
A Supplemental Material: Experimental Results in Section 5

Data and Data Preprocessing. The original datasets used throughout our paper are described in
detail in [4]. They present 8 racial groups, with each individual belonging to a single group. To avoid
misinterpretation of the results, we collect racial groups with a population < 10% of the network
size N under the “Other” category. The racial composition of the networks after the preprocessing is
provided in Table 3. For instance, network SPY1 consists of 54% White, 11% Black, 15% Mixed and
20% Others. The empty entry for Hispanic indicates that their population was less than 10%; as a
result, they are categorized under “Other”.

Network Name White Black Hispanic Mixed Other
SPY1 54 11 – 15 20
SPY2 55 – 11 21 13
SPY3 58 – 10 18 14
MFP1 16 38 22 16 8
MFP2 16 32 22 20 10

Table 3: Racial composition (%) of the social networks considered after preprocessing

Setting of Parameter W . We now describe in detail the procedure we use to select W in our
experiments. As noted in Section 2, to achieve maximin fairness, W must take the maximum value
for which the problem is feasible (fairness constraints satisfied). Its value thus depends on other
parameters, including I , J , and K. In our experiments, we conduct a search to identify the best value
of W for each setting. Specifically, we vary W from 0 to 1, in increments of 0.04; we employ the
largest W for which the problem is feasible. By construction, this choice of W guarantees that all
of the fairness constraints are satisfied. In Table 4, we provide the values of W associated with the
results in Table 2 for I = N/3 and K = 3 and for each of the values of J .

Network Name J = 1 J = 2 J = 3 J = 4 J = 5
SPY1 0.44 0.40 0.36 0.32 0.32
SPY2 0.56 0.52 0.48 0.44 0.36
SPY3 0.44 0.36 0.32 0.28 0.24
MFP1 0.52 0.48 0.44 0.40 0.32
MFP2 0.56 0.52 0.44 0.40 0.32

Table 4: Values of W output by our search procedure and used in the experiments associated with
Table 2.

Head-to-Head Comparison with Table 1. We conduct a head-to-head comparison of our approach
with the results from Table 1 which motivated our work. The results are summarized in Table 5.
From the table we observe a consistent increase of 8-14% in worst-case coverage of the worse-off
group. For example, in SPY3, the coverage of Hispanics has increased from 33% to 44%. We can
also see that the PoF is moderate, ranging from 1-4.2%. The result for the MFP1 network suggests a
36% increase in the coverage of the “Other” group. We note that, by construction, this group consists
of racial minorities with a population less than 10% of the network size. While this increase has
impacted the coverage of “majority” groups, the worst-case coverage of the worse-off group has
increased by 14% with a negligible PoF of 2.6%.

B Supplemental Material: Proof of Statements in Section 2

Proof of Lemma 1. For the special case when all monitors are available (⌅ = {e}), there is a single
community (C = 1), and no fairness constraints are imposed (W = 0), Problem (RCfair) reduces to
the maximum coverage problem, which is known to be NP-hard [26]. ⌅

C Supplemental Material: Proofs of Statements in Section 3

In all of our analysis, we assume the graphs are undirected. This can be done without loss of generality
and the results hold for directed graphs.

13



Network Name Network Size (N ) Worst-case coverage of individuals by racial group (%) PoF (%)
White Black Hispanic Mixed Other

SPY1 95 65 (70) 45 (36) – 79 (86) 88 (94) 3.3
SPY2 117 81 (78) – 50 (42) 72 (76) 73 (67) 1.0
SPY3 118 90 (88) – 44 (33) 85 (95) 87 (69) 4.2
MFP1 165 85 (96) 69 (77) 42 (69) 73 (73) 64 (28) 2.6
MFP2 182 56 (44) 80 (85) 70 (70) 71 (77) 72 (72) 3.4

Table 5: Reduction in racial discrimination in node coverage resulting from applying our proposed
algorithm relative to that of [45] on the five real-world social networks from Table 3, when 1/3 of
nodes (individuals) can be selected as monitors, out of which at most 10% may fail. The numbers
correspond to the worst-case percentage of covered nodes across all monitor availability scenarios.
The numbers in the parentheses are solutions to the state-of-the-art algorithm [45] (same numbers as
in Table 1.

(a) Original Graph (b) With fairness (c) Without fairness

Figure 3: Companion figure to Lemma 2. The figures illustrate a network sequence {GN}1N=5
parameterized by N and consisting of two disconnected clusters: a small and a large one, with 4
and N � 4 nodes, respectively. The small cluster remains intact as N grows. The nodes in the large
cluster form a clique. In the figures, each color (white, grey, black) represents a different group and
we investigate the price of imposing fairness across these groups. The subfigures show the original
graph (a) and an optimal solution when I = 2 monitors can be selected in the cases (b) when fairness
constraints are not imposed and (c) when fairness constraints are imposed, respectively. It holds that
OPTfair

(GN , 2, 0) = 4 and OPT(GN , 2, 0) = N � 3 so that the PoF in GN converges to one as N
tends to infinity.

C.1 Worst-Case PoF

Proof of Lemma 2. Let {GN}1N=5 denote the graph sequence shown in Figure 3(a) (wherein all
edges are bidirectional). The network consists of three groups (e.g., racial groups) for which fair
treatment is important. Network GN consists of two disjoint clusters: one involving four nodes and a
bigger clique containing the remaining (N � 4) nodes. Suppose that we can choose I = 2 nodes as
monitors and that all of them are available (J = 0). Observe that Problem (RCfair) is feasible only if
0  W  (N � 3)

�1. For W = (N � 3)
�1

, the optimal solution places both nodes in the smaller
cluster, see Figure 3(b). This way, at least one node from each group is covered. The total coverage for
the fair solution is then equal to OPTfair

(GN , 2, 0) = 4. The maximum achievable coverage under no
fairness constraints, however, is obtained by placing one monitor in each cluster, see Figure 3(c). Thus,
the total coverage is equal to OPT(GN , 2, 0) = N � 3. As a result, PoF(GN , 2, 0) = 1�4(N�3)

�1

and for N � 4/✏+ 3, it holds that PoF(GN , 2, 0) � 1� ✏. The proof is complete. ⌅

C.2 Supporting Results for the PoF Derivation

In this section, we provide the preliminary results needed in the derivation of the PoF for both the
deterministic and robust graph covering problems. First, we provide two results (Lemmas 2 and 3)
from the literature which characterize the maximum degree, as well as the expected number of
maximum-degree nodes in sparse Erdős Rény graphs [25, 30]. We note that in SBM graphs which are
used in our PoF analysis, each community c 2 C, when viewed in isolation, is an instance of the Erdős
Rényi graph, in which each edge exists independently with probability p

in
c . These results are useful

to evaluate the coverage of each community c 2 C under the sparsity Assumption 1. Specifically,
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they enable us to show in Lemma 4 that, in sparse Erdős Rényi graphs, the coverage can be evaluated
approximately as the sum of the degrees of the monitoring nodes. Thus, the maximum coverage
within each community in an SBM network can obtained by selecting the maximum degree nodes.
Lastly, we prove Lemma 6 which will be useful to show that coverage from monitoring nodes in
other communities in SBM networks is negligible.

In what follows, we use GN,p to denote a random instance of Erdős Rény graphs on vertex set N (=

{1, . . . , N}), where each edge occurs independently with probability p. Following the notational
conventions in [29], we will say that a sequence of events {An}Nn=1 occurs with high probability if
limn!1 P(An) = 1 and, given a graph G, we let �(G), the maximum degree of vertices of G.
Theorem 2 ([29, Theorem 3.4]). Let {GN,p}1N=1 a sequence of graphs. If p = ⇥(N

�1
), then with

high probability

lim
N!1

�(GN,p) =
logN

log logN
.

Lemma 3. Let {GN,p}1N=1 a sequence of graphs with p = ⇥(N
�1

). Let �(N) :=

logN(log logN)
�1. Then, it holds that

E[X�(N)(GN,p)] � N
log log log N�o(1)

log log N ,

where X�(N)(GN,p) is the number of vertices of degree �(N) in GN,p.

Proof. We borrow results from [29, Theorem 3.4], where the authors show that

E[X�(N)(GN,p)] = exp

✓
logN

log logN
(log log logN � o(1)) +O

✓
logN

log logN + 2 log log logN

◆◆
,

We further simplify the expression in Lemma 3 by eliminating the O(.) term and we obtain

E[X�(N)(GN,p)] � N
log log log N�o(1)

log log N ,

⌅

Lemma 3 ensures that our budget for selecting monitors I = O(logN), is (asymptotically) smaller
than number of nodes with degree �(GN,p).

Lemma 4. Let {GN,p}1N=1 be a sequence of graphs with p = ⇥(N
�1

). Suppose that the number of
monitors is I = O(logN). Then, for all ⌫, there exists a graph GN,p such that the difference between
the expected maximum coverage in GN,p and the expected number of neighbors of the monitoring
nodes is bounded. Precisely, if x(GN,p) is the indicator vector of the highest degree nodes in GN,p,
we have X

n2N
E
⇥
xn(GN,p)|�GN,p(n)|

⇤
� E

⇥
FGN,p(x(GN,p), e)

⇤
 ⌫,

where �GN,p(n) is the set of neighbors of n in GN,p and ⌫ is the error term and it is ⌫ = o(1).

Proof. Let Yn be the event that node n is covered. Also, let Zi
n the event that node n is covered by

the ith highest degree node (and by potentially other nodes too). Without loss of generality, assume
that the nodes with lower indexes have higher degrees, i.e., |�(1)| � · · · � |�(N)|. The probability
that node n is covered can be written as

P(Yn) = P
�
[I
i=1Z

i
n

�
. (6)

From the Bonferroni inequalities, we have

P([I
i=1Z

i
n) �

IX

i=1

0

@P(Zi
n)�

IX

j=i

P(Zi
n \ Z

j
n)

1

A (7)
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and

P([I
i=1Z

i
n) 

IX

i=1

P(Zi
n). (8)

Define Y :=
PN

i=1 Yn as the (random) total coverage. With a slight abuse of notation, we view Yn

and Z
i
n as Bernoulli random binary variables that are equal to 1 if and only if the associated event

occurs. As a result, we can substitute the probability terms with their expected values. Combining
Equations (6), (7) and (8), we obtain

IX

i=1

0

@E[Zi
n]�

IX

j=i

E[Zi
nZ

j
n]

1

A  E[Yn] 
IX

i=1

E[Zi
n], 8n 2 N ,

where we used the fact that P(Zi
n \ Z

j
n) = P(Zi

n)P(Z
j
n) = E(Zi

n)E(Z
j
n) = E(Zi

nZ
j
n) by indepen-

dence of the events Zi
n and Z

j
n. Summing over all n yields

X

n2N

0

@
IX

i=1

E[Zi
n]�

IX

j=i

E[Zi
nZ

j
n]

1

A 
X

n2N
E[Yn] 

X

n2N

IX

i=1

E[Zi
n].

Changing the order of the summations, it follows that

IX

i=1

0

@
X

n2N
E[Zi

n]�
IX

j=i

X

n2N
E[Zi

nZ
j
n]

1

A  E[Y ] 
IX

i=1

X

n2N
E[Zi

n],

where we have used E[Y ] =
PN

i=1 E[Yn]. By definition of �GN,p(i), since xi(GN,p) = 1 for
i = 1, . . . , I , it holds that the number of nodes covered by node i,

P
n2N E[Zi

n] = E[|�GN,p(i)|].
Also, we remark that E[Y ] = E[FGN,p(x(GN,p), e)]. Thus, the above sequence of inequalities is
equivalent to

IX

i=1

0

@E[|�GN,p(i)|]�
IX

j=i

X

n2N
E[Zi

nZ
j
n]

1

A  E[FGN,p(x(GN,p), e)] 
IX

i=1

E[|�GN,p(i)|],

where, by reordering terms, we obtain

0 
IX

i=1

E[|�GN,p(i)|]� E[FGN,p(x(GN,p), e)] 
IX

i=1

IX

j=i

X

n2N
E[Zi

nZ
j
n].

Note that E [xn(GN,p)] = 1, 8n  I since by assumption the nodes are ordered by decreasing order
of their degree, so the nodes indexed from 1 to I are selected in each realization of the graph. Thus,

IX

i=1

E[|�GN,p(i)|] =

X

n2N
E [xn(GN,p)]E

⇥
|�GN,p(n)|

⇤

=

X

n2N
E
⇥
xn(GN,p)|�GN,p(n)|

⇤
,

which yields

X

n2N
E
⇥
xn(GN,p)|�GN,p(n)|

⇤
� E[FGN,p(x(GN,p), e)] 

IX

i=1

IX

j=i

X

n2N
E[Zi

nZ
j
n]. (9)

The right-hand side of Equation (9) is the error term and we denote it by ⌫ =PI
i=1

PI
j=i

P
n2N E[Zi

nZ
j
n]. This error term determines the difference between the true value of

the coverage and the expected sum of the degrees of the monitoring nodes. Given that p = ⇥(N
�1

),
we can precisely evaluate the error term. First, we note that since in the Erdős-Rényi model edges are
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drawn independently, we can write E[Zi
nZ

j
n] = E[Zi

n]E[Z
j
n]. Using Theorem 2 and Lemma 3, and

given that the monitors are the highest degree nodes in any realization of the graph, we can write

E[Zi
n] = E[Zj

n] = ⇥

✓
1

N

logN

log logN

◆
.

We thus obtain
⌫ = ⇥

✓
I2

N

⇣
logN

log logN

⌘2
◆
.

By the assumption on the order of I , it follows that limN!1 ⌫ = 0, which concludes the proof. ⌅

We now prove the following lemma which will be used in proof of the subsequent results.
Lemma 5. Let Xi for i = 1, . . . , Q be Q i.i.d samples from normal distribution with mean µ and
standard deviation �. Also, let Z = maxi2{1,··· ,Q} Xi. It holds that

E[Z]  µ+ �

p
2 logQ.

Proof. By Jensen’s inequality,
exp(tE[Z])  E[exp(tZ)] = E[exp(t max

i=1,...,Q
Xi)]


QX

i=1

E[exp(tXi)]

= Q exp(µt+ t
2
�
2
/2),

where the last equality follows from the definition of the Gaussian moment generating function.
Taking the logarithm of both sides of this inequality, we can obtain

E[Z]  µ+
logQ

t
+

t�
2

2
.

For the tightest upper-bound, we set t =
p

2 logQ/�. Thus, we obtain
E[Z]  µ+ �

p
2 logQ.

⌅

Lemma 6. Consider BN,M,p to be a random instance of a bipartite graph on the vertex set N = L[R,
where N = |R [ L| and M := |R| and p = O

�
(M log

2
M)

�1
�

is the probability that each edge
exists (independently). Suppose that monitoring nodes can only be chosen from the set L and that at
most I monitors can be selected. Then, it holds that

E

2

64 max
x2{0,1}|L|:P

n2L xn=I

FBN,M,p(x, e)

3

75 = IO

✓
1

log
2
M

◆
.

Proof. We note that the degree of node i, �BN,M,p(i), follows a binomial distribution with mean Mp.
Given we are interested in N,M ! 1, we can approximate the binomial distribution with a normal
distribution [48] with mean Mp and standard deviation

p
Mp(1� p). Using the result of Lemma 5,

we obtain
E[�BN,M,p ] = O

⇣
Mp+

p
Mp(1� p)

p
2 log (N �M)

⌘
= O(Mp).

Using the above result combined with the assumption on p, we can bound the expected maximum
degree of B.

E[�BN,M,p ] = O

✓
1

log
2
M

◆
.

As a result, the maximum expected coverage of the I monitoring nodes is upper-bounded as

E

2

64 max
x2{0,1}N :P

n2L xn=I

FBN,M,p(x, e)

3

75  I E[�BN,M,p ] = IO

✓
1

log
2
M

◆
.

and the proof is complete. ⌅
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C.3 PoF in the Deterministic Case

Next, we prove the main result which is the derivation of the PoF for the deterministic graph covering
problem. The idea of the proof is as follows: by Lemmas 3 and 4, we are able to evaluate the
coverage of each community. By Lemma 6, we upper bound the between-community coverage. In
other words, based on Lemma 6, we conclude that in every instance of the coverage problem, the
between-community coverage is zero (asymptotically) with high probability. Thus, the allocation of
monitoring nodes is only dependant on the within-community coverage. Using this observation, we
can determine the allocation of the monitors both in the presence and absence of fairness constraints.
Subsequently, we are able to evaluate the coverage in both cases. PoF can be then computed based on
these two quantities, see Equation (2).

Proof of Proposition 1. Let SN be a random instance of the SBM network with size N . Consider
s(SN ) 2 ZC to be the number of allocated monitoring nodes to each of the C communities, i.e.,
sc(SN ) =

P
n2Nc

xn(SN ). Using the result of Lemmas 4 and 6, we can measure the expected
maximum coverage as

lim
N!1

E[OPT(SN , I, 0)] = lim
N!1

E


max
x(SN )2X

FSN (x, e)
�
= E


lim

N!1
max

x(SN )2X
FSN (x, e)

�
,

where the last equality is obtained by exchanging the expectation and limit. Using Lemma 2 and
since the maximum degree is convergent to d(c), we can exchange the limit and maximization term.
Thus, we will have

E

lim

N!1
max

x(SN )2X
FSN (x, e)

�
= E


max

x(SN )2X
lim

N!1
FSN (x, e)

�

= E

"
max

s(SN )2ZC

X

c2C
sc(SN )d(c) + o(1)

#
,

which given that d(c) is only dependent on the size of the communities in SN is equivalent to

lim
N!1

E[OPT(SN , I, 0)] = max
s(SN )

X

c2C
sc(SN )d(c) + o(1). (10)

Equation (10) suggests that for large enough N , the maximum coverage is only dependent on the
number of the monitoring nodes allocated to each community. Also, the allocation is the same for all
random instances so we can drop the dependence of s on SN . In right-hand side of Equation (10),
the first term is the within-community (Lemma 4), and the second term is the between-community
(Lemma 6) coverage.

In the analysis below, all the evaluations are for large enough N . Therefore, we drop the limN!1
for ease of notation. According to Equation (10) the between-community coverage is negligible,
compared to the within-community coverage. This suggests that the maximum achievable coverage
will be obtained by placing all the monitoring nodes in the largest community, with the largest value
of d(c), where the assumption on I , as given in the premise of the proposition, combined with
Lemma 3 guarantee that such a selection is possible. Thus, we obtain

E[OPT(SN , I, 0)] = Id(C) + o(1).

Next, we measure E[OPTfair
(.)], where in addition to optimization problem in Equation (10), the

allocation is further restricted to satisfy all the fairness constraints.
sc

|Nc|
d(c) + o(1) � W 8c 2 C, (11)

in which, o(1) is the term that compensates for the coverage of the nodes in other communities, and
is small due to the regimes of pout

cc0 , 8c, c0 2 C and the budget I. At optimality and for the maximum
value of W , we have

���sc|Nc|�1
d(c)� sc0 |Nc0 |�1

d(c
0
)

���  � 8c, c0 2 C, � 
���d(1)|N1|�1 � d(C)|NC |�1

��� .

This holds because otherwise one can remove on node from the group with higher value of
sc|Nc|�1

d(c) to a group with less value and thus increase the normalized coverage of the worse-off
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group and this contradicts the fact that W is the maximum possible value. This suggests that in a fair
solution, the normalized coverage is almost equal across different groups, given that limN!1 � = 0.
As a result, the monitoring nodes should be such that

W  sc

|Nc|
d(c) + o(1)  W + �, 8c 2 C.

From this, it follows that
W � o(1)  sc

|Nc|
d(c)  W + o(1). (12)

By assumption, there must be an integral sc that satisfies the above relation. Note that if we could
relax the integrality assumption, sc = W |Nc|d(c)�1. Due to the integrality constraint, and according
to Equation (12), we set sc|Nc|�1

d(c) = W + o(1), where the o(1) term is to account for the
discretizing error, which results in sc = W |Nc|d(c)�1

+ O(1), where O(1)  1 (As we can not
make a higher error in rounding). Also, since

P
c2C sc = I , we can obtain the value of W as

W =
I

P
c2C

|Nc|
d(c)

+ o(1).

As a result

sc =
I

P
c2C

|Nc|
d(c)

|Nc|
d(c)

+O(1) 8c 2 C.

We now define  := I

⇣P
c2C

|Nc|
d(c)

⌘�1
for a compact representation.

So far, we obtained the allocation of the monitoring nodes to satisfy the fairness constraints. This
is enough to evaluate the coverage under the fairness constraints. Now, we can evaluate the PoF as
defined by Equation (2).

E[OPT(SN , I, 0)] = Id(C)

) � 1

E[OPT(SN , I, 0)]
= � 1

I d(C)

) �E[OPTfair
(SN , I, 0)]

E[OPT(SN , I, 0)]
= �


P

c2C
|Nc|
d(c) d(c)

I d(C)
�o(1)

) 1� E[OPTfair
(SN , I, 0)]

E[OPT(SN , I, 0)]
= 1�


P

c2C
|Nc|
d(c) d(c)

I d(C)
� o(1)

) PoF(I, 0) = 1�

P

c2C |Nc|
I d(C)

� o(1)

) PoF(I, 0) = 1�
P

c2C |Nc|P
c2C |Nc|d(C)/d(c)

� o(1).

⌅

C.4 PoF in the Robust Case

Proof of Proposition 2. The idea of the proof is similar to Proposition 1, with the exception that the
fair allocation of the monitoring nodes will be affected by the uncertainty. Consider s to be the
number of allocated monitoring nodes to each of the C communities, i.e., sc =

P
n2Nc

xn. Using
the result of lemma 4, and 6, we can measure the expected maximum coverage as

E[OPT(SN , I, J)] = (I � J)d(c) + o(1).

That is because, in the worst-case J nodes fail, thus only (I � J) nodes can cover the graph. Next,
we measure E[OPTfair

(.)], where in addition to optimization problem in Equation (10), the allocation
is further restricted to satisfy all the fairness constraints. Given that at most J nodes may fail, we
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need to ensure after fairness constraints are satisfied after the removal of J nodes. We momentarily
revisit the fairness constraint in the deterministic case.

sc

|Nc|
d(c) + o(1) � W 8c 2 C,

in which, o(1) is the term that compensates for the coverage of the nodes in other communities, and
is small due to the regimes of pout

, and the budget I. Under the uncertainty, we need to ensure that
these constraints are satisfied even after J nodes are removed. In other words

(sc � J)

|Nc|
d(c) + o(1) � W 8c 2 C.

At optimality and for the maximum value of W , we have���(sc � J)|Nc|�1
d(c)� (sc0 � J)|Nc0 |�1

d(c
0
)

���  � 8c, c0 2 C, � 
���d(1)|N1|�1 � d(C)|NC |�1

��� .
This holds because otherwise one can remove on node from the group with higher value of
sc|Nc|�1

d(c) to a group with less value and thus increase the normalized coverage of the worse-off
group and this contradicts the fact that W is the maximum possible value.

This suggests that in a fair solution, the normalized coverage is almost equal across different groups,
given that � ! 0, as Nc ! 1, 8c 2 C. Following the proof of Proposition 1, the discretizing error
can be handled by setting (sc � J)|Nc|�1

d(c) = W + o(1), where the o(1) term is to account for
the discretizing error. As a result

sc =
|Nc|W
d(c)

+ J +O(1),

where O(1)  1 (As we can not make a higher error in rounding). This suggests that a fair allocation
is the one that places J nodes in each community, regardless of the community size. The remaining
monitors are allocated with respect to the relative size of the communities.

Summing over all sc and since
P

c2C sc = I we obtain

W =
(I � CJ)
P

c2C
|Nc|
d(c)

+ o(1).

As a result
sc =

(I � CJ)
P

c2C
|Nc|
d(c)

|Nc|
d(c)

+ J +O(1) 8c 2 C.

As defined in the premise of the proposition, ⌘ = (I � CJ)

⇣P
c2C

|Nc|
d(c)

⌘�1
.

So far, we obtained the allocation of the monitoring nodes, to satisfy the fairness constraints.

Now, we evaluate the coverage, i.e., objective value of Problem (RCfair), under the obtained fair
allocation. Since the fairness constraints are satisfied under all the scenarios, the worst-case scenario
is the one that results in the maximum loss in the total coverage. This corresponds to the case that J
nodes from the largest community (NC) fail. As a result the expected coverage can be obtained by

E[OPT
fair

(SN , I, J)] =

X

c2C

✓
⌘
|Nc|
d(c)

d(c) + Jd(c) +O(1)d(c)

◆
� Jd(C).

Now, we can evaluate the PoF as defined by Equation (2).
E[OPT(SN , I, J)] = (I � J)d(C)

) � 1

E[OPT(SN , I, J)]
= � 1

(I � J)d(C)

) �E[OPTfair
(SN , I, J)]

E[OPT(SN , I, J)]
= �

P
c2C (⌘|Nc|+ Jd(c))� Jd(C)

(I � J)d(C)
� o(1)

) 1� E[OPTfair
(SN , I, J)]

E[OPT(SN , I, J)]
= 1�

P
c2C ⌘|Nc|+

P
c2C\{C} Jd(c)

(I � J)d(C)
� o(1)

) PoF(I, J) = 1�
P

c2C ⌘|Nc|
(I � J)d(C)

�
J
P

c2C\{C} d(c)

(I � J)d(C)
� o(1).

⌅
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D Supplemental Material: Proofs of Statements in Section 4

D.1 Equivalent Reformulation as a Max-Min-Max Robust Optimization Problem

Proof of Proposition 3. Let x̄ be feasible in Problem (RCfair). It follows that it is also feasible in
Problem 3. For a fixed ⇠̄, we show that

X

c2C
FG,c(x̄, ⇠̄) = max

y

X

c2C

X

n2Nc

yn

s.t. yn 
X

⌫2�(n)

⇠̄⌫x̄⌫

X

n2C
yn � W |Nc|, 8c 2 C

Since x̄ is feasible in Problem (RCfair), it holds that

FG,c(x̄, ⇠̄) =

X

n2Nc

yn(x̄, ⇠̄)

=

X

n2Nc

I

0

@
X

⌫2�(n)

⇠̄⌫x̄⌫ � 1

1

A

� W |Nc|

We define y?
n = I

⇣P
⌫2�(n) ⇠̄⌫x̄⌫ � 1

⌘
which is feasible in Problem (3). Since the choice of ⇠̄ was

arbitrary, we showed that given a solution to Problem (RCfair), we can always construct a feasible
solution to Problem (3), thus the objective value of the latter is at least as high.

We now prove the contrary, i.e., given a solution to Problem (3), we will construct a solution to
Problem (RCfair). Consider x̄ to be an optimal solution to Problem (RCfair). Suppose there exists
⇠̄ 2 ⌅ such that

FG,c(x̄, ⇠̄) < |Nc|W

)
X

n2Nc

I

0

@
X

⌫2�(n)

⇠̄⌫x̄⌫ � 1

1

A < |Nc|W.

However, since x̄ is feasible in Problem (RCfair), we have that

8⇠̃ 2 ⌅, 9yn : yn 
X

⌫2�(n)

⇠̃⌫x̄⌫

X

n2Nc

yn � |Nc|W.

By construction, yn  I
⇣P

⌫2�(n) ⇠̃⌫x̄⌫ � 1

⌘
, 8n 2 N . Thus

X

c2C

X

n2Nc

I

0

@
X

⌫2�(n)

⇠̃⌫x̄⌫ � 1

1

A �
X

c2C

X

n2Nc

yn

� |Nc|W.

According to the above result, we showed that the optimal objective value of Problem (RCfair) is at
least as high as that of Problem (3). This completes the proof. ⌅
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D.2 Exact MILP Formulation of the K-Adaptability Problem

In order to derive the equivalent MILP in Theorem 1, we start by a variant of the K-adaptability
Problem (4), in which we move the constraints of the inner maximization problem to the definition
of the uncertainty set in the spirit of [31]. Next, we prove, via Proposition 4, that by relaxing the
integrality constraint on the uncertain parameters ⇠, the problem remains unchanged, and this is the
key result that enables us to provide an equivalent MILP reformulation for Problem (4).

We replace ⌅ with a collection of uncertainty sets parameterized by vectors ` 2 L as in [31].
Specifically, it follows from Proposition 2 in [31] that Problem (4) is equivalent to

max min
`2L

min
⇠2⌅(x,y,`)

max
k2K:
`k=0

X

n2N
yk
n

s.t. x 2 X , y1
, . . . ,yK 2 Y,

(13)

where ⌅(x,y, `) is defined through

⌅(x,y, `) :=

8
>>>><

>>>>:

⇠ 2 ⌅ :

yk
`k >

X

⌫2�(`k)

⇠⌫x⌫ , 8k 2 K : `k > 0

yk
n 

X

⌫2�(n)

⇠⌫x⌫ 8n 2 N , 8k 2 K : `k = 0

9
>>>>=

>>>>;

,

and, with a slight abuse of notation, we use y := {y1
, . . . ,yK}. The vector ` 2 L encodes which

of the K candidate covering schemes are feasible. By introducing `, the constraints of the inner
maximization problem are absorbed in the parameterized uncertainty sets ⌅(x,y, `), and in the
inner-most maximization problem, any covering scheme can be chosen for which `k = 0.

Note that, for any fixed x 2 X , y 2 YK , and ` 2 L, the strict inequalities in ⌅(x,y, `) can be
converted to (loose) inequalities as in

⌅(x,y, `) =

8
>>>><

>>>>:

⇠ 2 ⌅ :

yk
`k �

X

⌫2�(`k)

⇠⌫x⌫ + 1, 8k 2 K : `k > 0

yk
n 

X

⌫2�(n)

⇠⌫x⌫ 8n 2 N , 8k 2 K : `k = 0

9
>>>>=

>>>>;

.

This idea was previously leveraged in [39]. It follows naturally since all decision variables and
uncertain parameters are binary. Next, we show that we can obtain an equivalent problem by relaxing
the integrality constraint on the set ⌅ in the definition of ⌅(x,y, l). Consider the following problem

max min
`2L

min
⇠2⌅(x,y,`)

max
k2K:
`k=0

X

n2N
yk
n

s.t. x 2 X , y 2 YK
,

(14)

where the uncertainty set is obtained by relaxing the integrality constraints on ⇠, i.e.,

⌅(x,y, `) =

8
>>>><

>>>>:

⇠ 2 T :

yk
`k �

X

⌫2�(`k)

⇠⌫x⌫ + 1, 8k 2 K : `k > 0

yk
n 

X

⌫2�(n)

⇠⌫x⌫ 8n 2 N , 8k 2 K : `k = 0

9
>>>>=

>>>>;

.

Proposition 4. Under Assumption 3, Problems (13) and (14) are equivalent.

Proof. Let x 2 X , y 2 YK , and ` 2 L. It suffices to show that

min
⇠2⌅(x,y,`)

max
k2K:
`k=0

X

n2N
yk
n and min

⇠2⌅(x,y,`)
max
k2K:
`k=0

X

n2N
yk
n
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are equivalent. Observe that the these problems have the same objective function. Thus, the two
problems have the same optimal objective value if and only if they are either both feasible or both
infeasible. As a result, it suffices to show that ⌅(x,y, `) is empty if and only if ⌅(x,y, `) is empty.
Naturally, if ⌅(x,y, `) = ; then ⌅(x,y, `) = ; since T is the linear programming relaxation
of ⌅. Thus, it suffices to show that the converse also holds, i.e., that if ⌅(x,y, `) 6= ;, then also
⌅(x,y, `) 6= ;.

To this end, suppose that ⌅(x,y, `) 6= ; and let ⇠̃ 2 ⌅(x,y, `). Then, ⇠̃ is such that

⇠̃ 2 T ,

yk
`k �

X

⌫2�(`k)

⇠̃⌫x⌫ + 1 8k 2 K : `k > 0,

yk
n 

X

⌫2�(n)

⇠̃⌫x⌫ 8n 2 N , 8k 2 K : `k = 0.

(15)

Next, define ⇠̂n := d⇠̃ne 8n 2 N . We show that ⇠̂ 2 ⌅(x,y, `). First, note that ⇠̂ � ⇠̃ and by
Assumption 3, it follows that ⇠̂ 2 T . Moreover, by construction, ⇠̂ 2 {0, 1}N . Thus, it follows
that ⇠̂ 2 ⌅. Next, we show that the constructed solution ⇠̂ also satisfies the remaining constraints in
⌅(x,y, `). Fix k 2 K such that `k > 0. Then, from (15) it holds that

yk
`k �

X

⌫2�(`k)

⇠̃⌫x⌫ + 1

) yk
`k = 1 and ⇠̃⌫x⌫ = 0 8⌫ 2 �(`k)

) yk
`k = 1 and ⇠̃⌫ = 0 8⌫ 2 �(`k) : x⌫ = 1

) yk
`k = 1 and ⇠̂⌫ = 0 8⌫ 2 �(`k) : x⌫ = 1

) yk
`k �

X

⌫2�(`k)

⇠̂⌫x⌫ + 1,

where the first and second implication follow since y and x are binary, respectively, and the third
implication holds by definition of ⇠̂,

Next, fix k 2 K such that `k = 0. Then, (15) yields

yk
n 

X

⌫2�(n)

⇠̃⌫x⌫ 8n 2 N

) yk
n 

X

⌫2�(n)

⇠̂⌫x⌫ 8n 2 N ,

which follows by definition of ⇠̂. We have thus constructed ⇠̂ 2 ⌅(x,y, `) and therefore conclude
that ⌅(x,y, `) 6= ;. Since the choice of x 2 X , y 2 YK , and ` 2 L was arbitrary, the claim
follows. ⌅

Proposition 4 is key to leverage existing literature to reformulate Problem (4) as an MILP. The
reformulation is based on [31, 39].

Proof of Theorem 1. Note that the objective function of the Problem (13) is identical to

min
`2L

min
⇠2⌅(x,y,`)

"
max

�2�K(`)

X

k2K
�k

X

n2N
yk
n

#
,

where �K(`) := {� 2 RK
+ : e>� = 1, �k = 0 8k 2 K : `k 6= 0}. We define @L := {` 2 L : ` ⇧

0}, and L+ := {` 2 L : ` > 0}. We remark that �K(`) = ; if and only if ` > 0. If ⌅(x,y, `) = ;
for all ` 2 L+, then the problem is equivalent to

min
`2@L

min
⇠2⌅(x,y,`)

"
max

�2�K(`)

X

k2K
�k

X

n2N
yk
n

#
.
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By applying the classical min-max theorem, we obtain

min
`2@L

max
�2�K(`)

min
⇠2⌅(x,y,`)

X

k2K
�k

X

n2N
yk
n.

This problem is also equivalent to

max
�(`)2�K(`)

min
`2@L

min
⇠2⌅(x,y,`)

X

k2K
�k(`)

X

n2N
yk
n.

If on the other hand ⌅(x,y, `) 6= ; for some ` 2 L+, the objective of Problem (13) evaluates to
�1.

Using the above results, we can write Problem (13) in epigraph form as

max ⌧

s.t. x 2 X , y 2 YK
, ⌧ 2 R, �(`) 2 �K(`), ` 2 @L

⌧ 
X

k2K
�k(`)

X

n2N
yk
n 8` 2 @L : ⌅(x,y, `) 6= ;

⌅(x,y, `) = ; 8` 2 L+.

(16)

We begin by reformulating the semi-infinite constraint associated with ` 2 @L in Problem (16). To
this end, fix ` 2 @L and consider the linear program

min 0

s.t. 0  ⇠n  1 8n 2 N

A>⇠ � b

yk
`k �

X

⌫2�(`k)

⇠⌫x⌫ + 1 8k 2 K : `k > 0

yk
n 

X

⌫2�(n)

⇠⌫x⌫ 8n 2 N , 8k 2 K : `k = 0,

whose dual reads

max �e>✓(`) + b>↵(`)�
X

k2K
`k 6=0

�
yk
`k � 1

�
⌫k(`) +

X

k2K
`k=0

X

n2N
yk
n�

k
n(`)

s.t. ✓(`) 2 RN
+ , ↵(`) 2 RR

+, �
k
(`) 2 RN

+ , 8k 2 K, ⌫(`) 2 RK
+

✓n(`)  A>↵(`) +
X

k2K
`k 6=0

X

⌫2�(`k)

x⌫⌫k(`)�
X

k2K
`k=0

X

⌫2�(n)

x⌫�
k
n(`) 8n 2 N .

In Problem (16) the constraint associated with each ` 2 @L is satisfied if and only if the objective
value of the above dual problem is greater than ⌧ �

P
k2K �k(`)

P
n2N yk

n. This follows since the
dual is always feasible. Therefore, either the dual is unbounded in which case the primal is infeasible,
i.e., ⌅(x,y, `) = ;, and the constraint is trivial. Else, by strong duality, the primal and dual must
have the same objective value (zero). As a result, the constraints in Problem (16) associated with
each ` 2 @L can be written as

⌧  �e>✓(`) + b>↵(`)�
X

k2K
`k 6=0

�
yk
`k � 1

�
⌫k(`) +

X

k2K
`k=0

X

n2N
yk
n�

k
n(`) +

X

k2K
�k(`)

X

n2N
yk
n

✓n(`)  A>↵(`) +
X

k2K
`k 6=0

X

⌫2�(`k)

x⌫⌫k(`)�
X

k2K
`k=0

X

⌫2�(n)

x⌫�
k
n(`) 8n 2 N .
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Finally, the last constraint in Problem (16) is satisfied if the linear program

min 0

s.t. 0  ⇠n  1 8n 2 N

A⇠ � b

yk
`k �

X

⌫2�(`k)

⇠⌫x⌫ + 1 8k 2 K : `k 6= 0

is infeasible. Using strong duality, this occurs if the dual problem

max �e>✓(l) +↵(`)>b�
X

k2K
`k 6=0

�
yk
`k � 1

�
⌫k(`)

s.t. ✓(`) 2 RN
+ , ↵(`) 2 RR

+, ⌫(`) 2 RK
+

✓n(`)  A>↵(`) +
X

k2K
`k 6=0

X

⌫2�(`k)

x⌫⌫k(`) 8n 2 N

is unbounded. Since the feasible region of the dual problem constitutes a cone, the dual problem is
unbounded if and only if there is a feasible solution with an objective value of 1 or more. ⌅

E Supplemental Material: Bender’s Decomposition

We do not detail all the steps of the Bender’s decomposition algorithm. We merely provide the
initial relaxed master problem and the subproblems used to generate the cuts. We refer the reader to
e.g., [16] for more details.

Relaxed Master Problem. Initially, the relaxed master problem only involves the binary variables
of the Problem (5) and is expressible as

max
�
⌧ : ⌧ 2 R, x 2 X , y1

, . . . ,yK 2 Y
 
.

Subproblems. As discussed in Section 4, Problem (5) decomposes by `. Depending on the index `
of the subproblem, there are two types of subproblems to consider. If ` 2 L0, the subproblem is
given by

min 0

s.t. ✓(`), �k
(`) 2 RN

+ , ↵(`) 2 RR
+, ⌫(`) 2 RK

+ , �(`) 2 �K(`)

⌧  �e>✓(`) + b>↵(`)�
X

k2K:
`k 6=0

�
yk
`k � 1

�
⌫k(`) + . . .

. . .+

X

k2K:
`k=0

X

n2N
yk
n�

k
n(`) +

X

k2K
�k(`)

X

n2N
yk
n

✓n(`)  A>↵(`) +
X

k2K
`k 6=0

X

⌫2�(lk)

x⌫⌫k(`)�
X

k2K
`k=0

X

⌫2�(n)

x⌫�
k
n(`) 8n 2 N .

(Z0(`))
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In a similar fashion, we define the subproblem associated with ` 2 L+, given by

min 0

s.t. ✓(`) 2 RN
+ , ↵(l) 2 RR

+, ⌫(l) 2 RK
+

1  �e>✓(l) + b>↵(`)�
X

k2K
`k 6=0

�
yk
`k � 1

�
⌫k(`)

✓n(`)  A>↵(`) +
X

k2K
`k 6=0

X

⌫2�(`k)

x⌫⌫k(`) 8n 2 N .

(Z+(`))
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