
A Code

Code for this paper is publicly available at the following repository:
https://github.com/jfc43/robust-attribution-regularization

B Proofs

B.1 Additional definitions

Let P,Q be two distributions, a coupling M = (Z,Z �) is a joint distribution, where, if we marginal-
ize M to the first component, Z, it is identically distributed as P , and if we marginalize M to the
second component, Z �, it is identically distributed as Q. Let

�
(P,Q) be the set of all couplings of

P and Q, and let c(·, ·) be a “cost” function that maps (z, z�) to a real value. Wasserstein distance
between P and Q w.r.t. c is defined as

Wc(P,Q) = inf
M∈�

(P,Q)

�
E

(z,z�)∼M
[c(z, z�)]

�
.

Intuitively, this is to find the “best transportation plan” (a coupling M) to minimize the expected
transportation cost (transporting z to z� where the cost is c(z, z�)).

B.2 Integrated Gradients for an Intermediate Layer

In this section we show how to compute Integrated Gradients for an intermediate layer of a neural
network. Let h : Rd �→ Rk be a function that computes a hidden layer of a neural network, where
we map a d-dimensional input vector to a k-dimensional output vector. Given two points xxx and xxx�

for computing attribution, again we consider a parameterization (which is a mapping r : R �→ Rd)
such that r(0) = xxx, and r(1) = xxx�.

The key insight is to leverage the fact that Integrated Gradients is a curve integration. Therefore,
given some hidden layer, one can then naturally view the previous layers as inducing a curve h ◦ r
which moves from h(xxx) to h(xxx�), as we move from xxx to xxx� along curve r. Viewed this way, we
can thus naturally compute IG for hhh in a way that leverages all layers of the network. Specifically,
consider another curve γ(t) : R �→ Rk, defined as γ(t) = h(r(t)), to compute a curve integral. By
definition we have f(xxx) = g(h(xxx))

f(xxx�)− f(xxx) = g(h(xxx�))− g(h(xxx))

= g(γ(1))− g(γ(0))

=

� 1

0

k�

i=1

∂f(γ(t))

∂hi
γ�
i(t)dt

=

k�

i=1

� 1

0

∂f(γ(t))

∂hi
γ�
i(t)dt

Therefore we can define the attribution of hi naturally as

IGf
hi
(xxx,xxx�) =

� 1

0

∂f(γ(t))

∂hi
γ�
i(t)dt

Let’s unpack this a little more:
� 1

0

∂f(γ(t))

∂hi
γ�
i(t)dt =

� 1

0

∂f(h(r(t)))

∂hi

d�

j=1

∂hi(r(t))

∂ xxxj
r�j(t)dt

=

� 1

0

∂f(h(r(t)))

∂hi

d�

j=1

∂hi(r(t))

∂ xxxj
r�j(t)dt

=

d�

j=1

�� 1

0

∂f(h(r(t)))

∂hi

∂hi(r(t))

∂ xxxj
r�j(t)dt

�

This thus gives the lemma

12

Lemma 2. Under curve r : R �→ Rd where r(0) = xxx and r(1) = xxx�, the attribution for hi for a
differentiable function f is

IGf
hi
(xxx,xxx�, r) =

d�

j=1

�� 1

0

∂f(h(r(t)))

∂hi

∂hi(r(t))

∂ xxxj
r�j(t)dt

�
(8)

Note that (6) nicely recovers attributions for input layer, in which case h is the identity function.

Summation approximation. Similarly, we can approximate the above Riemann integral using a
summation. Suppose we slice [0, 1] into m equal segments, then (2) can be approximated as:

IGf
hi
(xxx,xxx�) =

1

m

d�

j=1

�
m−1�

k=0

∂f(h(r(k/m)))

∂hi

∂hi(r(k/m))

∂ xxxj
r�j(k/m)

�
(9)

B.3 Proof of Proposition 1

If we put λ = 1 and let s(·) be the sum function (sum all components of a vector), then for any
curve r and any intermediate layer hhh, (4) becomes:

ρ(xxx, y; θ) = �(xxx, y; θ) + max
xxx�∈N(xxx,ε)

{sum(IG�y (xxx,xxx�; r))}

= �(xxx, y; θ) + max
xxx�∈N(xxx,ε)

{�(xxx�, y; θ)− �(xxx, y; θ)}

= max
xxx�∈N(xxx,ε)

�(xxx�, y; θ)

where the second equality is due to the Axiom of Completeness of IG.

B.4 Proof of Proposition 2

Input gradient regularization is an old idea proposed by Drucker and LeCun [DL92], and is recently
used by Ross and Doshi-Velez [RD18] in adversarial training setting. Basically, for q ≥ 1, they
propose ρ(xxx, y; θ) = �(xxx, y; θ)+λ�∇xxx�(xxx, y; θ)�qq, where they want small gradient at xxx. To recover
this objective from robust attribution regularization, let us pick s(·) as the � · �q1 function (1-norm
to the q-th power), and consider the simplest curve r(t) = xxx+t(xxx� −xxx). With the naı̈ve summation

approximation of the integral IG�y
i we have IG

�y
i (xxx,xxx�; r) ≈ (xxx�

i −xxxi)
m

�m
k=1

∂�(xxx+ k−1
m (xxx� −xxx),y;θ)

∂ xxxi
,

where larger m is, more accurate we approximate the integral. Now, if we put m = 1, which is the
coarsest approximation, this becomes (xxx�

i −xxxi)
∂�(xxx,y;θ)

∂ xxxi
, and we have IG�y (xxx,xxx�; θ) = (xxx� −xxx) �

∇xxx�(xxx, y; θ). Therefore (4) becomes:

ρ(xxx, y; θ) =�(xxx, y; θ) + λ max
xxx�∈N(xxx,ε)

{� IG�y (xxx,xxx�; θ)�q1}

≈�(xxx, y; θ) + λ max
xxx�∈N(xxx,ε)

{�(xxx� −xxx)�∇xxx�(xxx, y; θ)�q1}

Put the neighborhood as �xxx� −xxx �p ≤ ε where p ∈ [1,∞] and 1
p + 1

q = 1. By Hölder’s inequality,
�(xxx� −xxx) � ∇xxx�(xxx, y; θ)�q1 ≤ �xxx� −xxx �qp�∇�(xxx, y; θ)�qq ≤ εq�∇�(xxx, y; θ)�qq which means that
max�xxx� −xxx �p≤ε{�(xxx� −xxx)�∇xxx�(xxx, y; θ)�q1} = εq�∇�(xxx, y; θ)�qq. Thus by putting λ = λ�/εq , we
recover gradient regularization with regularization parameter λ�.

B.5 Proof of Proposition 3

Let us put s(·) = � · �1, and hhh = �y (the output layer of loss function!), then we have

ρ(xxx, y; θ) =�y(xxx) + max
xxx�∈N(xxx,ε)

{� IG�y
�y
(xxx,xxx�; r)�1}

=�y(xxx) + max
xxx�∈N(xxx,ε)

{|�y(xxx�)− �y(xxx)|}

where the second equality is because IG
�y
�y
(xxx,xxx�; r) = �y(xxx

�)− �y(xxx).

13

B.6 Proof of Proposition 4

Specifically, again, let s(·) be the summation function and λ = 1, then we have EZ,Z� [dIG(Z,Z
�)] =

EZ,Z� [sum(IG�
hhh(Z,Z

�))] = EZ,Z� [�(Z �; θ)− �(Z; θ)]. Because P and Z are identically distributed,
thus the objective reduces to

sup
Q;M∈�

(P,Q)

�
E

Z,Z�
[�(Z; θ) + �(Z �; θ)− �(Z; θ)]

s.t. E
Z,Z�

[c(Z,Z �)] ≤ ρ
�

= sup
Q;M∈�

(P,Q)

�
E
Z�
[�(Z �; θ)] s.t. E

Z,Z�
[c(Z,Z �)] ≤ ρ

�

= sup
Q:Wc(P,Q)≤ρ

�
E
Q
[�(Q; θ)]

�
,

which is exactly Wasserstein prediction robustness objective.

B.7 Proof of Theorem 1

The proof largely follows that for Theorem 5 in [SND18], and we provide it here for completeness.
Since we have a joint supremum over Q and M ∈ �

(P,Q) we have that

sup
Q;M∈�

(P,Q)

�
E

M=(Z,Z�)

�
dγIG(Z,Z

�)
��

= sup
Q;M∈�

(P,Q)

�
[dIG(z, z

�)− γc(z, z�)]dM(z, z�)

≤
�

sup
z�

{dIG(z, z�)− γc(z, z�)}dP (z)

= E
z∼P

�
sup
z�

{dγIG(z, z�)}
�
.

We would like to show equality in the above.

Let Q denote the space of regular conditional probabilities from Z to Z �. Then

sup
Q;M∈�

(P,Q)

�
[dIG(z, z

�)− γc(z, z�)]dM(z, z�) ≥ sup
Q∈Q

�
[dIG(z, z

�)− γc(z, z�)]dQ(z�|z)dP (z).

Let Z � denote all measurable mappings z → z�(z) from Z to Z �. Using the measurability result in
Theorem 14.60 in [RW09], we have

sup
z�∈Z�

�
[dIG(z, z

�(z))− γc(z, z�(z))]dP (z) =

�
sup
z�

[dIG(z, z
�)− γc(z, z�)]dP (z)

since γc− dIG is a normal integrand.

Let z�(z) be any measurable function that is �-close to attaining the supremum above, and define the
conditional distribution Q(z�|z) to be supported on z�(z). Then

sup
Q;M∈�

(P,Q)

�
[dIG(z, z

�)− γc(z, z�)]dM(z, z�) ≥
�
[dIG(z, z

�)− γc(z, z�)]dQ(z�|z)dP (z)

=

�
[dIG(z, z

�(z))− γc(z, z�(z))]dP (z)

≥
�

sup
z�

[dIG(z, z
�)− γc(z, z�)]dP (z)− �

≥ sup
Q;M∈�

(P,Q)

�
[dIG(z, z

�)− γc(z, z�)]dM(z, z�)− �.

Since � ≥ 0 is arbitrary, this completes the proof.

14

B.8 Proof of Theorem 2: Connections Between the Distributional Robustness Objectives

Let θ∗ denote an optimal solution of (5) and let θ� be any non-optimal solution. Let γ(θ∗) denote
the corresponding γ by Lemma 3, and γ(θ�) denote that for θ�.

Since γ(θ�) achieves the infimum, we have

E
z∼P

�
�(z; θ�) + λ sup

z�
{dIG(z, z�)− γ(θ∗)c(z, z�)}

�
(10)

≥ E
z∼P

�
�(z; θ�) + λ sup

z�
{dIG(z, z�)− γ(θ�)c(z, z�)}

�
(11)

> E
z∼P

�
�(z; θ∗) + λ sup

z�
{dIG(z, z�)− γ(θ∗)c(z, z�)}

�
. (12)

So θ� is not optimal for (7). This then completes the proof.
Lemma 3. Suppose c(z, z) = 0 and dIG(z, z) = 0 for any z, and suppose γc(z, z�)− dIG(z, z

�) is
a normal integrand. For any ρ > 0, there exists γ ≥ 0 such that

sup
Q;M∈�

(P,Q)

�
E

(Z,Z�)∼M
[dIG(Z,Z

�)] s.t. E
(Z,Z�)∼M

[c(Z,Z �)] ≤ ρ

�
(13)

= inf
ζ≥0

E
z∼P

�
sup
z�

{dIG(z, z�)− ζc(z, z�) + ζρ}
�
. (14)

Furthermore, there exists γ ≥ 0 achieving the infimum.

This lemma generalizes Theorem 5 in [SND18] to a larger, but natural, class of objectives.

Proof. For Q and M ∈ Π(P,Q), let

ΛIG(Q,M) := E
(Z,Z�)∼M

[dIG(Z,Z
�)] (15)

Λc(Q,M) := E
(Z,Z�)∼M

[c(Z,Z �)] (16)

First, the pair (Q,M) forms a convex set, and ΛIG(Q,M) and Λc(Q,M) are linear functionals over
the convex set. Set Q = P and set M to the identity coupling (such that (Z,Z �) ∼ M always has
Z = Z �). Then Λc(Q,M) = 0 < ρ and thus the Slater’s condition holds. Applying standard infinite
dimensional duality results (Theorem 8.6.1 in [Lue97]) leads to

sup
Q;M∈�

(P,Q);Λc(Q,M)≤ρ

ΛIG(Q,M) (17)

= sup
Q;M∈�

(P,Q)

inf
ζ≥0

{ΛIG(Q,M)− ζΛc(Q,M) + ζρ} (18)

= inf
ζ≥0

sup
Q;M∈�

(P,Q)

{ΛIG(Q,M)− ζΛc(Q,M) + ζρ} . (19)

Furthermore, there exists γ ≥ 0 achieving the infimum in the last line.

Now, it suffices to show that

sup
Q;M∈�

(P,Q)

{ΛIG(Q,M)− γΛc(Q,M) + γρ} (20)

= E
z∼P

�
sup
z�

{dIG(z, z�)− γc(z, z�) + γρ}
�
. (21)

This is exactly what Theorem 1 shows.

B.9 Proof of Theorem 3

Let us fix any one point xxx, and consider g(−yi�www,xxx�) + λmaxxxx�∈N(xxx,ε) � IG�y
xxx (xxx,xxx�;www)�1. Due to

the special form of g, we know that:

IG
�y
i (xxx,xxx�;www) =

wwwi(xxx
� −xxx)i

�www,xxx� −xxx� ·
�
g(−y�www,xxx��)− g(−y�www,xxx�)

�

15

Let Δ = xxx� −xxx (which satisfies that �Δ�∞ ≤ ε), therefore its absolute value (note that we are
taking 1-norm):

��g(−y�www,xxx� − y�www,Δ�)− g(−y�www,xxx�)
��)

|�www,Δ�| · |wwwi Δi|

Let z = −y�www,xxx� and δ = −y�www,Δ�, this is further simplified as |g(z+δ)−g(z)|
|δ| |δi|. Because g is

non-decreasing, so g� ≥ 0, and so this is indeed g(z+δ)−g(z)
δ , which is the slope of the secant from

(z, g(z)) to (z + δ, g(z + δ)). Because g is convex so the secant slopes are non-decreasing, so we
can simply pick Δi = −y sgn(wwwi)ε, and so δ = �www �1ε, and so that � IG �1 becomes

|g(z + ε�www �1)− g(z)| ·
�

i |wwwi Δi|
|δ| = |g(z + ε�www �1)− g(z)| ·

�
i |wwwi |ε

�www �1ε
= |g(z + ε�www �1)− g(z)|
= g(z + ε�www �1)− g(z)

where the last equality follows because g is nondecreasing. Therefore the objective simplifies to�m
i=1 g(−yi�www,xxxi�+ε�www �1), which is exactly Madry et al.’s objective under �∞ perturbations.

Let us consider two examples:

Logistic Regression. Let g(z) = ln(1 + exp(z)). Then g(−y�www,xxx�) recovers the Negative Log-
Likelihood loss for logistic regression. Clearly g is nondecreasing and g� is also nondecreasing. As a
result, adversarial training for logistic regression is exactly “robustifying” attributions/explanations.

Softplus hinge loss. Alternatively, we can let g(z) = ln(1 + exp(1 + z)), and therefore
g(−y�www,xxx�) = ln(1 + exp(1− y�www,xxx�)) is the softplus version of the hinge loss function. Clearly
this g also satisfy our requirements, and therefore adversarial training for softplus hinge loss function
is also exactly about “robustifying” attributions/explanations.

C More Details of Experiments

C.1 Experiment Settings

We perform experiments on four datasets: MNIST, Fashion-MNIST, GTSRB and Flower. Robust
attribution regularization training requires extensive computing power. We conducted experiments
in parallel over multiple NVIDIA Tesla V100 and NVDIA GeForce RTX 2080Ti GPUs both on
premises and on cloud. Detailed experiment settings for each dataset are described below.

C.1.1 MNIST

Data. The MNIST dataset [LCB98] is a large dataset of handwritten digits. Each digit has 5,500
training images and 1,000 test images. Each image is a 28× 28 grayscale. We normalize the range
of pixel values to [0, 1].

Model. We use a network consisting of two convolutional layers with 32 and 64 filters respectively,
each followed by 2× 2 max-pooling, and a fully connected layer of size 1024. Note that we use the
same MNIST model as [MMS+17b].

Training hyper-parameters. The hyper-parameters to train different models are listed below:

NATURAL. We set learning rate as 10−4, batch size as 50, training steps as 25,000, and use Adam
Optimizer.

Madry et al.. We set learning rate as 10−4, batch size as 50, training steps as 100,000, and use Adam
Optimizer. We use PGD attack as adversary with random start, number of steps of 40, step size of
0.01, and adversarial budget � of 0.3.

IG-NORM. We set λ = 1, m = 50 for gradient step, learning rate as 10−4, batch size as 50, training
steps as 100,000, and use Adam Optimizer. We use PGD attack as adversary with random start,
number of steps of 40, step size of 0.01, m = 10 for attack step, and adversarial budget � = 0.3.

IG-SUM-NORM. We set β as 0.1, m in the gradient step as 50, learning rate as 10−4, batch size
as 50, training steps as 100,000, and use Adam Optimizer. We use PGD attack as adversary with

16

random start, number of steps of 40, step size of 0.01, m = 10 in the attack step, and adversarial
budget � = 0.3.

Evaluation Attacks. For attacking inputs to change model predictions, we use PGD attack with
random start, number of steps of 100, adversarial budget � of 0.3 and step size of 0.01. For attacking
inputs to change interpretations, we use Iterative Feature Importance Attacks (IFIA) proposed by
[GAZ17]. We use their top-k attack with k = 200, adversarial budget � = 0.3, step size α =
0.01 and number of iterations P = 100. We set the feature importance function as Integrated
Gradients(IG) and dissimilarity function D as Kendall’s rank order correlation. We find that IFIA
is not stable if we use GPU parallel computing (non-deterministic is a behavior of GPU), so we run
IFIA three times on each test example and use the best result with the lowest Kendall’s rank order
correlation.

C.1.2 Fashion-MNIST

Data. The Fashion-MNIST dataset [XRV17] contains images depicting wearables such as shirts
and boots instead of digits, which is more complex than MNIST dataset. The image format, the
number of classes, as well as the number of examples are all identical to MNIST.

Model. We use a network consisting of two convolutional layers with 32 and 64 filters respectively,
each followed by 2× 2 max-pooling, and a fully connected layer of size 1024.

Training hyper-parameters. The hyper-parameters to train different models are listed below:

NATURAL. We set learning rate as 10−4, batch size as 50, training steps as 25,000, and use Adam
Optimizer.

Madry et al.. We set learning rate as 10−4, batch size as 50, training steps as 100,000, and use Adam
Optimizer. We use PGD attack as adversary with random start, number of steps of 20, step size of
0.01, and adversarial budget � of 0.1.

IG-NORM. We set λ = 1, m = 50 for gradient step, learning rate as 10−4, batch size as 50, training
steps as 100,000, and use Adam Optimizer. We use PGD attack as adversary with random start,
number of steps of 20, step size of 0.01, m = 10 for attack step, and adversarial budget � = 0.1.

IG-SUM-NORM. We set β as 0.1, m in the gradient step as 50, learning rate as 10−4, batch size
as 50, training steps as 100,000, and use Adam Optimizer. We use PGD attack as adversary with
random start, number of steps of 20, step size of 0.01, m = 10 in the attack step, and adversarial
budget � = 0.1.

Evaluation Attacks. For attacking inputs to change model predictions, we use PGD attack with
random start, number of steps of 100, adversarial budget � of 0.1 and step size of 0.01. For attacking
inputs to change interpretations, we use Iterative Feature Importance Attacks (IFIA) proposed by
[GAZ17]. We use their top-k attack with k = 100, adversarial budget � = 0.1, step size α =
0.01 and number of iterations P = 100. We set the feature importance function as Integrated
Gradients(IG) and dissimilarity function D as Kendall’s rank order correlation. We find that IFIA
is not stable if we use GPU parallel computing (non-deterministic is a behavior of GPU), so we run
IFIA three times on each test example and use the best result with the lowest Kendall’s rank order
correlation.

C.1.3 GTSRB

Data. The German Traffic Sign Recognition Benchmark (GTSRB) [SSSI12] is a dataset of color
images depicting 43 different traffic signs. The images are not of a fixed dimensions and have rich
background and varying light conditions as would be expected of photographed images of traffic
signs. There are about 34,799 training images, 4,410 validation images and 12,630 test images.
We resize each image to 32 × 32. The pixel values are in range of [0, 255]. The dataset has a
large imbalance in the number of sample occurrences across classes. We use data augmentation
techniques to enlarge the training data and make the number of samples in each class balanced.
We construct a class preserving data augmentation pipeline consisting of rotation, translation, and
projection transforms and apply this pipeline to images in the training set until each class contained
10,000 training examples. We use this new augmented training data set containing 430,000 samples
in total to train models. We also preprocess images via image brightness normalization.

17

Model . We use the Resnet model [HZRS16]. We perform per image standardization before feeding
images to the neural network. The network has 5 residual units with (16, 16, 32, 64) filters each.
The model is adapted from CIFAR-10 model of [MMS+17b]. Refer to our codes for details.

Training hyper-parameters. The hyper-parameters to train different models are listed below:

NATURAL. We use Momentum Optimizer with weight decay. We set momentum rate as 0.9, weight
decay rate as 0.0002, batch size as 64, and training steps as 70,000. We use learning rate schedule:
the first 500 steps, we use learning rate of 10−3; after 500 steps and before 60,000 steps, we use
learning rate of 10−2; after 60,000 steps, we use learning rate of 10−3.

Madry et al.. We use Momentum Optimizer with weight decay. We set momentum rate as 0.9,
weight decay rate as 0.0002, batch size as 64, and training steps as 70,000. We use learning rate
schedule: the first 500 steps, we use learning rate of 10−3; after 500 steps and before 60,000 steps,
we use learning rate of 10−2; after 60,000 steps, we use learning rate of 10−3. We use PGD attack
as adversary with random start, number of steps of 7, step size of 2, and adversarial budget � of 8.

IG-NORM. We set λ as 1, m in the gradient step as 50. We use Momentum Optimizer with weight
decay. We set momentum rate as 0.9, weight decay rate as 0.0002, batch size as 64, and training
steps as 70,000. We use learning rate schedule: the first 500 steps, we use learning rate of 10−6;
after 500 steps and before 60,000 steps, we use learning rate of 10−4; after 60,000 steps, we use
learning rate of 10−5. We use PGD attack as adversary with random start, number of steps of 7, step
size of 2, m in the attack step of 5, and adversarial budget � of 8.

IG-SUM-NORM. We set β as 1, m in the gradient step as 50. We use Momentum Optimizer with
weight decay. We set momentum rate as 0.9, weight decay rate as 0.0002, batch size as 64, and
training steps as 70,000. We use learning rate schedule: the first 500 steps, we use learning rate of
10−5; after 500 steps and before 60,000 steps, we use learning rate of 10−4; after 60,000 steps, we
use learning rate of 10−5. We use PGD attack as adversary with random start, number of steps of 7,
step size of 2, m in the attack step of 5, and adversarial budget � of 8.

Evaluation Attacks. For attacking inputs to change model predictions, we use PGD attack with
number of steps of 40, adversarial budget � of 8 and step size of 2. For attacking inputs to change
interpretations, we use Iterative Feature Importance Attacks (IFIA) proposed by [GAZ17]. We use
their top-k attack with k = 100, adversarial budget � = 8, step size α = 1 and number of iterations
P = 50. We set the feature importance function as Integrated Gradients(IG) and dissimilarity
function D as Kendall’s rank order correlation. We find that IFIA is not stable if we use GPU
parallel computing (non-deterministic is a behavior of GPU), so we run IFIA three times on each
test example and use the best result with the lowest Kendall’s rank order correlation.

C.1.4 Flower

Data. Flower dataset [NZ06] is a dataset of 17 category flowers with 80 images for each class (1,360
image in total). The flowers chosen are some common flowers in the UK. The images have large
scale, pose and light variations and there are also classes with large variations of images within the
class and close similarity to other classes. We randomly split the dataset into training and test sets.
The training set has totally 1,224 images with 72 images per class. The test set has totally 136 images
with 8 images per class. We resize each image to 128×128. The pixel values are in range of [0, 255].
We use data augmentation techniques to enlarge the training data. We construct a class preserving
data augmentation pipeline consisting of rotation, translation, and projection transforms and apply
this pipeline to images in the training set until each class contained 1,000 training examples. We use
this new augmented training data set containing 17,000 samples in total to train models.

Model. We use the Resnet model [HZRS16]. We perform per image standardization before feeding
images to the neural network. The network has 5 residual units with (16, 16, 32, 64) filters each.
The model is adapted from CIFAR-10 model of [MMS+17b]. Refer to our codes for details.

Training hyper-parameters. The hyper-parameters to train different models are listed below:

NATURAL. We use Momentum Optimizer with weight decay. We set momentum rate as 0.9, weight
decay rate as 0.0002, batch size as 16, and training steps as 70,000. We use learning rate schedule:
the first 500 steps, we use learning rate of 10−3; after 500 steps and before 60,000 steps, we use
learning rate of 10−2; after 60,000 steps, we use learning rate of 10−3.

18

Madry et al.. We use Momentum Optimizer with weight decay. We set momentum rate as 0.9,
weight decay rate as 0.0002, batch size as 16, and training steps as 70,000. We use learning rate
schedule: the first 500 steps, we use learning rate of 10−3; after 500 steps and before 60,000 steps,
we use learning rate of 10−2; after 60,000 steps, we use learning rate of 10−3. We use PGD attack
as adversary with random start, number of steps of 7, step size of 2, and adversarial budget � of 8.

IG-NORM. We set λ as 0.1, m in the gradient step as 50. We use Momentum Optimizer with weight
decay. We set momentum rate as 0.9, weight decay rate as 0.0002, batch size as 16, and training
steps as 70,000. We use learning rate schedule: the first 500 steps, we use learning rate of 10−4;
after 500 steps and before 60,000 steps, we use learning rate of 10−3; after 60,000 steps, we use
learning rate of 10−4. We use PGD attack as adversary with random start, number of steps of 7, step
size of 2, m in the attack step of 5, and adversarial budget � of 8.

IG-SUM-NORM. We set β as 0.1, m in the gradient step as 50. We use Momentum Optimizer with
weight decay. We set momentum rate as 0.9, weight decay rate as 0.0002, batch size as 16, and
training steps as 70,000. We use learning rate schedule: the first 500 steps, we use learning rate of
10−4; after 500 steps and before 60,000 steps, we use learning rate of 10−3; after 60,000 steps, we
use learning rate of 10−4. We use PGD attack as adversary with random start, number of steps of 7,
step size of 2, m in the attack step of 5, and adversarial budget � of 8.

Evaluation Attacks. For attacking inputs to change model predictions, we use PGD attack with
number of steps of 40, adversarial budget � of 8 and step size of 2. For attacking inputs to change
interpretations, we use Iterative Feature Importance Attacks (IFIA) proposed by [GAZ17]. We use
their top-k attack with k = 1000, adversarial budget � = 8, step size α = 1 and number of iterations
P = 100. We set the feature importance function as Integrated Gradients(IG) and dissimilarity
function D as Kendall’s rank order correlation. We find that IFIA is not stable if we use GPU
parallel computing (non-deterministic is a behavior of GPU), so we run IFIA three times on each
test example and use the best result with the lowest Kendall’s rank order correlation.

C.2 Why a different m in the Attack Step?

From our experiments, we find that the most time consuming part during training is using adversary
A to find xxx∗. It is because we need to run several PGD steps to find xxx∗. To speed it up, we set a
smaller m (no more than 10) in the attack step.

C.3 Choosing Hyper-parameters

Our IG-NORM (or IG-SUM-NORM) objective contains hyper-parameters m in the attack step, m
in the gradient step and λ (or β). From our experiments, we find that if λ (or β) is too large, the
training cannot converge. And if λ (or β) is too small, we cannot get good attribution robustness. To
select best λ (or β), we try three values: 1, 0.1, and 0.01, and use the one with the best attribution
robustness. For m in the attack step, due to the limitation of computing power, we usually set a
small value, typically 5 or 10. We study how m in the gradient step affects results on MNIST using
IG-NORM objective. We try m ∈ {10, 20, 30, · · · , 100}, and set λ = 1 and m in the attack step as
10. Other training settings are the same. The results are summarized in Table 3.

m NA AA IN CO
10 98.54% 78.05% 67.14% 0.2574
20 98.72% 80.29% 70.78% 0.2699
30 98.70% 80.44% 71.06% 0.2640
40 98.79% 73.41% 64.76% 0.2733
50 98.74% 81.43% 71.36% 0.2841
60 98.78% 89.25% 63.55% 0.2230
70 98.80% 74.78% 67.37% 0.2556
80 98.75% 80.26% 69.90% 0.2633
90 98.61% 78.54% 70.88% 0.2787
100 98.59% 89.36% 59.70% 0.2210

Table 3: Experiment results for different m in gradient step on MNIST.

19

From the results, we can see when m = 50, we can get the best attribution robustness. For objective
IG-SUM-NORM and other datasets, we do similar search for m in the gradient step. We find that
usually, m = 50 can give good attribution robustness.

C.4 Dimensionality and effectiveness of attribution attack

Similar to [GAZ17], we observe that IFIA is not so successful when number of dimensions is
relatively small. For example, on GTSRB dataset the number of dimensions is relatively small
(32 × 32 × 3), and if one uses small adversarial budget (8/255 ≈ 0.031), the attacks become not
very effective. On the other hand, even though MNIST dimension is small (28 × 28 × 1) , the at-
tack remains effective for large budget (0.3). On Flower dataset the number of dimension is large
(128× 128× 3), and the attack is very effective on this dataset.

C.5 Use Simple Gradient to Compute Feature Importance Maps

We also experiment with Simple Gradient (SG) [SVZ13] instead of Integrated Gradients (IG) to
compute feature importance map. The experiment settings are the same as previous ones except that
we use SG to compute feature importance map in order to compute rank correlation and top inter-
section, and also in the Iterative Feature Importance Attacks (IFIA) (evaluation attacks). The results
are summarized in Table 4. Our method produces significantly better attribution robustness than
both natural training and adversarial training, except being slightly worse than adversarial training
on Fashion-MNIST. We note that Fashion-MNIST is also the only data set in our experiments where
IG results are significantly different from that of SG (where under IG, IG-SUM-NORM is signif-
icantly better). Note that IG is a princpled sommothed verison of SG and so this result highlights
differences between these two attribution methods on a particular data set. More investigation into
this phenomenon seems warranted.

Dataset Approach NA AA IN CO

MNIST
NATURAL 99.17% 0.00% 16.64% 0.0107
Madry et al. 98.40% 92.47% 47.95% 0.2524

IG-SUM-NORM 98.34% 88.17% 61.67% 0.2918

Fashion-MNIST
NATURAL 90.86% 0.01% 21.55% 0.0734
Madry et al. 85.73% 73.01% 58.37% 0.3947

IG-SUM-NORM 85.44% 70.26% 54.91% 0.3674

GTSRB
NATURAL 98.57% 21.05% 51.31% 0.6000
Madry et al. 97.59% 83.24% 70.27% 0.6965

IG-SUM-NORM 95.68% 77.12% 75.03% 0.7151

Flower
NATURAL 86.76% 0.00% 6.72% 0.2996
Madry et al. 83.82% 41.91% 54.10% 0.7282

IG-SUM-NORM 82.35% 47.06% 65.59% 0.7503
Table 4: Experiment results for using Simple Gradient to compute feature importance maps.

C.6 Additional Visualization Results

Here we provide more visualization results for MNIST in Figure 3, for Fashion-MNIST in Figure 4,
for GTSRB in Figure 5, and for Flower in Figure 6.

20

NATURAL IG-NORM IG-SUM-NORM

Top-100 Intersection: 37.0%
Kendall’s Correlation: 0.0567

Top-100 Intersection: 64.0%
Kendall’s Correlation: 0.1823

Top-100 Intersection: 67.0%
Kendall’s Correlation: 0.2180

(a) For all images, the models give correct prediction – 6.

Top-100 Intersection: 43.0%
Kendall’s Correlation: 0.0563

Top-100 Intersection: 74.0%
Kendall’s Correlation: 0.1718

Top-100 Intersection: 84.0%
Kendall’s Correlation: 0.2501

(b) For all images, the models give correct prediction – 3.

Top-100 Intersection: 41.0%
Kendall’s Correlation: 0.1065

Top-100 Intersection: 83.0%
Kendall’s Correlation: 0.2837

Top-100 Intersection: 84.0%
Kendall’s Correlation: 0.3151

(c) For all images, the models give correct prediction – 2.

Figure 3: Top-100 and Kendall’s Correlation are rank correlations between original and perturbed
saliency maps. NATURAL is the naturally trained model, IG-NORM and IG-SUM-NORM are
models trained using our robust attribution method. We use attribution attacks described in [GAZ17]
to perturb the attributions while keeping predictions intact. For all images, the models give correct
predictions. However, the saliency maps (also called feature importance maps), computed via IG,
show that attributions of the naturally trained model are very fragile, either visually or quantitatively
as measured by correlation analysis, while models trained using our method are much more robust
in their attributions.

21

NATURAL IG-NORM IG-SUM-NORM

Top-100 Intersection: 50.0%
Kendall’s Correlation: 0.4595

Top-100 Intersection: 63.0%
Kendall’s Correlation: 0.6099

Top-100 Intersection: 87.0%
Kendall’s Correlation: 0.6607

(a) For all images, the models give correct prediction – Ankle boot.

Top-100 Intersection: 47.0%
Kendall’s Correlation: 0.1293

Top-100 Intersection: 54.0%
Kendall’s Correlation: 0.2508

Top-100 Intersection: 65.0%
Kendall’s Correlation: 0.3136

(b) For all images, the models give correct prediction – Sandal.

Top-100 Intersection: 39.0%
Kendall’s Correlation: 0.4129

Top-100 Intersection: 61.0%
Kendall’s Correlation: 0.5983

Top-100 Intersection: 71.0%
Kendall’s Correlation: 0.6699

(c) For all images, the models give correct prediction – Trouser.

Figure 4: Top-100 and Kendall’s Correlation are rank correlations between original and perturbed
saliency maps. NATURAL is the naturally trained model, IG-NORM and IG-SUM-NORM are
models trained using our robust attribution method. We use attribution attacks described in [GAZ17]
to perturb the attributions while keeping predictions intact. For all images, the models give correct
predictions. However, the saliency maps (also called feature importance maps), computed via IG,
show that attributions of the naturally trained model are very fragile, either visually or quantitatively
as measured by correlation analysis, while models trained using our method are much more robust
in their attributions.

22

NATURAL IG-NORM IG-SUM-NORM

Top-100 Intersection: 45.0%
Kendall’s Correlation: 0.5822

Top-100 Intersection: 78.0%
Kendall’s Correlation: 0.7471

Top-100 Intersection: 80.0%
Kendall’s Correlation: 0.7886

(a) For all images, the models give correct prediction – Dangerous Curve to The Left.

Top-100 Intersection: 56.0%
Kendall’s Correlation: 0.6679

Top-100 Intersection: 85.0%
Kendall’s Correlation: 0.7963

Top-100 Intersection: 83.0%
Kendall’s Correlation: 0.8338

(b) For all images, the models give correct prediction – General Caution.

Top-100 Intersection: 43.0%
Kendall’s Correlation: 0.6160

Top-100 Intersection: 67.0%
Kendall’s Correlation: 0.7595

Top-100 Intersection: 81.0%
Kendall’s Correlation: 0.8128

(c) For all images, the models give correct prediction – No Entry.

Figure 5: Top-100 and Kendall’s Correlation are rank correlations between original and perturbed
saliency maps. NATURAL is the naturally trained model, IG-NORM and IG-SUM-NORM are
models trained using our robust attribution method. We use attribution attacks described in [GAZ17]
to perturb the attributions while keeping predictions intact. For all images, the models give correct
predictions. However, the saliency maps (also called feature importance maps), computed via IG,
show that attributions of the naturally trained model are very fragile, either visually or quantitatively
as measured by correlation analyses, while models trained using our method are much more robust
in their attributions.

23

NATURAL IG-NORM IG-SUM-NORM

Top-1000 Intersection: 1.0%
Kendall’s Correlation: 0.4601

Top-1000 Intersection: 65.4%
Kendall’s Correlation: 0.7248

Top-1000 Intersection: 63.9%
Kendall’s Correlation: 0.8036

(a) For all images, the models give correct prediction – Bluebell.

Top-1000 Intersection: 6.2%
Kendall’s Correlation: 0.3863

Top-1000 Intersection: 58.20%
Kendall’s Correlation: 0.6694

Top-1000 Intersection: 65.9%
Kendall’s Correlation: 0.7970

(b) For all images, the models give correct prediction – Cowslip.

Top-1000 Intersection: 6.8%
Kendall’s Correlation: 0.4653

Top-1000 Intersection: 58.0%
Kendall’s Correlation: 0.7165

Top-1000 Intersection: 63.4%
Kendall’s Correlation: 0.8201

(c) For all images, the models give correct prediction – Tigerlily.

Figure 6: Top-1000 and Kendall’s Correlation are rank correlations between original and perturbed
saliency maps. NATURAL is the naturally trained model, IG-NORM and IG-SUM-NORM are
models trained using our robust attribution method. We use attribution attacks described in [GAZ17]
to perturb the attributions while keeping predictions intact. For all images, the models give correct
predictions. However, the saliency maps (also called feature importance maps), computed via IG,
show that attributions of the naturally trained model are very fragile, either visually or quantitatively
as measured by correlation analyses, while models trained using our method are much more robust
in their attributions.

24

