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This material has 5 parts in total. Part A gives the detailed proof that maxπ −L(θ, π) given θ is
equivlent to the maximum weighted matching problem of bipartite graph. Part B illustrates the
user preference prediction model and the feature constitution used in experiments in detail. Part C
contains the detailed settings of experimental study. Part D gives additional experimental results
to show the effectiveness of the proposed JTM framework. Part E summarizes related works about
tree-based methods for recommendation and extreme classification.

A Proofs

Remark 1. maxπ −L(θ, π) is essentially an assignment problem to find a maximum weighted
matching in a weighted bipartite graph.

Proof. Given the k-th item ck in the corpus C and them-th leaf node nm in the tree hierarchy, denote

Lck,nm =
∑

(u,c)∈Ak

lmax∑
j=0

log p̂ (bj(nm)|u; θ, π) , (1)

where Ak = {(u(i), c(i))|c(i) = ck}ni=1 is the training sample set the target item of which is ck.

If we take leaf nodes in T and items in corpus C as vertices and the full connection between leaf
nodes and items as edges, we can construct a weighted bipartite graph V with Lck,nm as the weight
of edge between ck and nm. Furthermore, we can see that each assignment π(·) between items and
leaf nodes is equivalent to a matching of V . Given an assignment π(·), the total loss can be derived
as

L (θ, π) = −
|C|∑
k=1

Lck,π(ck),

where |C| is the corpus size. Therefore, maxπ −L(θ, π) equals to find the maximum weighted
matching of V .
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B Detailed Implementation and Code

The proposed JTM is a joint learning framework composed of two main parts: user preference
prediction model and tree learning. In this section, we will give details about both parts.

User Preference Prediction Model Fig 1 shows the user preference prediction model used in
offline and online experiments. It takes at most M user-item interactions as input user behavior
feature and split them into N time windows in time order. In the experiments, M is set to 69 and
N is 10. Each of the 10 time windows contains [1, 1, 1, 2, 2, 2, 10, 10, 20, 20] behaviors respectively
(sums up to 69) from near to far, along the time line. Firstly, we map each item to its corresponding
level of target node with tree hierarchy, according to the proposed hierarchical user preference rep-
resentation. For example, suppose that the initial user behavior sequence is u = {c1, c2, · · · , cm},
then we use {bl(π(c1)), bl(π(c2)), · · · , bl(π(cm))} as the user behavior sequence input in level l.
Then, an embedding layer is applied to get continuous vector representation of the one-hot ID. For
embeddings in each time window, we use element-wise average to get one embedding vector, and
concatenate them with the target node’s embedding as input to the following neural network. The
neural network consists of three fully-connected layers, with 128, 64 and 24 hidden units respec-
tively and PReLU [18] as activation function. Finally a binary softmax is used to calculate the
probability of user’s interest on target node. The corresponding network definition code can be
found in code/user_preference_prediction_model.py (function dnn_model_define). It’s
worth mentioning that besides the given basic fully connected network, more advanced models like
the attention model introduced in TDM[22] are also flexible to be used.
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Figure 1: User preference prediction model used in JTM. It can be replaced by arbitrary advanced
user preference prediction model and fit into the joint learning framework.

Tree Learning Algorithm In line 5 of the proposed tree learning algorithm (Algorithm 2 in the
paper), we use a greedy algorithm with rebalance strategy to solve the sub-problem. Each item
c ∈ Cni

is firstly assigned to the child of ni in level l with largest weight Ll−d+1,l
c (·). Then, to

guarantee that each child is assigned with no more than 2lmax−l items, a rebalance process is applied.
To promote the stability of tree learning and facilitate the convergence of the whole framework, for
nodes that have more than 2lmax−l items, we keep those items that have the same assignment in level
l with the former iteration (i.e., bl(π′(c)) == bl(πold(c))) in priority. The other items assigned to
the node are sorted in descending order of their weights, and the exceeded part of items are moved to
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other nodes that still have redundant space, according to the descending order of each item’s weight
Ll−d+1,l
c (·). The detailed implementation code are given in code/tree_learning.py. Note that

the calculation of Ls,ec (π) relies on the aforementioned user preference prediction model and the
calculation is omitted in the code.

C Experiments

We list some detailed settings of offline experiments in this section, including dataset pre-processing,
hyperparameters selection, baseline implementation, hardware and the training schedule.

Data Pre-processing and Sample Generation We conduct offline experiments on two large-scale
real-world datasets, Amazon Books and UserBehavior. As introduced in the paper, we only keep
users who have no less than 10 records. Following TDM[22], we use item’s category information to
build initial tree in both datasets. Table 1 summarizes the details of two datasets after pre-processing.
From the statistics, we can see that Amazon Books is even sparser than UserBehavior. Amazon
Books’ corpus size is 35.5% of UserBehavior’s, but the number of interactions is less than 9% of
UserBehavior’s, which brings more challenges to the recommendation problem.

Table 1: Details of the two datasets after preprocessing. Each item is assigned with a unique cate-
gory. And one record is a user-item pair that represents user’s implicit feedback.

Amazon Books UserBehavior
# of users 294,739 969,529
# of items 1,477,922 4,162,024

# of categories 2,637 9,439
# of records 8,654,619 100,020,395

We follow the settings of TDM [22] to split the dataset and generate samples.

Considering the user amount, we randomly sample 5, 000 disjoint users to create Amazon Books’
validation set and testing set, while 10, 000 disjoint users are selected as UserBehavior’s validation
and testing set each. Other users in two datasets compose training set accordingly.

The sample generation process for training and validation/testing are different. One sample here
means a (u, c) pair mentioned in the paper. For each user in training set, we sliding along the user’s
behavior sequence to generate samples. In detail, we firstly sort the user-item interactions belonging
to the user in ascending order of timestamp Then, a sliding window with size 70 is used to generate
samples. Only windows that have at least 6 interactions are kept for training. In each window, the
last (with largest timestamp) is the target item, and the others are user behavior features. While for
each user in validation and testing set, we take the first half of the user’s interactions along the time
line as behavior features, and the latter half as ground truth.

Code in code/data_cutter.py shows the process of splitting dataset, and the code of sample gen-
eration and initial category tree building is provided in code/data_and_tree_initialize.py.

Implementation JTM is compared with several baselines, such as Item-CF [14], YouTube
product-DNN [4], HSM [10], TDM [22] and DNN. We will give a detailed description of all meth-
ods’ implementation.

Item-CF is a basic collaborative filtering network. We firstly calculate similarities between items
using user behavior sequences. Denote wij as the similarity between item ci and item cj . Then we
have puj =

∑
i∈N(u)∩j∈S(i,K) wji to represent user u’s preference over item cj . N(u) is the set of

items that have interaction with user u, and S(i,K) is a collection of items that most similar to item
ci. K is set to 50 in the experiment.

Unlike Item-CF, other compared methods and JTM all use deep neural network as user preference
prediction model. Considering that the training set is quite large, we build Alibaba’s open-sourced
deep learning platform X-DeepLearning (XDL)2 in our own GPU cluster to support distributed

2http://github.com/alibaba/x-deeplearning

3



model training. YouTube product-DNN uses the inner-product of learnt user and candidate item’s
vector representations to reflect user preference, while other methods calculate user-item preference
with aforementioned neural network in Part B. We implement negative sampling strategy and hier-
archical user preference representation in XDL3. The code of the user preference prediction model
is available in code/user_preference_prediction_model.py.

The source code of YouTube product-DNN is provided by TDM4 and we use it directly.

HSM follows a layer-wise binary classification formulation. Thus its negative samples are the
brother nodes of each positive nodes. When prediction, a layer-wise beam-search similar to TDM
and JTM is deployed, the only difference is that the score used to choose each level’s top-k nodes is
the multiplication of each level’s conditional probability. We implement it by changing the negative
sampling policy and score calculation in prediction in XDL.

TDM has an open-source code implementation of the attention-DNN version in XDL5. We change
the network define of it to the fully-connected network.

DNN is a variant of TDM without tree index. Like YouTube product-DNN, we directly sample
negatives from the item corpus. And in prediction, we linearly scan the whole corpus to find top-k
results for each user.

JTM is the proposed joint learning framework of the user preference prediction model and tree
index as shown in Algorithm 1 in the paper. And more details and code of these two parts have been
introduced in Section B.

Training Settings YouTube product-DNN, TDM, DNN and JTM use negative sampling to train
the user preference model. We follow the setting of TDM[22] and use the same negative sampling
ratio for all methods. One training sample has 100 negative samples in Amazon Books and 200 in
UserBehavior.

In the proposed tree learning algorithm (Algorithm 2 in the paper), the layer gap d is a hyperpa-
rameter. The choice of d should balance between the approximation and running cost. Suppose
that we choose d = lmax, tree learning algorithm directly solves the maximum matching problem.
However, it requires too much calculation to predict preference probability, which is far beyond the
capability of GPUs. On the contrary, if we use a too small d, for example, d = 1, the proposed
algorithm would be a bad approximation for the maximum matching problem. In the experiments,
we choose a moderate layer gap d = 7 for tree learning algorithm and obtain the results shown in the
paper. Besides, we have tried other numbers of d around 7, which do not show apparent difference
on the convergence and final recommendation accuracy.

All experiments are performed with 20 NVIDIA P100 GPUs. We use Adam [7] to optimize the
model and the batch size is set to 30, 000 for each GPU. For Amazon Books, it takes about 35
minutes (about 10 epochs) for a user preference prediction model to converge. UserBehavior has
roughly 10 times records of that in Amazon Books and larger negative sampling ratio. Thus it needs
about 6 hours (about 4 epochs) to converge. The initial learning rate is set to 0.001 and it decrease
every epoch with a decay rate of 0.9. Tree learning is conducted once the user preference prediction
model training converges. The whole tree learning process takes about 20 and 75 minutes for two
datasets respectively.

Complexity Analysis As the user preference model training of different methods is the standard
neural network optimization, we focus on the retrieval and tree learning time complexity analysis.

For tree-based methods like HSM, TDM and JTM, layer-wise beam search is used in retrieval. As
mentioned in the paper, at most 2k · logC nodes need to be scored with the preference model in a
single retrieval process, where C is the size of item set and k is the size of recalled set. Thus the
time complexity isO(2k · logC). YouTube product-DNN and DNN requires to scan all items to find

3Note that hierarchical user preference representation is only used in JTM.
4http://github.com/alibaba/x-deeplearning/tree/master/xdl-algorithm-solution/

TDM/script/tdm_ub_vector_ubuntu
5http://github.com/alibaba/x-deeplearning/tree/master/xdl-algorithm-solution/

TDM/script/tdm_ub_att_ubuntu
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top-k results, thus the time complexity is O(C). The retrieval time complexities are summarizes in
Table 2.

Table 2: Retrieval time complexity comparison.

Method Time

YouTube product-DNN O(C)
HSM O(2k · logC)
TDM O(2k · logC)
DNN O(C)
JTM O(2k · logC)

For the tree learning phase in JTM, Part A proves that the problem equals to a weighted maximum
matching problem of bipartite graph, which could be solved by algorithms like Hungarian algo-
rithm. If all the edge weights are known, i.e., Lc,n are known for each item c in the corpus C and
each leaf node n in the tree, Hungarian algorithm can solve the problem with O(C3) complexity,
C is corpus size |C| (here we suppose the leaf node number in the tree to be close to the corpus
size C, which could be achieved by carefully control the tree height). However, according to the
definition of Lc,n, the complexity of calculating all the weights is O(2CN), N is the sample size.
Both of the above complexity is not practical for large-scale corpus and large dataset. Thus, we
proposed the greedy algorithm to learn the tree. For the proposed greedy algorithm (Algorithm 2
in the paper), if we also suppose that all the used weights are known, the greedy algorithm given
in code/tree_learning.py can solve the matching problem in O(C · logC) time complexity.
The complexity of calculating all the weights is related to the choice of hyperparameter d, as we
assign items to non-leaf nodes step-by-step top-down. Given d and the tree height lmax, the weight
calculating complexity is no more than O(dlmax/de ·2d+1 ·N). Considering that the sample size N
is usually larger than the corpus size C in application, the overall complexity of the proposed tree
learning is bounded by O(dlmax/de · 2d+1 ·N).

D Additional Results

To explore why the proposed hierarchical user preference representation works, we perform addi-
tional experiments on three variants of user preference representation in tree-based model in two
datasets.

Hierarchical User Preference Representation Tree-based model samples target nodes from all
levels of the tree and uses the concatenation embedding of user behaviors and target node as input.
The difference of three variants lies in user behavior features. They all utilize a fixed initial tree
described in Section 3.1 of the paper without tree learning. A detailed description of three variants
are as follows:

• TDM is the basic tree-based model. When dealing with samples from different levels, user be-
havior feature is totally the same.

• JTM-HI is an advanced version of TDM which uses level-independent feature space. More
specifically, the user behavior features are directly mapped to different embedding spaces when
training different levels’ models. Compared to TDM, the parameter size increases multiple times
according to the height of the tree.

• JTM-H is TDM with the proposed hierarchical user preference representation. User behaviors
in the leaf level are mapped to the nodes in corresponding levels naturally.

From Table 3, we have several observations. JTM-HI outperforms TDM in both datasets, which
proves that the level-independent feature space indeed reduces the noise brought by sharing embed-
ding space of user behavior feature in all levels of the tree. JTM-H gets higher performance than
JTM-HI with less parameters, which demonstrates that hierarchical user preference representation
works well. On the one hand, tree hierarchy provides a natural hierarchical representation. Node
embeddings in the same level of tree are homogeneous, thus it’s easier to capture latent feature cross
in the same level than between leaf and non-leaf levels. On the other hand, with hierarchical user
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preference representation, the parameter space of user behavior feature shrinks a lot in upper levels,
which partially solves the data sparsity problem.

Table 3: Evaluations of hierarchical representation for user preference model in tree-based models
in Amazon Books and UserBehavior (M = 200).

Method Amazon Books UserBehavior

Precision Recall F-Measure Precision Recall F-Measure

TDM 0.50% 7.49% 0.88% 2.23% 10.84% 3.40%
JTM-HI 0.53% 7.69% 0.92% 2.40% 11.44% 3.62%
JTM-H 0.68% 10.45% 1.19% 2.66% 12.93% 4.02%

In UserBehavior, the recall metric raises from 10.84% to 11.44% with level-independent feature, as
a result of feature confusion alleviation between levels. Another recall improvement from 11.44%
to 12.93% comes from homogeneity and appropriate granularity features inside each level. The
relative improvements are more significant in Amazon Books, as the data sparsity problem is more
serious, which can be well solved by the proposed hierarchical user preference representation.

E Related Work

In real-world applications, the recommendation process usually has two stages: candidate generation
and ranking [5, 22, 21]. Model-based large-scale recommendation methods are usually confronted
with computational restrictions in the candidate generation stage. To overcome the calculation bar-
rier, there are mainly three kinds of approaches: 1) Pre-calculate item or user similarities and use
inverted index to accelerate the retrieval [9]; 2) Convert user preference to distance of embedding
vectors, and use approximate kNN search in retrieval [4]; 3) Use tree or ensemble of trees to perform
efficient retrieval [22].

Industrial recommender systems typically adopt vector kNN search to achieve fast retrieval, e.g.,
YouTube video recommendation [4, 2], Yahoo news recommendation [11] and extensions that use
recurrent neural network to model user behavior sequence [6, 15, 17]. Such approaches use either
traditional deep neural network (DNN) or recurrent neural network (RNN) to learn user and item’s
embedding representations based on various user behavioral and contextual data. However, due to
the dependence of approximate kNN search index structures in retrieval, user preference models that
use attention network or cross features [20, 19, 3] are challenging to be applied.

Tree-based methods are also studied and adopted in real-world applications. Label Partitioning for
Sublinear Ranking (LPSR) [16] uses k-means clustering with data points’ features to learn the tree
hierarchy and then assign labels to leaf nodes. In the prediction stage, the test sample is passed
down along the tree to a leaf node according to its distance to each node’s cluster center, and the
1-vs-All base classifier is used to rank all labels belonged to the retrieved leaf node. Partitioned
Label Trees (Parabel) [13] also use recursive clustering to build tree hierarchy, but the tree is built
to partition the labels according to label similarities. Multi-label Random Forest (MLRF) [1] and
FastXML [12] learn an ensemble of sample partitioning trees (a forest), and a ranked list of the
most frequent labels in all the leaf nodes retrieved from the forest is returned in prediction. MLRF
optimizes the Gini index when splitting nodes, and FastXML optimizes a combined loss function
including a binary classification loss and a label ranking loss. In all the above methods, the tree
structure keeps unchanged in training and prediction once built, which is hard to completely adapt
the retrieval model dynamically.

The previous work TDM [22] introduces a tree-based model for large-scale recommendation differ-
entiated from existing tree-based methods with a max-heap like user-node preference formulation.
In TDM, tree is used as a hierarchical index [8], and an attention model [20] is trained to predict
user-node preference. Different from most tree-based methods where non-leaf nodes are used to
route decision-making to leaves, TDM explicitly formulates user-node preference for all the nodes
to facilitate hierarchical beam search in the tree index. Despite achieving remarkable progress, the
joint optimization problem of index and model is not well solved yet as that the proposed alterna-
tively learning method of model and tree has different objectives.
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