent algorithm in the presence of noise when using a constant stepsize.90

2.2 SAG and Hessian modelling91

The impact of the staleness of the gradients on the convergence is not limited to momentum. In SAG,92

for instance, the excess error after k updates is proportional to
(
1−min

{
1

16κ̂ ,
1

8N

})k
, compared to93

the excess error of the full gradient method which is
(
1− 1

κ

)k
where κ is the condition number of94

the problem. 4 The difference between the two rates is larger when the minimum in the SAG rate is95

the second term. This happens either when κ̂ is small, i.e. the problem is well conditioned and a lot96

4The κ̂ in the convergence rate of SAG is generally larger than the κ in the full gradient algorithm.

3

of progress is made at each step, or when N is large, i.e. there are many points to the training set.97

Both cases imply that a large distance has been travalled between two draws of the same datapoint.98

Recent works showed that correcting for that staleness by modelling the Hessian [46, 11] leads to99

improved convergence. As momentum uses stale gradients, the velocity is an average of current and100

past gradients and thus can be seen as an estimate of the true gradient at a point which is not the101

current one but rather a convex combination of past iterates. As past iterates depend on the noise102

of previous gradients, this bias in the gradients amplifies the noise and leads to a non-converging103

algorithm. We shall thus “transport” the old stochastic gradients g(θi, xi) to make them closer to104

their corresponding value at the current iterate, g(θt, xi). Past works did so using the Hessian or an105

explicit approximation thereof, which can be expensive and difficult to compute and maintain. We106

will resort to using implicit transport, a new method that aims at compensating the staleness of past107

gradients without making explicit use of the Hessian.108

3 Converging optimization through implicit gradient tranport109

Before showing how to combine the advantages of both increasing momentum and gradient transport,110

we demonstrate how to tranport gradients implicitly. This transport is only exact under a strong111

assumption that will not hold in practice. However, this result will serve to convey the intuition behind112

implicit gradient transport. We will show in Section 4 how to mitigate the effect of the unsatisfied113

assumption.114

3.1 Implicit gradient transport115

Let us assume that we received samples x0, . . . , xt in an online fashion. We wish to approach the full116

gradient gt(θt) = 1
t+1

∑t
i=0 g(θt, xi) as accurately as possible. We also assume here that a) We have117

a noisy estimate ĝt−1(θt−1) of gt−1(θt−1); b) We can compute the gradient g(θ, xt) at any location118

θ. We shall seek a θ such that119

t

t+ 1
ĝt−1(θt−1) +

1

t+ 1
g(θ, xt) ≈ gt(θt) .

To this end, we shall make the following assumption:120

Assumption 3.1. All individual functions f(·, x) are quadratics with the same Hessian H .121

This is the same assumption as [10, Section 4.1]. Although it is unlikely to hold in practice, we shall122

see that our method still performs well when that assumption is violated.123

Under Assumption 3.1, we then have (see details in Appendix)124

gt(θt) =
t

t+ 1
gt−1(θt) +

1

t+ 1
g(θt, xt)

≈ t

t+ 1
ĝt−1(θt−1) +

1

t+ 1
g(θt + t(θt − θt−1), xt) .

Thus, we can transport our current estimate of the gradient by computing the gradient on the new125

point at a shifted location θ = θt + t(θt − θt−1). This extrapolation step is reminiscent of Nesterov’s126

acceleration with the difference that the factor in front of θt − θt−1, t, is not bounded.127

3.2 Combining increasing momentum and implicit gradient transport128

We now describe our main algorithm, Implicit Gradient Transport (IGT). IGT uses an increasing129

momentum γt = t
t+1 . At each step, when updating the velocity, it computes the gradient of the new130

point at an extrapolated location so that the velocity vt is a good estimate of the true gradient g(θt).131

We can rewrite the updates to eliminate the velocity vt, leading to the update:132

θt+1 =
2t+ 1

t+ 1
θt −

t

t+ 1
θt−1 −

α

t+ 1
g (θt + t(θt − θt−1), xt) . (IGT)

We see in Fig. 1d that IGT allows a reduction in the total variance, thus leading to convergence with a133

constant stepsize. This is captured by the following proposition:134

4

Proposition 3.1. If f is a quadratic function with positive definite Hessian H with largest eigenvalue135

L and condition number κ and if the stochastic gradients satisfy: g(θ, x) = g(θ) + ε with ε a random136

i.i.d. noise with covariance bounded by BI , then Eq. IGT with stepsize α = 1/L leads to iterates θt137

satisfying138

E[‖θt − θ∗‖2] ≤
(

1− 1

κ

)2t

‖θ0 − θ∗‖2 +
dα2Bν̄20

t
,

with ν = (2 + 2 log κ)κ for every t > 2κ.139

The proof of Prop. 3.1 is provided in the appendix.140

Despite this theoretical result, two limitations remain: First, Prop. 3.1 shows that IGT does not141

improve the dependency on the conditioning of the problem; Second, the assumption of equal142

Hessians is unlikely to be true in practice, leading to an underestimation of the bias. We address the143

conditioning issue in the next section and the assumption on the Hessians in Section 4.144

3.3 IGT as a plug-in gradient estimator145

We demonstrated that the IGT estimator has lower variance than the stochastic gradient estimator for146

quadratic objectives. IGT can also be used as a drop-in replacement for the stochastic gradient in147

an existing, popular first order method: the heavy ball (HB). This is captured by the following two148

propositions:149

Proposition 3.2 (Non-stochastic). In the non-stochastic case, where B = 0, variance is equal to 0150

and Heavyball-IGT achieves the accelerated linear rate O
((√κ−1√

κ+1

)t)
using the known, optimal151

heavy ball tuning, µ =
(√

κ−1√
κ+1

)2
, α = (1 +

√
µ)2/L.152

Proposition 3.3 (Online, stochastic). When B > 0, there exist constant hyperparameters α > 0,153

µ > 0 such that ‖E[θt − θ∗]‖2 converges to zero linearly, and the variance is Õ(1/t).154

The pseudo-code can be found in Algorithm 1.155

Algorithm 1 Heavyball-IGT

1: procedure HEAVYBALL-IGT(Stepsize α, Momentum µ, Initial parameters θ0)
2: v0 ← g(θ0, x0) , w0 ← −αv0 , θ1 ← θ0 + w0

3: for t = 1, . . . , T − 1 do
4: γt ← t

t+1

5: vt ← γtvt−1 + (1− γt)g
(
θt + γt

1−γt (θt − θt−1), xt

)
6: wt ← µwt−1 − αvt
7: θt+1 ← θt + wt
8: end for
9: return θT

10: end procedure

4 IGT and Anytime Tail Averaging156

So far, IGT weighs all gradients equally. This is because, with equal Hessians, one can perfectly157

transport these gradients irrespective of the distance travelled since they were computed. In practice,158

the individual Hessians are not equal and might change over time. In that setting, the transport induces159

an error which grows with the distance travelled. We wish to average a linearly increasing number of160

gradients, to maintain the O(1/t) rate on the variance, while forgetting about the oldest gradients to161

decrease the bias. To this end, we shall use anytime tail averaging [23], named in reference to the tail162

averaging technique used in optimization [16].163

Tail averaging is an online averaging technique where only the last points, usually a constant164

fraction c of the total number of points seen, is kept. Maintaining the exact average at every165

timestep is memory inefficient and anytime tail averaging performs an approximate averaging using166

γt = c(t−1)
1+c(t−1)

(
1− 1

c

√
1−c
t(t−1)

)
. We refer the reader to [23] for additional details.167

5

101 103 105

Iterations

10-3

10-1

101

103

105

Er
ro

r

SGD
HB
IGT
HB-IGT

Convergence

(a)

101 103 105

Iterations

10-2

10-1

100

101

102

103

104

L
2
 N

or
m

SGD
IGT
Gradient Magnitude

Gradient Estimation Error

(b) (c)

Figure 2: Analysis of IGT on quadratic loss functions. (a) Comparison of convergence curves for
multiple algorithms. As expected, the IGT family of algorithms converges to the solution while
stochastic gradient algorithms can not. (b) The blue and orange curves show the norm of the noise
component in the SGD and IGT gradient estimates, respectively. The noise component of SGD
remains constant, while it decreases at a rate 1/

√
t for IGT. The green curve shows the norm of the

IGT gradient estimate. (c) Cosine similarity between the full gradient and the SGD/IGT estimates.

5 Impact of IGT on bias and variance in the ideal case168

To understand the behaviour of IGT when Assumption 3.1 is verified, we minimize a strongly convex169

quadratic function with Hessian Q ∈ R100×100 with condition number 1000, and we have access to170

the gradient corrupted by noise εt, where εt ∼ N(0, 0.3 ·I100). In that scenario where all Hessians are171

equal and implicit gradient transport is exact, Fig. 2a confirms the O(1/t) rate of IGT with constant172

stepsize while SGD and HB only converge to a ball around the optimum.173

To further understand the impact of IGT, we study the quality of the gradient estimate. Standard174

stochastic methods control the variance of the parameter update by scaling it with a decreasing175

stepsize, which slows the optimization down. With IGT, we hope to have a low variance while176

maintaining a norm of the update comparable to that obtained with gradient descent. To validate the177

quality of our estimator, we optimized a quadratic function using IGT, collecting iterates θt. For each178

iterate, we computed the squared error between the true gradient and either the stochastic or the IGT179

gradient. In this case where both estimators are unbiased, this is the trace of the noise covariance of180

our estimators. The results in Figure 2b show that, as expected, this noise decreases linearly for IGT181

and is constant for SGD.182

We also analyse the direction and magnitude of the gradient of IGT on the same quadratic setup.183

Figure 2c displays the cosine similarity between the true gradient and either the stochastic or the IGT184

gradient, as a function of the distance to the optimum. We see that, for the same distance, the IGT185

gradient is much more aligned with the true gradient than the stochastic gradient is, confirming that186

variance reduction happens without the need for scaling the estimate.187

6 Experiments188

While Section 5 confirms the performance of IGT in the ideal case, the assumption of identical189

Hessians almost never holds in practice. In this section, we present results on more realistic and190

larger scale machine learning settings. All experiments are extensively described in the Appendix A191

and additional baselines compared in Appendix B.192

6.1 Supervised learning193

CIFAR10 image classification We first consider the task of training a ResNet-56 model [12] on194

the CIFAR-10 image classification dataset [19]. We use TF official models code and setup [1],195

varying only the optimizer: SGD, HB, Adam and our algorithm with anytime tail averaging both on196

its own (ITA) and combined with Heavy Ball (HB-ITA). We tuned the step size for each algorithm197

by running experiments using a logarithmic grid. To factor in ease of tuning [48], we used Adam’s198

6

0 20000 40000 60000
Iterations

10-1

100

101

Er
ro

r

train

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

test

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

Figure 3: Resnet-56 on CIFAR10. Left: Train loss. Center: Train accuracy. Right: Test accuracy.

Figure 4: ResNet-50 on ImageNet. Left: Train loss. Center: Train accuracy. Right: Test accuracy.

default parameter values and a value of 0.9 for HB’s parameter. We used a linearly decreasing199

stepsize as it was shown to be simple and perform well [43]. For each optimizer we selected the200

hyperparameter combination that is fastest to reach a consistently attainable target train loss [43].201

Selecting the hyperparameter combination reaching the lowest training loss yields qualitatively202

identical curves. Figure 3 presents the results, showing that IGT with the exponential anytime tail203

average performs favourably, both on its own and combined with Heavy Ball: the learning curves204

show faster improvement and are much less noisy.205

ImageNet image classification We also consider the task of training a ResNet-50 model[12] on206

the larger ImageNet dataset [36]. The setup is similar to the one used for CIFAR10 with the difference207

that we trained using larger minibatches (1024 instead of 128). In Figure 4, one can see that IGT is as208

fast as Adam for the train loss, faster for the train accuracy and reaches the same final performance,209

which Adam does not. We do not see the noise reduction we observed with CIFAR10, which could210

be explained by the larger batch size (see Appendix A.1).211

IMDb sentiment analysis We train a bi-directional LSTM on the IMDb Large Movie Review212

Dataset for 200 epochs. [27] We observe that while the training convergence is comparable to HB,213

HB-ITA performs better in terms of validation and test accuracy. In addition to the baseline and214

IGT methods, we also train a variant of Adam using the ITA gradients, dubbed Adam-ITA, which215

performs similarly to Adam.216

6.2 Reinforcement learning217

Linear-quadratic regulator We cast the classical linear-quadratic regulator (LQR) [21] as a policy218

learning problem to be optimized via gradient descent. This setting is extensively described in219

Appendix A. Note that despite their simple linear dynamics and a quadratic cost functional, LQR220

systems are notoriously difficult to optimize due to the non-convexity of the loss landscape. [8]221

7

102 103 104

Iterations

2 × 102

3 × 102

Co
st

evaluation

Optimal
SGD
ITA
GD

LQR

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

valid

HB
Adam
HB-ITA
Adam-ITA

MAML

Figure 5: Validation curves for different large-scale machine learning settings. Shading indicates
one standard deviation computed over three random seeds. Left: Reinforcement learning via policy
gradient on a LQR system. Right: Meta-learning using MAML on Mini-Imagenet.

The left chart in Figure 5 displays the evaluation cost computed along training and averaged over three222

random seeds. The first method (Optimal) indicates the cost attained when solving the algebraic223

Riccati equation of the LQR – this is the optimal solution of the problem. SGD minimizes the costs224

using the REINFORCE [47] gradient estimator, averaged over 600 trajectories. ITA is similar to225

SGD but uses the ITA gradient computed from the REINFORCE estimates. Finally, GD uses the226

analytical gradient by taking the expectation over the policy.227

We make two observations from the above chart. First, ITA initially suffers from the stochastic228

gradient estimate but rapidly matches the performance of GD. Notably, both of them converge to229

a solution significantly better than SGD, demonstrating the effectiveness of the variance reduction230

mechanism. Second, the convergence curve is smoother for ITA than for SGD, indicating that the231

ITA iterates are more likely to induce similar policies from one iteration to the next. This property232

is particularly desirable in reinforcement learning as demonstrated by the popularity of trust-region233

methods in large-scale applications. [41, 29]234

6.3 Meta-learning235

Model-agnostic meta-learning We now investigate the use of IGT in the model-agnostic meta-236

learning (MAML) setting. [9] We replicate the 5 ways classification setup with 5 adaptation steps on237

tasks from the Mini-Imagenet dataset [34]. This setting is interesting because of the many sources238

contributing to noise in the gradient estimates: the stochastic meta-gradient depends on the product239

of 5 stochastic Hessians computed over only 10 data samples, and is averaged over only 4 tasks. We240

substitute the meta-optimizer with each method, select the stepsize that maximizes the validation241

accuracy after 10K iterations, and use it to train the model for 100K iterations.242

The right graph of Figure 5 compares validation accuracies for three random seeds. We observe that243

methods from the IGT family significantly outperform their stochastic meta-gradient counter-part,244

both in terms of convergence rate and final accuracy. Those results are also reflected in the final test245

accuracies where Adam-ITA (65.16%) performs best, followed by HB-ITA (64.57%), then Adam246

(63.70%), and finally HB (63.08%).247

7 Conclusion and open questions248

We proposed a simple optimizer which, by reusing past gradients and transporting them, offers249

excellent performance on a variety of problems. While it adds an additional parameter, the ratio of250

examples to be kept in the tail averaging, it remains competitive across a wide range of such values.251

Further, by providing a higher quality gradient estimate that can be plugged in any existing optimizer,252

we expect it to be applicable to a wide range of problems. As the IGT is similar to momentum, this253

further raises the question on the links between variance reduction and curvature adaptation. Whether254

there is a way to combine the two without using momentum on top of IGT remains to be seen.255

8

References256

[1] The TensorFlow Authors. Tensorflow official resnet model. 2018.257

[2] Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt, Jakub Konec̆ný, and258

Scott Sallinen. Stop wasting my gradients: Practical SVRG. In Advances in Neural Information259

Processing Systems, 2015.260

[3] Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with261

convergence rate o (1/n). In Advances in Neural Information Processing Systems, pages 773–781,262

2013.263

[4] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R©264

in Machine Learning, 8(3-4):231–357, 2015.265

[5] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient266

method with support for non-strongly convex composite objectives. In Advances in Neural267

Information Processing Systems, pages 1646–1654, 2014.268

[6] Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step269

size stochastic gradient descent and markov chains. arXiv preprint arXiv:1707.06386, 2017.270

[7] Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger271

convergence rates for least-squares regression. The Journal of Machine Learning Research,272

18(1):3520–3570, 2017.273

[8] Maryam Fazel, Rong Ge, Sham M. Kakade, and Mehran Mesbahi. Global convergence of274

policy gradient methods for linearized control problems. CoRR, abs/1801.05039, 2018.275

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-276

tation of deep networks. In Proceedings of the 34th International Conference on Machine277

Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.278

[10] Nicolas Flammarion and Francis Bach. From averaging to acceleration, there is only a step-size.279

In Conference on Learning Theory, pages 658–695, 2015.280

[11] Robert M Gower, Nicolas Le Roux, and Francis Bach. Tracking the gradients using the hessian:281

A new look at variance reducing stochastic methods. arXiv preprint arXiv:1710.07462, 2017.282

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image283

recognition. CoRR, abs/1512.03385, 2015.284

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual285

networks. In European conference on computer vision, pages 630–645. Springer, 2016.286

[14] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. Variance re-287

duced stochastic gradient descent with neighbors. In Advances in Neural Information Processing288

Systems, pages 2305–2313, 2015.289

[15] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Ac-290

celerating stochastic gradient descent for least squares regression. In Conference On Learning291

Theory, pages 545–604, 2018.292

[16] Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford.293

Parallelizing stochastic gradient descent for least squares regression: Mini-batching, averaging,294

and model misspecification. Journal of Machine Learning Research, 18(223):1–42, 2018.295

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance296

reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.297

[18] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint298

arXiv:1412.6980, 2014.299

[19] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.300

9

[20] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,301

Citeseer, 2009.302

[21] Huibert Kwakernaak. Linear optimal control systems, volume 1.303

[22] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to obtaining304

an o (1/t) convergence rate for the projected stochastic subgradient method. arXiv preprint305

arXiv:1212.2002, 2012.306

[23] Nicolas Le Roux. Anytime tail averaging. arXiv preprint arXiv:1902.05083, 2019.307

[24] Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an308

exponential convergence rate for finite training sets. In Advances in Neural Information309

Processing Systems, pages 2663–2671, 2012.310

[25] Yann LeCun and Corinna Cortes. Mnist handwritten digit database. AT&T Labs [Online].311

Available: http://yann. lecun. com/exdb/mnist, 2010.312

[26] Nicolas Loizou and Peter Richtárik. Momentum and stochastic momentum for stochastic gradi-313

ent, newton, proximal point and subspace descent methods. arXiv preprint arXiv:1712.09677,314

2017.315

[27] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher316

Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting317

of the Association for Computational Linguistics: Human Language Technologies, pages318

142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.319

[28] Julien Mairal. Optimization with first-order surrogate functions. In Proceedings of The 30th320

International Conference on Machine Learning, pages 783–791, 2013.321

[29] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,322

Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex323

Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech324

Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.325

[30] Brendan O’Donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.326

Foundations of computational mathematics, 15(3):715–732, 2015.327

[31] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for328

word representation. In Proceedings of the 2014 conference on empirical methods in natural329

language processing (EMNLP), pages 1532–1543, 2014.330

[32] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR331

Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.332

[33] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.333

SIAM Journal on Control and Optimization, 30(4):838–855, 1992.334

[34] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.335

[35] Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathemati-336

cal Statistics, 22(3):400–407, 1951.337

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng338

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.339

ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision340

(IJCV), 115(3):211–252, 2015.341

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.342

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference343

on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.344

[38] Mark Schmidt. Convergence rate of stochastic gradient with constant step size. 2014.345

10

[39] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-346

gradient methods for convex optimization. In Advances in Neural Information Processing347

Systems 24, 2011.348

[40] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic349

average gradient. Mathematical Programming, 162(1-2):83–112, 2017.350

[41] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust351

region policy optimization. CoRR, abs/1502.05477, 2015.352

[42] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized353

loss. Journal of Machine Learning Research, 14(1):567–599, February 2013.354

[43] Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig, and355

George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv356

preprint arXiv:1811.03600, 2018.357

[44] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of358

initialization and momentum in deep learning. In International conference on machine learning,359

pages 1139–1147, 2013.360

[45] Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-361

parameterized models and an accelerated perceptron. In Proceedings of the 22nd International362

Conference on Artificial Intelligence and Statistics, 2019.363

[46] Hoi-To Wai, Wei Shi, Angelia Nedic, and Anna Scaglione. Curvature-aided incremental364

aggregated gradient method. arXiv preprint arXiv:1710.08936, 2017.365

[47] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-366

ment learning. Machine learning, 8(3-4):229–256, 1992.367

[48] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.368

The marginal value of adaptive gradient methods in machine learning. arXiv preprint369

arXiv:1705.08292, 2017.370

[49] Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning. In SysML, 2019.371

[50] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number372

independent access of full gradients. In Advances in Neural Information Processing Systems,373

pages 980–988, 2013.374

11

A Experimental Details375

This section provides additional information regarding the experiments included in the main text.376

For each experimental setting we strive to follow the reproducibility checklist, and provide:377

• a description and citation of the dataset,378

• a description of pre-processing steps,379

• training / validation / testing splits,380

• a description of the hyper-parameter search process and chosen values for each method,381

• the exact number of evaluation runs,382

• a clear definition of statistics reported, and383

• a description of the computing infrastructure.384

A.1 CIFAR10 image classification385

Dataset The CIFAR10 dataset [20] consists 50k training and 10k testing images, partitioned over 10386

classes. We download and pre-process the images using the TensorFlow models package, available387

at the following URL: https://github.com/tensorflow/models388

Model We use a residual convolutional network [12] with 56 layers as defined in the models389

package. Specifically, we use the second version whose blocks are built as a batch normalization,390

then a ReLU activation, and then a convolutional layer. [13]391

Hyper-parameters We use the exact setup from https://github.com/tensorflow/models/392

officials/resnet. As such, training is carried out with minibatches of 128 examples for 182393

epochs and the training data is augmented with random crops and horizontal flips. Also note this394

setup multiplies the step size by the size of the minibatch. One deviation from the setup is our use395

of a linearly decaying learning rate instead of an explicit schedule. The linearly decaying learning396

rate schedule is simple and was shown to perform well [43]. This schedule is specified using two397

parameters: the decay rate, a multiplier specifying the final step size (0.1 or 0.01), and the decay step,398

specifying the step at which the fully decayed rate is reached (always set to 90% of the training steps).399

To factor in ease of tuning[48] we used Adam’s default parameter values and a value of 0.9 for HB’s400

parameter. We used IGT with the exponential Anytime Tail Averaging approach. For the tail fraction,401

we tried two values: the number of epochs and a tenth of that number (180 and 18). We ran using the402

following learning rate: (1e0, 3e-1, 1e-1, 3e-2, 1e-2) for SGD, HB and the IGT variants and (1e-2,403

3e-3, 1e-3, 3e-4, 1e-4) for Adam. We ran a grid search over the base learning rate and its decay rate404

with a single run per combination. For each optimizer we selected the hyperparameter combination405

that is fastest to reach a consistently attainable target train loss of 0.2 [43]. Note that selecting the406

hyperparameter combination reaching the lowest training loss yields qualitatively identical curves.407

The resulting hyper-parameters are:408

• SGD stepsize 0.3, decay 0.01409

• HB stepsize 0.03, decay 0.01410

• Adam stepsize 0.001, decay 0.01411

• ITA stepsize 0.3, decay 0.01, tail fraction 18412

• HB-ITA stepsize 0.03, decay 0.1, tail fraction 18413

Infrastructure and Runs The experiments were run using P100 GPUs (single GPU).414

Additional Results We provide all learning curves for the methods comparison presented in the415

main manuscript in figure 6.416

12

https://github.com/tensorflow/models
https://github.com/tensorflow/models/officials/resnet
https://github.com/tensorflow/models/officials/resnet
https://github.com/tensorflow/models/officials/resnet

0 20000 40000 60000
Iterations

10-1

100

101

Er
ro

r

train

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

10-1

100

101

Er
ro

r

test

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

test

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

Figure 6: Convergence and accuracy curves along training for the CIFAR10 experiments comparing
baseline methods to ours. Left: Training. Right: Testing.

Ablation study: importance of IGT correction We confirm the importance of the implicit gradi-417

ent transport correction by running an experiment in which an increasing momentum is used without418

transport. The results appear in figure 7.419

The resulting hyper-parameters are:420

• ATA stepsize 0.3, decay 0.01, tail fraction 18421

• HB-ATA stepsize 0.03, decay 0.01, tail fraction 18422

13

0 20000 40000 60000
Iterations

10-1

100

101

102

Er
ro

r

train

ATA
HB-ATA
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

10-1

100

101

102

Er
ro

r

test

ATA
HB-ATA
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train

ATA
HB-ATA
ITA
HB-ITA

CIFAR10

0 20000 40000 60000
Iterations

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

test

ATA
HB-ATA
ITA
HB-ITA

CIFAR10

Figure 7: Convergence and accuracy curves along training for the CIFAR10 experiments comparing
the use of ATA combined with our proposed implicit transport mechanism. Left: Training. Right:
Testing.

Effect of the batch size We look into the effect of the batch size. To do so, we plot the number of423

steps required to reach a reliably attainable training loss of 0.4 as a function of the batch size. We ran424

using the following mini-batch sizes: 32, 128, 512 and 2048. Running with larger minibatches led to425

out of memory errors on our single GPU setup. The results presented in figure 8 show the benefit of426

IGT lowers as the batch size increases. Note that Adam’s ability to keep benefiting from larger batch427

sizes is consistent with previous observations.428

A.2 ImageNet image classification429

Dataset We use the 2015 edition of the ImageNet Large-Scale Visual Recognition Challenge430

(ImageNet) [36] dataset. This dataset consists of 1.2M images partitioned into 1’000 classes. We use431

the pre-processing and loading utilities of the TensorFlow models package, available at the following432

URL: https://github.com/tensorflow/models433

Model Our model is again a large residual network, consisting of 50 layers. Similar to our CIFAR10434

experiments above, we use the implementation described in [13].435

Hyper-parameters We used the same setup and approach as for the CIFAR-10 experiments. The436

setup trains for 90 epochs using mini-batches of 1024 examples. We used a larger grid for the learning437

rate schedule: decay (0.1, 0.01, 0.001) and decay step fraction (0.7, 0.8, 0.9).438

The resulting hyper-parameters are:439

14

https://github.com/tensorflow/models

102 103

Mini-batch Size

104

105

Tr
ai

ni
ng

 S
te

ps

SGD
HB
Adam
ITA
HB-ITA

CIFAR10

Figure 8: Effect of mini-batch size on the number
of steps to reach a target training loss.

• SGD stepsize 0.3, decay 0.01, decay step 0.8440

• HB stepsize 0.03, decay 0.001, decay step 0.9441

• Adam stepsize 0.0001, decay 0.01, decay step 0.9442

• ITA stepsize 0.3, decay 0.01, tail fraction 90, decay step 0.9443

• HB-ITA stepsize 0.03, decay 0.01, tail fraction 90, decay step 0.9444

Infrastructure and Runs We ran these experiments using Google TPUv2.445

Additional Results We include error and accuracy curves for training and testing in Figure 9.446

15

Figure 9: Convergence and accuracy curves along training for the ImageNet experiments. Left:
Training. Right: Testing.

A.3 IMDb sentiment analysis447

Dataset The Internet Movie Database (IMDb) [27] consists of 25’000 training and 25’000 test448

movie reviews. The objective is binary sentiment classification based on the review’s text. We449

randomly split the training set in two folds of 17’536 and 7’552 reviews, the former being used for450

training and the latter for testing. The data is downloaded, splitted, and pre-processed with torchtext451

package, available at the following URL: https://github.com/pytorch/text More specifically,452

we tokenize the text at the word-level using the spaCy package, and embed the tokens using the453

100-dimensional GloVe 6B [31] distributed representations.454

Model The model consists of an embedding lookup-table, followed by a bi-directional LSTM with455

dropout, and then by a fully-connected layer. The LSTM uses 256 hidden units and the dropout rate is456

set to 0.5. The whole model consists of 3.2M trainable parameters, with the embedding lookup-table457

initilized with the GloVe vectors. The model is trained to minimize the BCEWithLogitsLoss with a458

mini-batch size of 64.459

Hyper-parameters For each method, we used a grid-search to find the stepsize minimizing vali-460

dation error after 15 epochs. The grid starts at 0.00025 and doubles until reaching 0.1024, so as to461

ensure that no chosen value lies on its boundaries. When applicable, the momentum factor is jointly462

16

https://github.com/pytorch/text

optimized over values 0.1 to 0.95. The final hyper-parameters are displayed in the following table for463

each method.464

Table 1: Hyperparameters for IMDb experiments.
HB Adam ASGD HB-IGT HB-ITA

α 0.032 0.0005 0.064 0.128 0.064
µ 0.95 0.95 n/a 0.9 0.9
ξ n/a n/a 100 n/a n/a
κ n/a n/a 105 n/a n/a

Infrastructure and Runs All IMDb experiments use a single NVIDIA GTX 1080, with PyTorch465

v0.3.1.post2, CUDA 8.0, and cuDNN v7.0.5. We run each final configurations with 5 different random466

seeds and always report the mean tendency ± one standard deviation. Each run lasts approximately467

three hours and thirty minutes.468

Additional Results In addition to the results reported in the main text, we include training, valida-469

tion, and testing curves for each method in Figure 10. Shading indicates the one standard deviation470

interval. Note that our focus is explicitly on optimization: in the specific case of IMDb, training for471

200 epochs is completely unnecessary from a generalization standpoint as performance degrades472

rapidly after 15-20 epochs.473

17

50 100 150 200
Epochs

10-8

10-6

10-4

10-2

100

Lo
ss

train

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

50 100 150 200
Epochs

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

train

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

50 100 150 200
Epochs

100

3 × 10-1

4 × 10-1

6 × 10-1

2 × 100

Lo
ss

valid

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

50 100 150 200
Epochs

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

valid

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

50 100 150 200
Epochs

100

Lo
ss

test

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

50 100 150 200
Epochs

0.82

0.84

0.86

Ac
cu

ra
cy

test

HB
Adam
ASGD
SGD-dec
HB-IGT
HB-ITA
Adam-ITA

IMDb

Figure 10: Convergence and accuracy curves along training for the IMDb experiments. Left:
Convergence. Right: Accuracy.

18

A.4 Linear-quadratic regulator474

Setup Our linear-quadratic regulator [21] implements the following equations. The cost functional475

is evaluated at every timestep h and is given by476

C(sh, ah) = s>hQsh + a>hRah, (2)

for random symmetric positive definite matrices Q ∈ R20×20 and R ∈ R12×12 each with condition477

number 3. The initial state s0 ∼ N (0, 3 · I20) is sampled around the origin, and the subsequent states478

evolve according to479

sh+1 = Ash +Bah, (3)

where entries of A ∈ R20×20, B ∈ R20×12 are independently sampled from a Normal distribution480

and then scaled such that the matrix has unit Frobenius norm. The actions are given by the linear481

stochastic policy ah = Ksh + εah, where εah ∼ N (0, I) and K are the parameters to be optimized.482

Gradient methods in this manuscript optimize the sum of costs using the REINFORCE estimate [47]483

given by484

∇KE
10∑
h

C(sh, ah) = E

(
10∑
h

∇K log πK(ah|sh)

)(
10∑
h

C(sh, ah)

)
. (4)

In our experiments, the above expectation is approximated by the average of 600 trajectory rollouts.485

Due to the noisy dynamics of the system, it is possible for the gradient norm to explode leading to486

numerical unstabilities – especially when using larger stepsizes. To remedy this issue, we simply487

discard such problematic trajectories from the gradient estimator.488

For each training iteration, we first gather 600 trajectories used for learning and then 600 more used489

to report evaluation metrics.490

Hyper-parameters Due to the simplicity of the considered methods, the only hyper-parameter is491

the stepsize. For each method, we choose the stepsize from a logarithmically-spaced grid so as to492

minimize the evaluation cost after 600 iterations on a single seed. Incidentally, the optimal stepsize493

for GD, SGD, and ITA is 0.0002.494

Infrastructure and Runs We use an Intel Core i7-5820K CPU to run the LQR experiments. All495

methods are implemented using numpy v1.15.4. We present results averaged over 3 random seeds,496

and also report the standard deviation. For stochastic gradient methods (SGD, ITA) training for 20K497

iterations takes about 3h, for full-gradient method (GD) about 10h, and computing the solution of the498

Riccati equation takes less than 5 seconds.499

Additional Results In addition to the evaluation cost reported in the main text, we also include the500

cost witnessed during training (and used for optimization) in Figure 11.501

19

102 103 104

Iterations

2 × 102

3 × 102

Co
st

learning

Optimal
SGD
ITA
GD

LQR

102 103 104

Iterations

2 × 102

3 × 102

Co
st

evaluation

Optimal
SGD
ITA
GD

LQR

Figure 11: LQR costs along training iterations. Left: Costs used for learning. Right: Costs used for
evaluation.

We notice that the training cost curve of ITA is not as smooth as the evaluation one. Similarly, the502

observed learning costs never reach as good a minima as the evaluation ones. This phenomena503

is easily clarified: during learning, ITA esimates the gradient using the shifted parameters Kt +504
γt

1−γt (Kt−Kt−1) as opposed to the true parametersKt. Those shifted parameters are not subject to a505

reduced variance, hence explaining the observed noise in the cost as well as deteriorated convergence.506

A.5 Model-agnostic meta-learning507

Dataset We use the Mini-Imagenet dataset [34] in our model-agnostic meta-learning (MAML) [9]508

experiments. This dataset comprises 64 training, 12 validation, and 24 test classes. For each of train,509

validation, and test sets, tasks are constructed by sampling 5 classes from their respective split, and510

further sampling 5 images per class. Images are downsampled to 84x84x3 tensors of RGB values.511

For more details, please refer to the official code repository – which we carefully replicated – at the512

following URL: https://github.com/cbfinn/maml513

Our implementation departs in two ways from the reference. First, we train our models for 100k514

iterations as opposed to 60k and only use 5 image samples to compute a meta-gradient whereas the515

reference implementation uses 15. Second, we only use 5 adaptation steps at evaluation time, when516

the reference uses 10.517

Model The model closely replicates the convolutional neural network of MAML [9]. It consists518

of 4 layers, each with 32 3x3 kernels, followed by batch normalization and ReLU activations. For519

specific implementation details, we refer the reader to the above reference implementation.520

Hyper-parameters We only tune the meta-stepsize for the MAML experiment. We set the mo-521

mentum constant to 0.9, the adaptation-stepsize to 0.01, and average the meta-gradient of 4 tasks per522

iterations. Due to the reduced variance in the gradients, we found it necessary to increase the ε of523

Adam-ITA to 0.01.524

For each method, we search over stepsize values on a logarithmically-spaced grid and select those525

values that maximize validation accuracy after 10k meta-iterations. These values are reported in526

Table 2.527

HB Adam HB-ITA Adam-ITA

α 0.008 0.001 0.008 0.0005
Table 2: Stepsizes for MAML experiments.

20

https://github.com/cbfinn/maml

Infrastructure and Runs Each MAML experiment is run on a single NVIDIA GTX TITAN X,528

with PyTorch v1.1.0, CUDA 8.0, and cuDNN v7.0.5. We run each configuration with 3 different529

random seeds and report the mean tendency ± one standard deviation. Each run takes approximately530

36 hours, and we evaluate the validation and testing accuracy every 100 iteration.531

Additional Results We complete the MAML validation curves from the main manuscript with532

training and testing accuracy curves in Figure 12. Moreover, we recall the final test accuracies for533

each method: Adam-ITA reaches 65.16%, HB-ITA 64.57%, Adam 63.70%, and HB 63.08%.534

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0.4

0.6

0.8

Ac
cu

ra
cy

train

HB
Adam
HB-ITA
Adam-ITA

MAML

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

valid

HB
Adam
HB-ITA
Adam-ITA

MAML

0.00 0.25 0.50 0.75 1.00
Iterations 1e5

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

test

HB
Adam
HB-ITA
Adam-ITA

MAML

Figure 12: Training, validation, and testing accuracies for the MAML experiments along training.
Shading indicates the 1 standard deviation interval. Left: Training. Center: Validation. Right:
Testing.

B Additional Experiments535

This section presents additional experiments to the ones included in the main text.536

B.1 Baselines comparisons537

While experiments in Section 5 highlighted properties of IGT and HB-IGT when the assumption of538

identical, constant Hessians was verified, we now turn to more realistic scenarios where individual539

functions are neither quadratic nor have the same Hessian to compare our proposed methods against540

popular baselines for the online stochastic optimization setting. We target optimization benchmarks541

and focus on training loss minimization.542

50 100 150 200
Epochs

2.1 × 10-1

Lo
ss

train

HB
Adam
ASGD
SVRG
SGD-dec
HB-IGT
HB-ITA

linear-MNIST

50 100 150 200
Epochs

10-1

6 × 10-2

2 × 10-1

3 × 10-1

Lo
ss

train

HB
Adam
ASGD
SVRG
SGD-dec
HB-IGT
HB-ITA

MNIST

50 100 150 200
Epochs

10-2

10-1

100

Lo
ss

train

HB
Adam
ASGD
SVRG
SGD-dec
HB-IGT
HB-ITA

CIFAR10

Figure 13: Training loss curves for different optimization algorithms on several popular benchmarks.
For each method, the hyper-parameters are tuned to minimize the training error after 15 epochs.
Algorithms using the IGT gradient estimates tend to outperform their stochastic gradient counter-parts.
Left: Logistic regression on MNIST. Center: LeNet5 on MNIST. Right: MobileNetv2 on CIFAR10.

We investigate three different scenarios: (a) linear-mnist: a logistic regression model on MNIST,543

(b) mnist: a modified version of LeNet5 [25] on MNIST and (c) cifar-small: the MobileNetv2544

21

Linear-MNIST MNIST CIFAR10 IMDb

Heavyball 92.52 ± 0.04 99.08 ± 0.07 91.55 ± 0.25 86.90 ± 0.67
Adam 92.57 ± 0.10 98.99 ± 0.05 89.36 ± 0.75 85.62 ± 0.63
ASGD 92.47 ± 0.08 99.15 ± 0.07 91.45 ± 0.20 87.31 ± 0.21
SVRG 92.51 ± 0.04 99.06 ± 0.08 86.84 ± 0.17 n/a
SGD-dec 92.52 ± 0.06 99.11 ± 0.06 87.53 ± 0.23 86.73 ± 0.34
Heavyball-IGT 92.47 ± 0.10 99.00 ± 0.05 12.05 ± 0.21 86.61 ± 0.23
Heavyball-ITA 92.50 ± 0.10 99.19 ± 0.02 90.37 ± 0.31 87.26 ± 0.24

Table 3: Test accuracies from the best validation epoch.

architecture [37] consisting of 19 convolutional layers on CIFAR10. All models are trained with a545

mini-batch size of 64, while the remaining hyper-parameters are available in Tables 4, 5, and 6.546

For each of the above tasks, models are trained for 200 epochs. We compare the following methods:547

• HB: the heavy ball method [33],548

• Adam [18],549

• ASGD [15],550

• SVRG [17],551

• SGD-dec: stochastic gradient method with an exponential learning rate schedule and552

exponential constant 0.999,553

• HB-IGT: the heavy ball using the IGT as a plug-in estimator, and554

• HB-ITA: same as HB-IGT but using the anytime tail averaging to forget the oldest gradients.555

The hyperparameters of each method, and in particular the stepsize, are tuned independently according556

to a logarithmic grid so as to minimize the mean training error after epoch 15 on one seed. We557

then use those parameters on 5 random seeds and report the mean and standard deviation of the558

performance.559

Figure 13 shows the training curves for the five algorithms in the three settings.560

First, we observe that, for the logistic regression, HB-IGT performs on par with HB-ITA and far561

better than all the other methods, even though the assumption on the Hessians is violated. When562

using a ConvNet, however, we see that HB-IGT is not competitive with state-of-the-art methods such563

as Adam or ASGD. HB-ITA, on the other hand, with its smaller reliance on the assumption, once564

again performs much better than all other methods. In fact, HB-ITA not only converges to a lower565

final train error but also has a faster initial rate.566

While our focus is on optimization, we also report generalization metrics in Table 3. For each567

algorithm, we computed the best mean accuracy after each epoch on the test set and report this value568

together with its standard deviation. The importance of the Anytime Tail-Averaging mechanism is569

again apparent: without it, Heavyball-IGT is unable to improve for more than a few epochs on the570

CIFAR10 validation set, regardless of the stepsize choice. On the other hand, it is evident from those571

results that the solutions found by Heavyball-ITA are competitive with the ones discovered by other572

optimization algorithms.573

HB Adam ASGD HB-IGT HB-ITA

α 0.0128 0.0002 0.0032 0.0032 0.0016
µ 0.1 0.95 n/a 0.9 0.1
ξ n/a n/a 10 n/a n/a
κ n/a n/a 104 n/a n/a

Table 4: Hyperparameters for linear-MNIST experiments.

22

HB Adam ASGD HB-IGT HB-ITA

α 0.0064 0.0016 0.0128 0.0032 0.0032
µ 0.9 0.95 n/a 0.95 0.95
ξ n/a n/a 10 n/a n/a
κ n/a n/a 104 n/a n/a
Table 5: Hyperparameters for MNIST experiments.

HB Adam ASGD HB-IGT HB-ITA

α 0.0512 0.0512 0.1024 0.0128 0.0512
µ 0.95 0.9 n/a 0.9 0.1
ξ n/a n/a 100 n/a n/a
κ n/a n/a 105 n/a n/a

Table 6: Hyperparameters for MobileNetV2 on CIFAR10 experiments.

C Proofs574

C.1 Transport formula575

gt(θt) =
t

t+ 1
gt−1(θt) +

1

t+ 1
g(θt, xt)

=
t

t+ 1
(gt−1(θt−1) +H(θt − θt−1)) +

1

t+ 1
g(θt, xt) (Quadratic f)

=
t

t+ 1
gt−1(θt−1) +

1

t+ 1
(g(θt, xt) + tH(θt − θt−1))

=
t

t+ 1
gt−1(θt−1) +

1

t+ 1
g(θt + t(θt − θt−1), xt) (Identical Hessians)

≈ t

t+ 1
ĝt−1(θt−1) +

1

t+ 1
g(θt + t(θt − θt−1), xt) . (ĝt−1 is an approximation)

D Proof of Prop. 3.1576

In this proof, we assume that g is a strongly-convex quadratic function with hessian H .577

At timestep t, we have access to a stochastic gradient g(θ, xt) = g(θt) + εt where the εt are i.i.d.578

with variance C � σ2H .579

We first prove a simple lemma:580

Lemma D.1. If v0 = g(θ0) + ε0 and, for t > 0, we have581

vt =
t

t+ 1
vt−1 +

1

t+ 1
g (θt + t(θt − θt−1)) +

1

t+ 1
εt ,

then582

vt = g(θt) +
1

t+ 1

t∑
i=0

εi .

23

Proof. Per our assumption, this is true for t = 0. Now let us prove the result by induction. Assume583

this is true for t− 1. Then we have:584

vt =
t

t+ 1
vt−1 +

1

t+ 1
g(θt + t(θt − θt−1)) +

1

t+ 1
εt

=
t

t+ 1
g(θt−1) +

1

t+ 1

t−1∑
i=0

εi

+
1

t+ 1
g(θt + t(θt − θt−1)) +

1

t+ 1
εt (recurrence assumption)

=
t

t+ 1
g(θt−1) +

1

t+ 1

t−1∑
i=0

εi

+ g(θt)−
t

t+ 1
g(θt−1) +

1

t+ 1
εt (g is quadratic)

= g(θt) +
1

t+ 1

t∑
i=0

εi .

This concludes the proof.585

Lemma D.2. Let us assume we perform the following iterative updates:586

vt =
t

t+ 1
vt−1 +

1

t+ 1
g(θt + t(θt − θt−1)) +

1

t+ 1
εt

θt+1 = θt − αvt ,

starting from v0 = g(θ0) + ε0. Then, denoting ∆t = θt − θ∗, we have587

∆t = (I − αH)t∆0 − α
t−1∑
i=0

Ni,tεi

with588

Ni,0 = 0

Ni,t = (I − αH)Ni,t−1 + 1i<t
1

t
I .

Proof. The result is true for t = 0. We now prove the result for all t by induction. Let us assume this589

is true for t− 1. Using Lemma D.1, we have590

vt−1 = g(θt−1) +
1

t

t−1∑
i=0

εi

and thus, using g(θt−1) = H∆t−1,591

∆t = ∆t−1 − αvt−1

= ∆t−1 − αH∆t−1 −
α

t

t−1∑
i=0

εi

= (I − αH)∆t−1 −
α

t

t−1∑
i=0

εi

= (I − αH)t∆0 − α
t−2∑
i=0

(I − αH)Ni,t−1εi −
α

t

t−1∑
i=0

εi (recurrence assumption)

= (I − αH)t∆0 − α
t−1∑
i=0

Ni,tεi

24

with592

Ni,t = (I − αH)Ni,t−1 + 1i<t
1

t
I .

This concludes the proof.593

For the following lemma, we will assume that the Hessian is diagonal and will focus on one dimension594

with eigenvalue h. Indeed, we know that there are no interactions between the eigenspaces and that595

we can analyze each of them independently [30].596

Lemma D.3. Denote rh = 1− αh. We assume α ≤ 1
L . Then, for any i and any t, we have597

Ni,t ≥ 0 (Positivity)
Ni,t = 0 if t ≤ i (Zero-start)

Ni,t ≤ log

(
2

i(1− rh)

)
if i < t ≤ 2

1− rh)
(Constant bound)

Ni,t ≤
max

{
1 + rh, 2 log

(
2

i(1−rh)

)}
t(1− rh)

if
2

1− rh
≤ t . (Decreasing bound)

Proof. The Zero-start case i ≥ t is immediate from the recursion of Lemma D.2. The Positivity598

property of Ni,t is also immediate from the recursion since the stepsize α is such that rh = 1−αh is599

positive.600

We now turn to the Constant bound property. We have, for t > i,601

Ni,t = rhNi,t−1 +
1

t

≤ Ni,t−1 +
1

t
.

Thus, Ni,t −Ni,t−1 ≤ 1
t . Summing these inequalities, we get a telescopic sum and, finally:602

Ni,t ≤
t∑

j=i+1

1

j

≤
∫ t

x=i

dx

x

= log

(
t

i

)
.

This bound is trivial in the case i = 0. In that case, we keep the first term in the sum separate and get603

N0,t ≤ 1 + log t .

In the remainder, we shall keep the log
(
t
i

)
bound for simplicity. The upper bound on the right-hand604

size is increasing with t and its value for t = 2
1−rh is thus an upper bound for all smaller values of t.605

Replacing t with 2
1−rh leads to606

Ni, 2
1−rh

≤ log

(
2

1−rh
i

)

= log

(
2

i(1− rh)

)
.

This proves the third inequality.607

25

We shall now prove the Decreasing bound by induction. This bound states that, for t large enough,608

each Ni,t decreases as O(1/t). Using the second and third inequalities, we have609

Ni, 2
1−rh

≤ log

(
2

i(1− rh)

) 2
1−rh

2
1−rh

=
log
(

2
i(1−rh)

)
1− rh

2
2

1−rh

≤
max

{
1 + rh, 2 log

(
2

i(1−rh)

)}
2

1−rh (1− rh)
.

The maximum will help us prove the last property. Thus, for t = 2
1−rh , we have610

Ni,t ≤
max

{
1 + rh, 2 log

(
1

i(1−rh)

)}
t(1− rh)

≤ νi
t
,

with νi =
max

{
1+rh,2 log

(
1

i(1−rh)

)}
(1−rh) . The Decreasing bound is verified for t = 2

1−rh .611

We now show that if, for any t > 2
1−rh , we have Ni,t−1 ≤ νi

t−1 , then Ni,t ≤ νi
t . Assume that there is612

such at t. Then613

Ni,t = rhNi,t−1 +
1

t

≤ rhνi
t− 1

+
1

t

=
rhtνi + t− 1

t(t− 1)

=
(t− 1)νi + (rh − 1)tνi + νi + t− 1

t(t− 1)

=
νi
t

+
(rh − 1)tνi + νi + t− 1

t(t− 1)
.

We now shall prove that (rh − 1)tνi + νi + t− 1 = [(rh − 1)νi + 1]t+ νi − 1 is negative. First, we614

have that615

(rh − 1)νi + 1 = 1−max

{
1 + rh, 2 log

(
1

i(1− rh)

)}
≤ 0 .

Then,616

[(rh − 1)νi + 1]t+ νi − 1 ≤ 0⇐⇒ t ≥ νi − 1

(1− rh)νi − 1

since (rh − 1)νi + 1 ≤ 0. Thus, the property is true for every t ≥ νi−1
(1−rh)νi−1 . In addition, we have617

νi ≥
1 + rh
1− rh

νi(1− rh) ≥ 1 + rh
2νi(1− rh)− 2 ≥ νi(1− rh)− 1 + rh

2

1− rh
≥ νi − 1

νi(1− rh)− 1
,

and the property is also true for every t ≥ 2
1−rh . This concludes the proof.618

26

Finally, we can prove the Proposition 3.1:619

Proof. The expectation of ∆t is immediate using Lemma D.2 and the fact that the εi are independent,620

zero-mean noises. The variance is equal to V [∆t] = α2B
∑t
i=0N

2
i,t. While our analysis was621

only along one eigenspace of the Hessian with associated eigenvalue h, we must now sum over all622

dimensions. We will thus define623

ν̄i =
max

{
2− αµ, 2 log

(
1
iαµ

)}
αµ

for i > 0

ν̄0 =
2 + 2 log

(
1
αµ

)
αµ

,

which is, for every i, the maximum νi across all dimensions. We get624

V [∆t] ≤ dα2B

t∑
i=0

ν̄2i
t2

≤ dα2B
t∑
i=0

ν̄20
t2

since νi ≥ νi+1 ∀i

≤ dα2Bν̄20
t

.

Since we have625

E[θt − θ∗] = (I − αH)t(θ0 − θ∗) ,

we get626

E[‖θt − θ∗‖2] = ‖E[θt − θ∗]‖2 + V [∆t]

≤ (θ0 − θ∗)>(I − αH)2t(θ0 − θ∗) +
dα2Bν̄20

t

≤
(

1− 1

κ

)2t

‖θ0 − θ∗‖2 +
dα2Bν̄20

t
.

This concludes the proof.627

E Proof of Proposition 3.2 and Proposition 3.3628

In this section we list and prove all lemmas used in the proofs of Proposition 3.2 and Proposition 3.3;629

all lemmas are stated in the same conditions as the proposition.630

We start the following proposition:631

Proposition E.1. Let f be a quadratic function with positive definite Hessian H with largest eigen-632

value L and condition number κ and if the stochastic gradients satisfy g(θ, x) = g(θ) + ε with ε a633

random uncorrelated noise with covariance bounded by BI .634

Then, Algorithm 1 leads to iterates θt satisfying635

E[θt − θ∗] =

(
I
0

)
At
(
E[θ1 − θ∗]
E[θ0 − θ∗]

)
(5)

where636

A =

(
I − αH + µI −µI

I 0

)
(6)

governs the dynamics of this bias. In particular, when its spectral radius, ρ(A) is less than 1, the637

iterates converge linearly to θ∗.638

27

In a similar fashion, the variance dynamics of Heavyball-IGT are governed by the matrix639

Di =

(1− αhi + µ)2 + 2α2h2
i µ2 −2µ(1− αhi + µ)2

1 0 0
1− αhi + µ 0 −µ


If the spectral radius of Di, ρ(Di), is strictly less than 1 or all i, then there exist constants t0 > 0640

and C > 0 for which641

Var(θt) ≤ 2α2dBC
log(t)

t
, for t > t0

where B is a bound on the variance of noise variables εi.642

Lemma E.2 (IGT estimator as true gradient plus noise average). If v0 = g(θ0) + ε0 and for t > 0
we have

vt =
t

t+ 1
vt−1 +

1

t+ 1
g(θt + t(θt − θt−1)) +

1

t+ 1
εt,

then

vt = g(θt) +
1

t+ 1

t∑
i=0

εi.

This lemma is already proved in the previous section for the IGT estimator (Lemma D.1) and is just643

repeated here for completeness. We will use this result in the next few lemmas.644

Lemma E.3 (The IGT gradient estimator is unbiased on quadratics). For the IGT gradient estimator,
vt, corresponding to parameters θt we have

E [vt] = g(Eθt),

where the expectation is over all gradient noise vectors ε0, ε1, . . . , εt.645

Proof. The proof proceeds by induction. The base case holds as we have646

E [v0] = E [g0 + ε0] = g(θ0).

For the inductive case, we can write647

E [vt] = E
[

t

t+ 1
vt−1 +

1

t+ 1
ĝ(θt + t(θt − θt−1))

]
= E

[
t

t+ 1
vt−1 +

1

t+ 1
gt +

t

t+ 1
gt −

t

t+ 1
gt−1 +

1

t+ 1
εt

]
=

t

t+ 1
E [vt−1 − gt−1] + E [gt] +

t

t+ 1
E [εt]

= E [gt] = g(E [θt]).

Where, in the third equality, E [vt−1 − gt−1] = 0 by the inductive assumption, and the last equality648

because the gradient of a quadratic function is linear.649

Lemma E.4 (Bounding the IGT gradient variance). Let vt be the IGT gradient estimator. Then

Var [vt] ≤ 2h2Var [θt − θ?] +
2B

t
,

where B is the variance of the homoscedastic noise εt.650

28

Proof.

Var [vt] = Var

[
gt +

1

t+ 1

t∑
i=0

εi

]

= Var [hθt] + Var

[
1

t+ 1

t∑
i=0

εi

]

+ 2Cov

[
hθt,

1

t+ 1

t∑
i=0

εi

]

≤ 2Var [hθt] + 2Var

[
1

t+ 1

t∑
i=0

εi

]

= 2h2Var [θt − θ?] + 2
B

t

651

Now that we have these basic results on the IGT estimator, we can analyze the evolution of the bias652

and variance of Heavyball-IGT. We use the quadratic assumption to decouple the vector dynamics653

of Heavyball-IGT into independent scalar dynamics. If the Hessian, H , has eigenvalues L ≥ h1 ≥654

h2 ≥ . . . ≥ hn = L/κ, then we can assume without loss of generality that H is diagonal with655

Hii = hi.656

Lemma E.5 (Evolution of bias for scalar quadratic). Assume that the Hessian, second derivative, is657

h.658

Starting with v0 = g(θ0)+ε0 andw0 = 0, performing the following iterative updates (Heavyball-IGT,
Algorithm 1):

vt =
t

t+ 1
vt−1 +

1

t+ 1
g(θ + t(θt − θt−1)) +

1

t+ 1
εt,

wt+1 = µwt + αvt, θt+1 = θt − wt+1

results in

∆t = At∆0 − α
t−1∑
i=0

Ni,t

[
εi
0

]
where Nj,0 = 02×2, Ni,t = ANi,t−1 + 1i<t

1
t I ,659

∆t =

[
θt − θ∗
θt−1 − θ∗

]
and A =

(
1− αh+ µ −µ

1 0

)
.660

Proof. The proof proceeds by induction. First notice that for t = 0 the equality naturally holds. We661

make the inductive assumption that it holds for t− 1, and start by using Lemma E.2:662

∆t = A∆t−1 −
α

t

t−1∑
i=0

[
εi
0

]

= A(At−1∆0 − α
t−2∑
i=0

Ni,t

[
εi
0

]
)− α

t

t−1∑
i=0

[
εi
0

]
(Inductive assumption)

= At∆0 − α(

t−2∑
i=0

ANi,t

[
εi
0

]
+

1

t

t−1∑
i=0

[
εi
0

]
)

= At∆0 − α
t−1∑
i=0

Ni,t

[
εi
0

]
(Def. of Ni,t)

663

29

Lemma E.6 (Evolution of variance). Let Ut = Var [θt] and Vt = Cov [θt, θt−1], where θt is the t-th664

iterate of Heavyball-IGT on a 1-dimensional quadratic function with curvature h. The following665

matrix describes the variance dynamics of Heavyball-IGT.666

D =

(1− αh+ µ)2 + 2α2h2 µ2 −2µ(1− αh+ µ)2

1 0 0
1− αh+ µ 0 −µ

 (7)

If the spectral radius of D, ρ(D), is strictly less than 1, then there exist constants t0 > 0 and C > 0667

for which668

Var(θt) ≤ 2α2BC
log(t)

t

, where B is a bound on the variance of the noise.669

Proof. The proof (and lemma) is similar to the proof of Lemma 9 in [49]. We start by expanding670

Ut+1 as follows.671

Ut+1 = E
[
(θt+1 − θ̄t+1)2

]
= E

[
(θt − αvt + µ(θt − θt−1)− θ̄t + αgt − µ(θ̄t − θ̄t−1))2

]
= E[(θt − αgt + µ(θt − θt−1)− θ̄t + αgt

− µ(θ̄t − θ̄t−1) + α(gt − vt))2]

= E
[
((1− αh+ µ)(θt − θ̄t)− µ(θt−1 − θ̄t−1))2

]
+ α2E

[
(gt − vt)2

]
≤ E

[
((1− αh+ µ)(θt − θ̄t)− µ(θt−1 − θ̄t−1))2

]
+ α2

(
2h2E

[
(θt − θ̄t)2

]
+

2B

t+ 1

)
≤
[
(1− αh+ µ)2 + 2α2µ2

]
E
[
(θt − θ̄t)2

]
− 2µ(1− αh+ µ)E

[
(θt − θ̄t)(θt−1 − θ̄t−1)

]
+ µ2E

[
(θt−1 − θ̄t−1)2

]
+ α2 2B

t+ 1
.

Where the fourth equality is obtained since we know that the IGT gradient estimator is unbiased, i.e.672

E [gt − vt] = 0. The first inequality stems from Lemma E.4. We similarly expand Vt.673

Vt = E
[
(θt − θ̄t)(θt−1 − θ̄t−1)

]
= E

[(
(1− αh+ µ)(θt−1 − θ̄t−1)− µ(θt−2 − ¯θt−2) + α(gt − vt)

)
(θt−1 − θ̄t−1)

]
= (1− αh+ µ)E

[
(θt−1 − θ̄t−1)2

]
− µE

[
(θt−1 − θ̄t−1)(θt−2 − θ̄t−2)

]
From the above expressions, we obtain674

30

(
Ut+1

Ut
Vt+1

)
≤ D

(
Ut
Ut−1
Vt

)
+

α2 2B
t+1
0
0


≤ 2α2B

t∑
i=0

Di

 1
t+1−i

0
0


≤ 2α2B

s−1∑
i=0

Di

 1
t+1−i

0
0

+

t∑
i=s

Di

 1
t+1−i

0
0


where an inequality of vectors implies the corresponding elementwise inequalities.675

If the spectral radius of D, ρ(D) is strictly less than 1, then there exists constant C ′ > 0 such that676 (
1
0
0

)T
s−1∑
i=0

Di

 1
t+1−i

0
0

 ≤ C ′ s−1∑
i=0

1

t+ 1− i

≤ C ′s

t+ 2− s

If the spectral radius of D, ρ(D), is strictly less than 1, then there exists constant ζ > 0 and constant677

C ′′(ζ) > 0 such that, ρ(D) + ζ < 1 and678 (
1
0
0

)T
t∑
i=s

Di

 1
t+1−i

0
0

 ≤(1
0
0

)T
t∑
i=s

Di

(
1
0
0

)

≤C ′′
t∑
i=s

(ρ(D) + ζ)s

=C ′′(t− s+ 1)(ρ(D) + ζ)s

Let ρ′ = ρ(D) + ζ and s = d2 log1/ρ′ te. Then (ρ(D) + ζ)s = 1/t2, and putting the above two679

bounds together,680

Ut+1 ≤ 2α2B

(
2C ′ log1/ρ′ t

t+ 2− 2 log1/ρ′ t
+ C ′′

t− 2 log1/ρ′ t+ 1

t2

)

≤ 2α2BC
log(t+ 1)

t+ 1

where the last inequality holds for t > t0 for some t0 and some constant C > 0.681

682

We can now prove Proposition E.1.683

Proof of Proposition E.1. The bias statement of the proposition follows directly from taking an684

expectation on the bound of Lemma B.4, and the variance statement from summing up the d different685

variance terms given for each scalar component by Lemma B.5.686

E.1 Proof of Proposition 3.2687

This Proposition follows from the observation that, in the noiseless case, εt = 0 in our model. In that688

case, Lemma E.3 shows that Heavyball-IGT reduces to the heavy ball, and the rest follows from the689

optimal tuning of the heavy ball [49].690

31

E.2 Proof of Proposition 3.3691

Proof. Like we did in previous proofs, we can assume without loss of generality that the Hessian, H ,692

is diagonal with elements hi. For a diagonal H , matrix A can be permuted to be block diagonal with693

blocks694

Ai =

(
1− αhi + µ µ

1 0

)
.

To prove that ρ(A) < 1 it suffices to prove that ρ(Ai) < 1 for all i. For the rest of the proof we will695

focus on the dynamics along a single eigendirection with curvature hi. The rest of this proof used D696

to denote Di, A to denote Ai and h to denote hi.697

To make explicit the dependence of matrices A and D on hyperparameters and curvature, we write698

A(α, µ, h) and D(α, µ, h). Let 0 < α < 2/(3h) and µ0 = 0. Using hyperparameters (α, µ0) one699

gets the results for gradient descent without momentum. In particular ρ(A(α, µ0, h)) = |1−αh| < 1,700

and the spectral radius of D is ρ(D(α, µ0, h)) = |(1− αh)2 + 2α2h2| < 1.701

We will argue that there exists µ > 0, such that ρ(A(α, µ, h)) < 1, and the spectral radius of D is702

ρ(D(α, µ, h)) < 1. Then the previous lemma implies that bias converges linearly, and variance is703

O(log(t)/t).704

To argue the existence of µ > 0, we will perform eigenvalue perturbation analysis using the Bauer-705

Fike theorem. Note that A(α, µ, h) = A(α, µ0, h) + µ∆A where706

∆A =

(
1 −1
0 0

)
.

Similarly, D(α, µ, h) ≈ D(α, µ0, h) + µ∆D where707

∆D =

(
2(1− αh) 0 −2(1− αh)

0 0 0
1 0 −1

)
.

This last approximate inequality is a first-order approximation, in the sense that we are working with708

arbitrarily small, positive values of µ, and we have kept terms linear in µ but ignored higher order709

terms, like µ2.710

We will apply the Bauer-Fike theorem to bound the eigenvalues of D(α, µ, h). Consider the eigende-711

composition D(α, µ0, h) = V ΛV −1. We can compute712

V =

0 0 1−2αh+3α2h2

1−αh
0 1 1

1−αh
1 0 1


and713

V −1 =

 1−αh
1−2αh+3α2h2 − 1

1−2αh+3α2h2 0
0 1 0
1 0 0

 .

Note that because we assume α < 2/(3h) we get 1−αh > 0. Also, 1−2αh+3α2h2 > 0 regardless714

of the choice of hyperparameters. This means that matrices V and V −1 are singular and of finite715

norm. The norm of ∆D is also finite. The Bauer-Fike theorem states that, if ν is an eigenvalue of716

D(α, µ0, h), then there exists an eigenvalue λ of D(α, µ, h) such that717

|λ− ν| ≤ ‖V ‖p‖V −1‖p‖µ∆D‖p,

for any p-norm. Since by construction |ν| ≤ ρ(D(α, µ0, h)) < 1, the above means that there exists a718

sufficiently small, but strictly positive value of µ, such that λ < 1. By repeating this argument for719

all pairs of eigenvalues, we get the stated result. The same argument can be repeated to prove the720

existence of a strictly positive µ such that ρ(A(α, µ, h)) < 1.721

722

32

	Introduction
	Momentum and other approaches to dealing with variance
	Momentum and variance
	SAG and Hessian modelling

	Converging optimization through implicit gradient tranport
	Implicit gradient transport
	Combining increasing momentum and implicit gradient transport
	IGT as a plug-in gradient estimator

	IGT and Anytime Tail Averaging
	Impact of IGT on bias and variance in the ideal case
	Experiments
	Supervised learning
	Reinforcement learning
	Meta-learning

	Conclusion and open questions
	Experimental Details
	CIFAR10 image classification
	ImageNet image classification
	IMDb sentiment analysis
	Linear-quadratic regulator
	Model-agnostic meta-learning

	Additional Experiments
	Baselines comparisons

	Proofs
	Transport formula

	Proof of Prop. 3.1
	Proof of Proposition 3.2 and Proposition 3.3
	Proof of Proposition 3.2
	Proof of Proposition 3.3

