
Learning-Based Low-Rank Approximations

Piotr Indyk
CSAIL, MIT

indyk@mit.edu

Ali Vakilian∗
University of Wisconsin - Madison

vakilian@wisc.edu

Yang Yuan∗
Tsinghua University

yuanyang@tsinghua.edu.cn

Abstract

We introduce a “learning-based” algorithm for the low-rank decomposition prob-
lem: given an n× d matrix A, and a parameter k, compute a rank-k matrix A′ that
minimizes the approximation loss ‖A−A′‖F . The algorithm uses a training set of
input matrices in order to optimize its performance. Specifically, some of the most
efficient approximate algorithms for computing low-rank approximations proceed
by computing a projection SA, where S is a sparse random m × n “sketching
matrix”, and then performing the singular value decomposition of SA. We show
how to replace the random matrix S with a “learned” matrix of the same sparsity
to reduce the error.
Our experiments show that, for multiple types of data sets, a learned sketch matrix
can substantially reduce the approximation loss compared to a random matrix S,
sometimes by one order of magnitude. We also study mixed matrices where only
some of the rows are trained and the remaining ones are random, and show that
matrices still offer improved performance while retaining worst-case guarantees.
Finally, to understand the theoretical aspects of our approach, we study the special
case of m = 1. In particular, we give an approximation algorithm for minimizing
the empirical loss, with approximation factor depending on the stable rank of
matrices in the training set. We also show generalization bounds for the sketch
matrix learning problem.

1 Introduction

The success of modern machine learning made it applicable to problems that lie outside of the
scope of “classic AI”. In particular, there has been a growing interest in using machine learning
to improve the performance of “standard” algorithms, by fine-tuning their behavior to adapt to the
properties of the input distribution, see e.g., [Wang et al., 2016, Khalil et al., 2017, Kraska et al., 2018,
Balcan et al., 2018, Lykouris and Vassilvitskii, 2018, Purohit et al., 2018, Gollapudi and Panigrahi,
2019, Mitzenmacher, 2018, Mousavi et al., 2015, Baldassarre et al., 2016, Bora et al., 2017, Metzler
et al., 2017, Hand and Voroninski, 2018, Khani et al., 2019, Hsu et al., 2019]. This “learning-based”
approach to algorithm design has attracted a considerable attention over the last few years, due to its
potential to significantly improve the efficiency of some of the most widely used algorithmic tasks.
Many applications involve processing streams of data (video, data logs, customer activity etc) by
executing the same algorithm on an hourly, daily or weekly basis. These data sets are typically not
“random” or “worst-case”; instead, they come from some distribution which does not change rapidly
from execution to execution. This makes it possible to design better algorithms tailored to the specific
data distribution, trained on past instances of the problem.

The method has been particularly successful in the context of compressed sensing. In the latter
framework, the goal is to recover an approximation to an n-dimensional vector x, given its “linear
measurement” of the form Sx, where S is an m × n matrix. Theoretical results [Donoho, 2006,
∗This work was mostly done when the second and third authors were at MIT.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Candès et al., 2006] show that, if the matrix S is selected at random, it is possible to recover the
k largest coefficients of x with high probability using a matrix S with m = O(k log n) rows. This
guarantee is general and applies to arbitrary vectors x. However, if vectors x are selected from some
natural distribution (e.g., they represent images), recent works [Mousavi et al., 2015, Baldassarre
et al., 2016, Metzler et al., 2017] show that one can use samples from that distribution to compute
matrices S that improve over a completely random matrix in terms of the recovery error.

Compressed sensing is an example of a broader class of problems which can be solved using random
projections. Another well-studied problem of this type is low-rank decomposition: given an n× d
matrix A, and a parameter k, compute a rank-k matrix

[A]k = argminA′: rank(A′)≤k‖A−A
′‖F .

Low-rank approximation is one of the most widely used tools in massive data analysis, machine
learning and statistics, and has been a subject of many algorithmic studies. In particular, multiple
algorithms developed over the last decade use the “sketching” approach, see e.g., [Sarlos, 2006,
Woolfe et al., 2008, Halko et al., 2011, Clarkson and Woodruff, 2009, 2017, Nelson and Nguyên,
2013, Meng and Mahoney, 2013, Boutsidis and Gittens, 2013, Cohen et al., 2015]. Its idea is to
use efficiently computable random projections (a.k.a., “sketches”) to reduce the problem size before
performing low-rank decomposition, which makes the computation more space and time efficient.
For example, [Sarlos, 2006, Clarkson and Woodruff, 2009] show that if S is a random matrix of size
m×n chosen from an appropriate distribution2, for m depending on ε, then one can recover a rank-k
matrix A′ such that

‖A−A′‖F ≤ (1 + ε)‖A− [A]k‖F

by performing an SVD on SA ∈ Rm×d followed by some post-processing. Typically the sketch
length m is small, so the matrix SA can be stored using little space (in the context of streaming
algorithms) or efficiently communicated (in the context of distributed algorithms). Furthermore, the
SVD of SA can be computed efficiently, especially after another round of sketching, reducing the
overall computation time. See the survey [Woodruff, 2014] for an overview of these developments.

In light of the aforementioned work on learning-based compressive sensing, it is natural to ask
whether similar improvements in performance could be obtained for other sketch-based algorithms,
notably for low-rank decompositions. In particular, reducing the sketch length m while preserving its
accuracy would make sketch-based algorithms more efficient. Alternatively, one could make sketches
more accurate for the same values of m. This is the problem we address in this paper.

Our Results. Our main finding is that learned sketch matrices can indeed yield (much) more
accurate low-rank decompositions than purely random matrices. We focus our study on a stream-
ing algorithm for low-rank decomposition due to [Sarlos, 2006, Clarkson and Woodruff, 2009],
described in more detail in Section 2. Specifically, suppose we have a training set of matrices
Tr = {A1, . . . , AN} sampled from some distribution D. Based on this training set, we compute a
matrix S∗ that (locally) minimizes the empirical loss∑

i

‖Ai − SCW(S∗, Ai)‖F (1)

where SCW(S∗, Ai) denotes the output of the aforementioned Sarlos-Clarkson-Woodruff streaming
low-rank decomposition algorithm on matrix Ai using the sketch matrix S∗. Once the sketch matrix
S∗ is computed, it can be used instead of a random sketch matrix in all future executions of the SCW
algorithm.

We demonstrate empirically that, for multiple types of data sets, an optimized sketch matrix S∗ can
substantially reduce the approximation loss compared to a random matrix S, sometimes by one order
of magnitude (see Figure 2 or 3). Equivalently, the optimized sketch matrix can achieve the same
approximation loss for lower values of m which results in sketching matrices with lower space usage.
Note that since we augment a streaming algorithm, our main focus is on improving its space usage

2Initial algorithms used matrices with independent sub-gaussian entries or randomized Fourier/Hadamard
matrices [Sarlos, 2006, Woolfe et al., 2008, Halko et al., 2011]. Starting from the seminal work of [Clarkson
and Woodruff, 2017], researchers began to explore sparse binary matrices, see e.g., [Nelson and Nguyên, 2013,
Meng and Mahoney, 2013]. In this paper we mostly focus on the latter distribution.

2

(which in the distributed setting translates into the amount of communication). The latter is O(md),
the size of SA.

A possible disadvantage of learned sketch matrices is that an algorithm that uses them no longer
offers worst-case guarantees. As a result, if such an algorithm is applied to an input matrix that
does not conform to the training distribution, the results might be worse than if random matrices
were used. To alleviate this issue, we also study mixed sketch matrices, where (say) half of the rows
are trained and the other half are random. We observe that if such matrices are used in conjunction
with the SCW algorithm, its results are no worse than if only the random part of the matrix was
used (Theorem 1 in Section 4)3. Thus, the resulting algorithm inherits the worst-case performance
guarantees of the random part of the sketching matrix. At the same time, we show that mixed matrices
still substantially reduce the approximation loss compared to random ones, in some cases nearly
matching the performance of “pure” learned matrices with the same number of rows. Thus, mixed
random matrices offer “the best of both worlds”: improved performance for matrices from the training
distribution, and worst-case guarantees otherwise.

Finally, in order to understand the theoretical aspects of our approach further, we study the special
case of m = 1. This corresponds to the case where the sketch matrix S is just a single vector. Our
results are two-fold:

• We give an approximation algorithm for minimizing the empirical loss as in Equation 1,
with an approximation factor depending on the stable rank of matrices in the training set.
See Appendix B.

• Under certain assumptions about the robustness of the loss minimizer, we show generaliza-
tion bounds for the solution computed over the training set. See Appendix C.

The theoretical results on the case of m = 1 are deferred to the full version of this paper.

1.1 Related work

As outlined in the introduction, over the last few years there has been multiple papers exploring the
use of machine learning methods to improve the performance of “standard” algorithms. Among
those, the closest to the topic of our paper are the works on learning-based compressive sensing, such
as [Mousavi et al., 2015, Baldassarre et al., 2016, Bora et al., 2017, Metzler et al., 2017], and on
learning-based streaming algorithms [Hsu et al., 2019]. Since neither of these two lines of research
addresses computing matrix spectra, the technical development therein was quite different from ours.

In this paper we focus on learning-based optimization of low-rank approximation algorithms that use
linear sketches, i.e., map the input matrix A into SA and perform computation on the latter. There
are other sketching algorithms for low-rank approximation that involve non-linear sketches [Liberty,
2013, Ghashami and Phillips, 2014, Ghashami et al., 2016]. The benefit of linear sketches is that they
are easy to update under linear changes to the matrix A, and (in the context of our work) that they are
easy to differentiate, making it possible to compute the gradient of the loss function as in Equation 1.
We do not know whether it is possible to use our learning-based approach for non-linear sketches, but
we believe this is an interesting direction for future research.

2 Preliminaries

Notation. Consider a distribution D on matrices A ∈ Rn×d. We define the training set as
{A1, · · · , AN} sampled from D. For matrix A, its singular value decomposition (SVD) can be
written as A = UΣV > such that both U ∈ Rn×n and V ∈ Rd×n have orthonormal columns and
Σ = diag{λ1, · · · , λd} is a diagonal matrix with nonnegative entries. Moreover, if rank(A) = r,
then the first r columns of U are an orthonormal basis for the column space of A (we denote it as
colsp(A)), the first r columns of V are an orthonormal basis for the row space of A (we denote it
as rowsp(A))4 and λi = 0 for i > r. In many applications it is quicker and more economical to
compute the compact SVD which only contains the rows and columns corresponding to the non-zero
singular values of Σ: A = U cΣc(V c)> where U c ∈ Rn×r,Σc ∈ Rr×r and V c ∈ Rd×r.

3We note that this property is non-trivial, in the sense that it does not automatically hold for all sketching
algorithms. See Section 4 for further discussion.

4The remaining columns of U and V respectively are orthonormal bases for the nullspace of A and A>.

3

How sketching works. We start by describing the SCW algorithm for low-rank matrix approxima-
tion, see Algorithm 1. The algorithm computes the singular value decomposition of SA = UΣV >,
and compute the best rank-k approximation of AV . Finally it outputs [AV]kV

> as a rank-k approxi-
mation of A. We emphasize that Sarlos and Clarkson-Woodruff proposed Algorithm 1 with random
sketching matrices S. In this paper, we follow the same framework but use learned (or partially
learned) matrices.

Algorithm 1 Rank-k approximation of a matrix A using a sketch matrix S (refer to Section 4.1.1 of
[Clarkson and Woodruff, 2009])

1: Input: A ∈ Rn×d, S ∈ Rm×n
2: U,Σ, V > ← COMPACTSVD(SA) B {r = rank(SA), U ∈ Rm×r, V ∈ Rd×r}
3: Return: [AV]kV

>

Note that if m is much smaller than d and n, the space bound of this algorithm is significantly
better than when computing a rank-k approximation for A in the naïve way. Thus, minimizing m
automatically reduces the space usage of the algorithm.

Sketching matrix. We use matrix S that is sparse5 Specifically, each column of S has exactly one
non-zero entry, which is either +1 or −1. This means that the fraction of non-zero entries in S is
1/m. Therefore, one can use a vector to represent S, which is very memory efficient. It is worth
noting, however, after multiplying the sketching matrix S with other matrices, the resulting matrix
(e.g., SA) is in general not sparse.

3 Training Algorithm

In this section, we describe our learning-based algorithm for computing a data dependent sketch
S. The main idea is to use backpropagation algorithm to compute the stochastic gradient of S with
respect to the rank-k approximation loss in Equation 1, where the initial value of S is the same random
sparse matrix used in SCW. Once we have the stochastic gradient, we can run stochastic gradient
descent (SGD) algorithm to optimize S, in order to improve the loss. Our algorithm maintains the
sparse structure of S, and only optimizes the values of the n non-zero entries (initially +1 or −1).

Algorithm 2 Differentiable SVD implementation
1: Input: A1 ∈ Rm×d(m < d)
2: U,Σ, V ← {}, {}, {}
3: for i← 1 . . .m do
4: v1 ← random initialization in Rd
5: for t← 1 . . . T do
6: vt+1 ← A>i Aivt

‖A>i Aivt‖2
B {power method}

7: end for
8: V [i]← vT+1

9: Σ[i]← ‖AiV [i]‖2
10: U [i]← AiV [i]

Σ[i]

11: Ai+1 ← Ai − Σ[i]U [i]V [i]>

12: end for
13: Return: U,Σ, V

v1

vt+1 ←
A>i Aivt
‖A>i Aivt‖2

×T times

U
Σ
V

U [i]

Σ[i]

V [i]

Figure 1: i-th iteration of power method

However, the standard SVD implementation (step 2 in Algorithm 1) is not differentiable, which means
we cannot get the gradient in the straightforward way. To make SVD implementation differentiable,
we use the fact that the SVD procedure can be represented as m individual top singular value
decompositions (see e.g. [Allen-Zhu and Li, 2016]), and that every top singular value decomposition

5The original papers [Sarlos, 2006, Clarkson and Woodruff, 2009] used dense matrices, but the work of
[Clarkson and Woodruff, 2017] showed that sparse matrices work as well. We use sparse matrices since they are
more efficient to train and to operate on.

4

can be computed using the power method. See Figure 1 and Algorithm 2. We store the results of the
i-th iteration into the i-th entry of the list U,Σ, V , and finally concatenate all entries together to get
the matrix (or matrix diagonal) format of U,Σ, V . This allows gradients to flow easily.

Due to the extremely long computational chain, it is infeasible to write down the explicit form of
loss function or the gradients. However, just like how modern deep neural networks compute their
gradients, we used the autograd feature in PyTorch to numerically compute the gradient with respect
to the sketching matrix S.

We emphasize again that our method is only optimizing S for the training phase. After S is fully
trained, we still call Algorithm 1 for low rank approximation, which has exactly the same running time
as the SCW algorithm, but with better performance (i.e., the quality of the returned rank-k matrix).
We remark that the time complexity of SCW algorithm is O(nmd) assuming k ≤ m ≤ min(n, d).

4 Worst Case Bound

In this section, we show that concatenating two sketching matrices S1 and S2 (of size respectively
m1×n andm2×n) into a single matrix S∗ (of size (m1+m2)×n) will not increase the approximation
loss of the final rank-k solution computed by Algorithm 1 compared to the case in which only one of
S1 or S2 are used as the sketching matrix. In the rest of this section, the sketching matrix S∗ denotes
the concatenation of S1 and S2 as follows:

S∗((m1+m2)×n) =

 S1(m1×n)

S2(m2×n)

Formally, we prove the following theorem on the worst case performance of mixed matrices.
Theorem 1. Let U∗Σ∗V >∗ and U1Σ1V

>
1 respectively denote the SVD of S∗A and S1A. Then,

||[AV∗]kV >∗ −A||F ≤ ||[AV1]kV
>
1 −A||F .

In particular, the above theorem implies that the output of Algorithm 1 with the sketching matrix S∗
is a better rank-k approximation to A compared to the output of the algorithm with S1. In the rest of
this section we prove Theorem 1.

Before proving the main theorem, we state the following helpful lemma.
Lemma 1 (Lemma 4.3 in [Clarkson and Woodruff, 2009]). Suppose that V is a matrix with orthonor-
mal columns. Then, a best rank-k approximation to A in the colsp(V) is given by [AV]kV

>.

Since the above statement is a transposed version of the lemma from [Clarkson and Woodruff, 2009],
we include the proof in the appendix for completeness.

Proof of Theorem 1. First, we show that colsp(V1) ⊆ colsp(V∗). By the properties of the (compact)
SVD, colsp(V1) = rowsp(S1A) and colsp(V∗) = rowsp(S∗A). Since, S∗ has all rows of S1, then

colsp(V1) ⊆ colsp(V∗). (2)

By Lemma 1,

||A− [AV∗]kV
>
∗ ||F = min

rowsp(X)⊆colsp(V∗);
rank(X)≤k

||X −A||F

||A− [AV1]kV
>
1 ||F = min

rowsp(X)⊆colsp(V1);
rank(X)≤k

||X −A||F

Finally, together with (2),

||A− [AV∗]kV
>
∗ ||F = min

rowsp(X)⊆colsp(V∗);
rank(X)≤k

||X −A||F

≤ min
rowsp(X)⊆colsp(V1);

rank(X)≤k

||X −A||F = ||A− [AV1]kV
>
1 ||F .

which completes the proof.

5

Finally, we note that the property of Theorem 1 is not universal, i.e., it does not hold for all sketching
algorithms for low-rank decomposition. For example, an alternative algorithm proposed in [Cohen
et al., 2015] proceeds by letting Z to be the top k singular vectors of SA (i.e., Z = V where
[SA]k = UΣV T) and then reports AZZ>. It is not difficult to see that, by adding extra rows to the
sketching matrix S (which may change all top k singular vectors compared to the ones of SA), one
can skew the output of the algorithm so that it is far from the optimal.

5 Experimental Results

The main question considered in this paper is whether, for natural matrix datasets, optimizing
the sketch matrix S can improve the performance of the sketching algorithm for the low-rank
decomposition problem. To answer this question, we implemented and compared the following
methods for computing S ∈ Rm×n.

• Sparse Random. Sketching matrices are generated at random as in [Clarkson and Woodruff,
2017]. Specifically, we select a random hash function h : [n]→ [m], and for all i = 1 . . . n,
Sh[i],i is selected to be either +1 or −1 with equal probability. All other entries in S are set
to 0. Therefore, S has exactly n non-zero entries.

• Dense Random. All the nm entries in the sketching matrices are sampled from Gaussian
distribution (we include this method for comparison).

• Learned. Using the sparse random matrix as the initialization, we run Algorithm 2 to
optimize the sketching matrix using the training set, and return the optimized matrix.

• Mixed (J). We first generate two sparse random matrices S1, S2 ∈ Rm
2 ×n (assuming m is

even), and define S to be their combination. We then run Algorithm 2 to optimize S using
the training set, but only S1 will be updated, while S2 is fixed. Therefore, S is a mixture of
learned matrix and random matrix, and the first matrix is trained jointly with the second one.

• Mixed (S). We first compute a learned matrix S1 ∈ Rm
2 ×n using the training set, and then

append another sparse random matrix S2 to get S ∈ Rm×n. Therefore, S is a mixture of
learned matrix and random matrix, but the learned matrix is trained separately.

Logo Eagle Friends Hyper Tech0

2

4

6

8

Te
st

 E
rro

r

0.1 0.2 0.2 0.5

2.8
1.9

4.0 4.1
3.1

7.9

2.0

4.7
4.0 3.5

7.8Learned
Sparse Random
Dense Random

Figure 2: Test error by datasets and sketching matrices For k = 10,m = 20

20 40 60 80
m

10 1

100

Te
st

 E
rro

r

Learned
Sparse Random
Dense Random

20 40 60 80
m

100

101

Te
st

 E
rro

r

Learned
Sparse Random
Dense Random

20 40 60 80
m

100

101

Te
st

 E
rro

r

Learned
Sparse Random
Dense Random

Figure 3: Test error for Logo (left), Hyper (middle) and Tech (right) when k = 10.

Datasets. We used a variety of datasets to test the performance of our methods:

6

Table 1: Test error in various settings
k,m, Sketch Logo Eagle Friends Hyper Tech
10, 10,Learned 0.39 0.31 1.03 1.25 6.70
10, 10,Random 5.22 6.33 11.56 7.90 17.08
10, 20,Learned 0.10 0.18 0.22 0.52 2.95
10, 20,Random 2.09 4.31 4.11 2.92 7.99
20, 20,Learned 0.61 0.66 1.41 1.68 7.79
20, 20,Random 4.18 5.79 9.10 5.71 14.55
20, 40,Learned 0.18 0.41 0.42 0.72 3.09
20, 40,Random 1.19 3.50 2.44 2.23 6.20
30, 30,Learned 0.72 1.06 1.78 1.90 7.14
30, 30,Random 3.11 6.03 6.27 5.23 12.82
30, 60,Learned 0.21 0.61 0.42 0.84 2.78
30, 60,Random 0.82 3.28 1.79 1.88 4.84

Table 2: Comparison with mixed sketches
k,m, Sketch Logo Hyper Tech
10, 10,Learned 0.39 1.25 6.70
10, 10,Random 5.22 7.90 17.08
10, 20,Learned 0.10 0.52 2.95
10, 20,Mixed (J) 0.20 0.78 3.73
10, 20,Mixed (S) 0.24 0.87 3.69
10, 20,Random 2.09 2.92 7.99
10, 40,Learned 0.04 0.28 1.16
10, 40,Mixed (J) 0.05 0.34 1.31
10, 40,Mixed (S) 0.05 0.34 1.20
10, 40,Random 0.45 1.12 3.28
10, 80,Learned 0.02 0.16 0.31
10, 80,Random 0.09 0.32 0.80

• Videos6: Logo, Friends, Eagle. We downloaded three high resolution videos from Youtube,
including logo video, Friends TV show, and eagle nest cam. From each video, we collect
500 frames of size 1920× 1080× 3 pixels, and use 400 (100) matrices as the training (test)
set. For each frame, we resize it as a 5760× 1080 matrix.

• Hyper. We use matrices from HS-SOD, a dataset for hyperspectral images from natural
scenes [Imamoglu et al., 2018]. Each matrix has 1024× 768 pixels, and we use 400 (100)
matrices as the training (test) set.

• Tech. We use matrices from TechTC-300, a dataset for text categorization [Davidov et al.,
2004]. Each matrix has 835, 422 rows, but on average only 25, 389 of the rows contain
non-zero entries. On average each matrix has 195 columns. We use 200 (95) matrices as the
training (test) set.

Evaluation metric. To evaluate the quality of a sketching matrix S, it suffices to evaluate the output
of Algorithm 1 using the sketching matrix S on different input matrices A. We first define the optimal
approximation loss for test set Te as follows: App∗Te , EA∼Te‖A− [A]k‖F .
Note that App∗Te does not depend on S, and in general it is not achievable by any sketch S with
m < d, because of information loss. Based on the definition of the optimal approximation loss, we
define the error of the sketch S for Te as Err(Te, S) , EA∼Te‖A− SCW(S,A)‖F − App∗Te.

In our datasets, some of the matrices have much larger singular values than the others. To avoid
imbalance in the dataset, we normalize the matrices so that their top singular values are all equal.

Figure 4: Low rank approximation results for Logo video frame: the best rank-10 approximation
(left), and rank-10 approximations reported by Algorithm 1 using a sparse learned sketching matrix
(middle) and a sparse random sketching matrix (right).

5.1 Average test error

We first test all methods on different datasets, with various combination of k,m. See Figure 2 for
the results when k = 10,m = 20. As we can see, for video datasets, learned sketching matrices
can get 20× better test error than the sparse random or dense random sketching matrices. For other

6They can be downloaded from http://youtu.be/L5HQoFIaT4I, http://youtu.be/xmLZsEfXEgE and
http://youtu.be/ufnf_q_3Ofg

7

http://youtu.be/L5HQoFIaT4I
http://youtu.be/xmLZsEfXEgE
http://youtu.be/ufnf_q_3Ofg

datasets, learned sketching matrices are still more than 2× better. In this experiment, we have
run each configuration 5 times, and computed the standard error of each test error7. For Logo,
Eagle, Friends, Hyper and Tech, the standard errors of learned, sparse random and dense random
sketching matrices are respectively, (1.5, 8.4, 35.3, 124, 41)× 10−6, (3.1, 5.3, 7.0, 2.9, 4.5)× 10−2

and (3.5, 18.1, 4.6, 10.7, 3.3) × 10−2. It is clear that the standard error of the learned sketching
matrix is a few order of magnitudes smaller than the random sketching matrices, which shows another
benefit of learning sketching matrices.

Similar improvement of the learned sketching matrices over the random sketching matrices can be
observed when k = 10,m = 10, 20, 30, 40, · · · , 80, see Figure 3. We also include the test error
results in Table 1 for the case when k = 20, 30. Finally, in Figure 4, we visualize an example output
of the algorithm for the case k = 10,m = 20 for the Logo dataset.

5.2 Comparing Random, Learned and Mixed

In Table 2, we investigate the performance of the mixed sketching matrices by comparing them with
random and learned sketching matrices. In all scenarios, the mixed sketching matrices yield much
better results than the random sketching matrices, and sometimes the results are comparable to those
of learned sketching matrices. This means, in most cases it suffices to train half of the sketching
matrix to obtain good empirical results, and at the same time, by our Theorem 1, we can use the
remaining random half of the sketching matrix to obtain worst-case guarantees.

Moreover, if we do not fix the number of learned rows to be half, the test error increases as the number
of learned rows decreases. In Figure 5, we plot the test error for the setting with m = 20, k = 10
using 100 Logo matrices, running for 3000 iterations.

5.3 Mixing Training Sets

In our previous experiments, we constructed a different learned sketching matrix S for each data set.
However, one can use a single random sketching matrix for all three data sets simultaneously. Next,
we study the performance of a single learned sketching matrix for all three data sets. In Table 3, we
constructed a single learned sketching matrix S with m = k = 10 on a training set containing 300
matrices from Logo, Eagle and Friends (each has 100 matrices). Then, we tested S on Logo matrices
and compared its performance to the performance of a learned sketching matrix SL trained on Logo
dataset (i.e., using 100 Logo matrices only), as well as to the performance of a random sketching SR.
The performance of the sketching matrix S with a mixed training set from all three datasets is close
to the performance of the sketching matrix SL with training set only from Logo dataset, and is much
better than the performance of the random sketching matrix SR.

5.4 Running Time

The runtimes of the algorithm with a random sketching matrix and our learned sketching matrix
are the same, and are much less than the runtime of the “standard” SVD method (implemented in
Pytorch). In Table 4, we present the runtimes of the algorithm with different types of sketching
matrices (i.e., learned and random) on Logo matrices with m = k = 10, as well as the training time
of the learned case. Notice that training only needs to be done once, and can be done offline.

6 Conclusions

In this paper we introduced a learning-based approach to sketching algorithms for computing low-rank
decompositions. Such algorithms proceed by computing a projection SA, where A is the input matrix
and S is a random “sketching” matrix. We showed how to train S using example matrices A in
order to improve the performance of the overall algorithm. Our experiments show that for several
different types of datasets, a learned sketch can significantly reduce the approximation loss compared
to a random matrix. Further, we showed that if we mix a random matrix and a learned matrix (by
concatenation), the result still offers an improved performance while inheriting worst case guarantees
of the random sketch component.

7They were very small, so we did not plot in the figures

8

0 10 20
#Learned Rows

0.0
0.5
1.0
1.5
2.0

Te
st

 E
rro

r

Figure 5: Test errors of mixed
sketching matrices with differ-
ent number of “learned” rows.

Table 3: Evaluation of the sketching matrix trained on different sets
Logo+Eagle+Friends Logo only Random

Test Error 0.67 0.27 5.19

Table 4: Runtimes of the algorithm with different sketching matrices
SVD Random Learned-Inference Learned-Training
2.2s 0.03s 0.03s 9481.25s

Acknowledgment

This research was supported by NSF TRIPODS award #1740751 and Simons Investigator Award.
The authors would like to thank the anonymous reviewers for their insightful comments and sugges-
tions.

References
Z. Allen-Zhu and Y. Li. Lazysvd: even faster svd decomposition yet without agonizing pain. In

Advances in Neural Information Processing Systems, pages 974–982, 2016.

M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik. Learning to branch. In International Conference
on Machine Learning, pages 353–362, 2018.

L. Baldassarre, Y.-H. Li, J. Scarlett, B. Gözcü, I. Bogunovic, and V. Cevher. Learning-based
compressive subsampling. IEEE Journal of Selected Topics in Signal Processing, 10(4):809–822,
2016.

A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using generative models. In
International Conference on Machine Learning, pages 537–546, 2017.

C. Boutsidis and A. Gittens. Improved matrix algorithms via the subsampled randomized hadamard
transform. SIAM Journal on Matrix Analysis and Applications, 34(3):1301–1340, 2013.

E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on information theory, 52(2):
489–509, 2006.

K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model. In Proceedings
of the forty-first annual symposium on Theory of computing (STOC), pages 205–214, 2009.

K. L. Clarkson and D. P. Woodruff. Low-rank approximation and regression in input sparsity time.
Journal of the ACM (JACM), 63(6):54, 2017.

M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu. Dimensionality reduction for k-means
clustering and low rank approximation. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pages 163–172, 2015.

D. Davidov, E. Gabrilovich, and S. Markovitch. Parameterized generation of labeled datasets for text
categorization based on a hierarchical directory. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’04, pages
250–257, 2004.

D. L. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

M. Ghashami and J. M. Phillips. Relative errors for deterministic low-rank matrix approximations.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pages 707–717, 2014.

9

M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff. Frequent directions: Simple and
deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792, 2016.

S. Gollapudi and D. Panigrahi. Online algorithms for rent-or-buy with expert advice. In International
Conference on Machine Learning, pages 2319–2327, 2019.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,
2011.

P. Hand and V. Voroninski. Global guarantees for enforcing deep generative priors by empirical risk.
In Conference On Learning Theory, 2018.

S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing the curse
of dimensionality. Theory of computing, 8(1):321–350, 2012.

C.-Y. Hsu, P. Indyk, D. Katabi, and A. Vakilian. Learning-based frequency estimation algorithms.
International Conference on Learning Representations, 2019.

N. Imamoglu, Y. Oishi, X. Zhang, G. Ding, Y. Fang, T. Kouyama, and R. Nakamura. Hyperspectral
image dataset for benchmarking on salient object detection. In Tenth International Conference on
Quality of Multimedia Experience, (QoMEX), pages 1–3, 2018.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization algorithms
over graphs. In Advances in Neural Information Processing Systems, pages 6348–6358, 2017.

M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming. Adaptive neural signal detection for massive
MIMO. CoRR, abs/1906.04610, 2019.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In
Proceedings of the 2018 International Conference on Management of Data, pages 489–504, 2018.

E. Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 581–588, 2013.

T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned advice. In International
Conference on Machine Learning, pages 3302–3311, 2018.

X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and
applications to robust linear regression. In Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 91–100, 2013.

C. Metzler, A. Mousavi, and R. Baraniuk. Learned d-amp: Principled neural network based compres-
sive image recovery. In Advances in Neural Information Processing Systems, pages 1772–1783,
2017.

M. Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In Advances in
Neural Information Processing Systems, pages 464–473, 2018.

A. Mousavi, A. B. Patel, and R. G. Baraniuk. A deep learning approach to structured signal recovery.
In Communication, Control, and Computing (Allerton), 2015 53rd Annual Allerton Conference on,
pages 1336–1343. IEEE, 2015.

J. Nelson and H. L. Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser subspace
embeddings. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 117–126, 2013.

M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ml predictions. In Advances
in Neural Information Processing Systems, pages 9661–9670, 2018.

T. Sarlos. Improved approximation algorithms for large matrices via random projections. In 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 143–152, 2006.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

10

J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash for indexing big data - a survey.
Proceedings of the IEEE, 104(1):34–57, 2016.

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends R© in
Theoretical Computer Science, 10(1–2):1–157, 2014.

F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm for the approximation
of matrices. Applied and Computational Harmonic Analysis, 25(3):335–366, 2008.

11

A The case of m = 1

In this section, we denote the SVD of A as UAΣA(V A)> such that both UA and V A have or-
thonormal columns and ΣA = diag{λA1 , · · · , λAd } is a diagonal matrix with nonnegative entries. For
simplicity, we assume that for all A ∼ D, 1 = λ1 ≥ · · · ≥ λd. We use UAi to denote the i-th column
of UA, and similarly for V Ai . Denote ΣA = diag{λA1 , · · · , λAd }.
We want to find [A]k, the rank-k approximation of A. In general, it is hard to obtain a closed form
expression of the output of Algorithm 1. However, for m = 1, such expressions can be calculated.
Indeed, if m = 1, the sketching matrix becomes a vector s ∈ R1×n. Therefore [AV]k has rank at
most one, so it suffices to set k = 1. Consider a matrix A ∼ D as the input to Algorithm 1. By
calculation, SA =

∑
i λ

A
i 〈s, UAi 〉(V Ai)>, which is a vector. For example, if S = UA1 , we obtain

λA1 (V A1)>. Note that in this section to emphasize that m = 1 (i.e., S is a vector), we refer to S as s.

Since SA is a vector, applying SVD on it is equivalent to performing normalization. Therefore,

V =

∑d
i=1 λ

A
i 〈s, UAi 〉(V Ai)>√∑d

i=1(λAi)2〈s, UAi 〉2

Ideally, we hope that V is as close to V A1 as possible, because that means [AV]1V
> is close to

λA1 U
A
1 (V A1)>, which captures the top singular component of A, i.e., the optimal solution. More

formally,

AV =

∑d
i=1(λAi)2〈s, UAi 〉UAi√∑d
i=1(λAi)2〈s, UAi 〉2

We want to maximize its norm, which is:∑d
i=1(λAi)4〈s, UAi 〉2∑d
i=1(λAi)2〈s, UAi 〉2

(3)

We note that one can simplify (3) by considering only the contribution from the top left singular
vector UA1 , which corresponds to the maximization of the following expression:

〈s, UA1 〉2∑d
i=1(λAi)2〈s, UAi 〉2

(4)

B Optimization Bounds

Motivated by the empirical success of sketch optimization, we investigate the complexity of optimiz-
ing the loss function. We focus on the simple case where m = 1 and therefore S is just a (dense)
vector. Our main observation is that a vector s picked uniformly at random from the d-dimensional
unit sphere achieves an approximately optimal solution, with the approximation factor depending on
the maximum stable rank of matrices A1, · · · , AN . This algorithm is not particularly useful for our
purpose, as our goal is to improve over the random choice of the sketching matrix S. Nevertheless, it
demonstrates that an algorithm with a non-trivial approximation factor exists.
Definition 1 (stable rank (r′)). For a matrix A, the stable rank of A is defined as the squared ratio of
Frobenius and operator norm of A. I.e.,

r′(A) =
||A||2F
||A||22

=

∑
i(λ

A
i)2

maxi(λAi)2
.

Note that since we assume for all matrices A ∼ D, 1 = λA1 ≥ · · · ≥ λAd > 0, for all these matrices
r′(A) =

∑
i(λ

A
i)2.

First, we consider the simplified objective function as in (4).
Lemma 2. A random vector s which is picked uniformly at random from the d-dimensional unit
sphere, is an O(r′)-approximation to the optimum value of the simplified objective function in
Equation (4), where r′ is the maximum stable rank of matrices A1, · · · , AN .

12

Proof. We will show that

E

[
〈s, UA1 〉2∑d

i=1(λAi)2〈s, UAi 〉2

]
= Ω(1/r′(A))

for all A ∼ D where s is a vector picked uniformly at random from Sd−1. Since for all A ∼ D we
have 〈s,UA1 〉

2∑d
i=1(λAi)2〈s,UAi 〉2

≤ 1, by the linearity of expectation we have that the vector s achieves an

O(r′)-approximation to the maximum value of the objective function
N∑
j=1

〈s, UAj1 〉2∑d
i=1(λ

Aj
i)2〈s, UAji 〉2

.

First, recall that to sample s uniformly at random from Sd−1 we can generate s as∑d
i=1 αiU

A
i /
√∑d

i=1 α
2
i where for all i ≤ d, αi ∼ N (0, 1). This helps us evaluate

E
[

〈s,UA1 〉
2∑d

i=1(λAi)2〈s,UAi 〉2

]
for an arbitrary matrix A ∼ D:

E = E

[
〈s, UA1 〉2∑d

i=1(λAi)2〈s, UAi 〉2

]
= E

[
(α1)2∑d

i=1(λAi)2 · (αi)2

]

≥ E

[
(α1)2∑d

i=1(λAi)2 · (αi)2
|Ψ1 ∩Ψ2

]
· Pr(Ψ1 ∩Ψ2)

where the events Ψ1,Ψ2 are defined as:

Ψ1 , 1

[
|α1| ≥

1

2

]
, and Ψ2 , 1

[
d∑
i=2

(λAi)2(αi)
2 ≤ 2 · r′(A)

]

Since αis are independent, we have

E ≥ E

[
(α1)2

(α1)2 + 2 · r′(A)
|Ψ1 ∩Ψ2

]
· Pr(Ψ1) · Pr(Ψ2) ≥ 1

8 · r′(A) + 1
· Pr(Ψ1) · Pr(Ψ2)

where we used that (α1)2

(α1)2+2·r′(A) is increasing for (α1)2 ≥ 1
4 . It remains to prove that

Pr(Ψ1),Pr(Ψ2) = Θ(1). We observe that, since αi ∼ N (0, 1), we have

Pr(Ψ1) = Pr

(
|α1| ≥

1

2

)
= Θ(1)

Similarly, by Markov inequality, we have

Pr(Ψ2) = Pr

(
d∑
i=1

(λAi)2(αi)
2 ≤ 2r′(A)

)
≥ 1− Pr

(
d∑
i=1

(λAi)2(αi)
2 > 2r′(A)

)
≥ 1

2

Next, we prove that a random vector s ∈ Sd−1 achieves an O(r′(A))-approximation to the optimum
of the main objective function as in Equation (3).
Lemma 3. A random vector s which is picked uniformly at random from the d-dimensional unit
sphere, is an O(r′)-approximation to the optimum value of the objective function in Equation (3),
where r′ is the maximum stable rank of matrices A1, · · · , AN .

Proof. We assume that the vector s is generated via the same process as in the proof of Lemma 2. It
follows that

E

[∑d
i=1(λAi)4〈s, UAi 〉2∑d
i=1(λAi)2〈s, UAi 〉2

]
≥ E

[
(α1)2∑d

i=1(λAi)2 · (αi)2

]
= Ω(1/r′(A))

13

C Generalization Bounds

Define the loss function as

L(s) , −EA∼D

[∑d
i=1

(
λAi
)4 〈s, UAi 〉2∑d

i=1

(
λAi
)2 〈s, UAi 〉2

]

We want to find a vector s ∈ Sd−1 to minimize L(s), where Sd−1 is the d-dimensional unit sphere.
Since D is unknown, we are optimizing the following empirical loss:

L̂Tr(s) , −
1

N

N∑
j=1

∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2∑d
i=1

(
λ
Aj
i

)2

〈s, UAji 〉2

The importance of robust solutions We start by observing that if s minimizes the training loss L̂,
it is not necessarily true that s is the optimal solution for the population loss L. For example, it could
be the case that {Aj}j=1,··· ,N are diagonal matrices with only 1 non-zeros on the top row, while
s = (ε,

√
1− ε2, 0, · · · , 0) for ε close to 0. In this case, we know that L̂Tr(s) = −1, which is at its

minimum value.

However, such a solution is not robust. In the population distribution, if there exists a matrix A such
that A = diag(

√
1− 100ε2, 10ε, 0, 0, · · · , 0), insert s into (3),∑d

i=1

(
λAi
)4 〈s, UAi 〉2∑d

i=1

(
λAi
)2 〈s, UAi 〉2 =

(1− 100ε2)2ε2 + 104ε4(1− ε2)

(1− 100ε2)ε2 + 100ε2(1− ε2)
<

ε2 + 104ε4

101ε2 − 100ε4
=

1 + 104ε2

101− 100ε2

The upper bound is very close to 0 if ε is small enough. This is because when the denominator is
extremely small, the whole expression is susceptible to minor perturbations on A. This is a typical
example showing the importance of finding a robust solution. Because of this issue, we will show a
generalization guarantee for a robust solution s.

Definition of robust solution First, define event ζA,δ,s , 1
[∑d

i=1

(
λAi
)2 〈s, UAi 〉2 < δ

]
, which

is the denominator in the loss function. Ideally, we want this event to happen with a small probability,
which indicates that for most matrices, the denominator is large, therefore s is robust in general. We
have the following definition of robustness.
Definition 2 ((ρ, δ)-robustness). s is (ρ, δ)-robust with respect to D if EA∼D[ζA,δ,s] ≤ ρ. s is
(ρ, δ)-robust with respect to Tr if EA∼Tr[ζA,δ,s] ≤ ρ.

For a given D, we can define robust solution set that includes all robust vectors.
Definition 3 ((ρ, δ)-robust set). MD,ρ,δ is defined to be the set of all vectors s ∈ Sd−1 s.t. s is
(ρ, δ)-robust with respect to D.

Estimating MD,ρ,δ The drawback of the above definition is that MD,ρ,δ is defined by the unknown
distribution D, so for fixed δ and ρ, we cannot tell whether s is in MD,ρ,δ or not. However, we can
estimate the robustness of s using the training set. Specifically, we have the following lemma:
Lemma 4 (Estimating robustness). For a training set Tr of size N sampled uniformly at random
from D, and a given s ∈ Rd, a constant 1 > η > 0, if s is (ρ, δ)-robust with respect to Tr, then with

probability at least 1− e−
η2pN

2 , s is
(

ρ
1−η , δ

)
-robust with respect to D.

Proof. Suppose that PrA∼D[ζA,δ,s] = ρ1, which means E
[∑

Ai∈Tr ζAi,δ,s
]

= ρ1N . Since events
ζAi,δ,s’s are 0-1 random variables, by Chernoff bound,

Pr

(∑
Ai∈Tr

ζAi,δ,s ≤ (1− η)ρ1N

)
≤ e−

η2ρ1N
2

14

If ρ1 < ρ < ρ/(1 − η), our claim is immediately true. Otherwise, we know e−
η2ρ1N

2 ≤ e−
η2ρN

2 .

Hence, with probability at least 1 − e−
η2ρN

2 , Nρ =
∑
Ai∼Tr ζAi,δ,s > (1 − η)ρ1N . This implies

that with probability at least 1− e−
η2ρN

2 , ρ1 ≤ ρ
1−η .

Lemma 4 implies that for a fixed solution s, if it is (ρ, δ)-robust in Tr, it is also (O(ρ), δ)-robust in D
with high probability. However, Lemma 4 only works for a single solution s, but there are infinitely
many potential s on the d-dimensional unit sphere.

To remedy this problem, we discretize the unit sphere to bound the number of potential solutions.
Classical results tell us that discretizing the unit sphere into a grid of edge length ε√

d
gives C

εd
points

on the grid for some constant C (e.g., see Section 3.3 in [Har-Peled et al., 2012] for more details).
We will only consider these points as potential solutions, denoted as B̂d. Thus, we can find a “robust”
solution s ∈ B̂d with decent probability, using Lemma 4 and union bound.
Lemma 5 (Picking robust s). For a fixed constant ρ > 0, 1 > η > 0, with probability at least

1− C
εd
e−

η2ρN
2 , any (ρ, δ)-robust s ∈ B̂d with respect to Tr is

(
ρ

1−η , δ
)

-robust with respect to D.

Since we are working on the discretized solution, we need a new definition of robust set.

Definition 4 (Discretized (ρ, δ)-robust set). M̂D,ρ,δ is defined to be the set of all vector s ∈ B̂d s.t. s
is (ρ, δ)-robust with respect to D.

Using similar arguments as Lemma 5, we know all solutions from M̂D,ρ,δ are robust with respect to
Tr as well.

Lemma 6. With probability at least 1 − C
εd
e−

η2ρN
3 , for a constant η > 0, all solutions in M̂D,ρ,δ,

are ((1 + η)ρ, δ)-robust with respect to Tr.

Proof. Consider a fixed solution s ∈ M̂D,ρ,δ. Note that E
[∑

Ai∈Tr ζAi,δ,s
]

= ρN and ζAi,δ,s are
0-1 random variables. Therefore by Chernoff bound,

Pr

(∑
Ai∈Tr

ζAi,δ,s ≥ (1 + η)ρN

)
≤ e−

η2ρN
3 .

Hence, with probability at least 1− e−
η2ρN

3 , s is ((1 + η)ρ, δ)-robust with respect to Tr.

By union bound on all points in M̂D,ρ,δ ⊆ B̂d, the proof is complete.

C.1 Generalization bound

Finally, we show the generalization bounds for robust solutions,. To this can we use Rademacher
complexity to prove generalization bound. Define Rademacher complexity R(M̂D,ρ,δ ◦ Tr) as

R(M̂D,ρ,δ ◦ Tr) ,
1

N
E

σ∼{±1}N
sup

s∈M̂D,ρ,δ

N∑
j=1

σj
∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2∑d
i=1

(
λ
Aj
i

)2

〈s, UAji 〉2

 .
R(M̂D,ρ,δ ◦ Tr) is handy, because we have the following theorem (notice that the loss function takes
value in [−1, 0]):
Theorem 2 (Theorem 26.5 in [Shalev-Shwartz and Ben-David, 2014]). Given constant δ > 0, with
probability of at least 1− δ, for all s ∈ M̂D,ρ,δ ,

L(s)− L̂Tr(s) ≤ 2R(M̂D,ρ,δ ◦ Tr) + 4

√
2 log(4/δ)

N

That means, it suffices to bound R(M̂D,ρ,δ ◦ Tr) to get the generalization bound. We have the
following Lemma.

15

Lemma 7 (Bound onR(M̂D,ρ,δ ◦Tr)). For a constant η > 0, with probability at least 1− C
εd
e−

η2pN
3 ,

R(M̂D,ρ,δ ◦ Tr) ≤ (1 + η)ρ+ 1−δ
2δ + d√

N
.

Proof. Define ρ′ = (1 + η)ρ. By Lemma 6, we know that with probability 1 − C
εd
e−

η2pN
3 , any

s ∈ M̂D,ρ,δ is (ρ′, δ)-robust with respect to Tr, hence
∑
A∈Tr ζA,δ,s ≤ ρ′N . The analysis below is

conditioned on this event.

Define hA,δ,s , max{δ,
∑d
i=1(λAi)2〈s, UAi 〉2}. We know that with probability 1− C

εd
e−

η2pN
3 ,

N ·R(M̂D,ρ,δ ◦ Tr) = Eσ∼{±1}N sup
s∈M̂D,ρ,δ

N∑
j=1

σj
∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2∑d
i=1

(
λ
Aj
i

)2

〈s, UAji 〉2

≤ ρ′N + Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj
∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2

hA,δ,s
(5)

where (5) holds because by definition, hA,δ,s ≥
∑d
i=1(λAi)2〈s, UAi 〉2 if and only if ζA,δ,s = 1, which

happens for at most ρ′N matrices. Note that for any matrix Aj ,
σj
∑d
i=1

(
λ
Aj
i

)4
〈s,U

Aj
i 〉

2∑d
i=1

(
λ
Aj
i

)2
〈s,U

Aj
i 〉2

≤ 1.

Now,

Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj
∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2

hA,δ,s

≤ Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

1σj=1

∑d
i=1

(
λ
Aj
i

)4

〈s, UAji 〉2

δ
− 1σj=−1

d∑
i=1

(
λ
Aj
i

)4

〈s, UAji 〉
2

 (6)

= Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

(
σj

d∑
i=1

(
λ
Aj
i

)4

〈s, UAji 〉
2 + 1σj=1

d∑
i=1

(
λ
Aj
i

)4

〈s, UAji 〉
2

(
1

δ
− 1

))

≤ N

2δ
− N

2
+ Eσ sup

s∈M̂D,ρ,δ

N∑
j=1

σj

d∑
i=1

(
λ
Aj
i

)4

〈s, UAji 〉
2 (7)

The first inequality, (6), holds as
∑d
i=1

(
λ
Aj
i

)4
〈s,U

Aj
i 〉

2

hA,δ,s
∈ [δ, 1]. It remains to bound the last term (7).

Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj

d∑
i=1

(
λ
Aj
i

)4

〈s, UAji 〉
2 ≤

d∑
i=1

Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj

〈
s,
(
λ
Aj
i

)2

U
Aj
i

〉2

(8)

By contraction lemma of Rademacher complexity, we have

Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj

〈
s,
(
λ
Aj
i

)2

U
Aj
i

〉2

≤ Eσ sup
s∈M̂D,ρ,δ

N∑
j=1

σj

〈
s,
(
λ
Aj
i

)2

U
Aj
i

〉

= Eσ sup
s∈M̂D,ρ,δ

〈
s,

N∑
j=1

σj

(
λ
Aj
i

)2

U
Aj
i

〉

≤ Eσ

∥∥∥∥∥∥
N∑
j=1

σj

(
λ
Aj
i

)2

U
Aj
i

∥∥∥∥∥∥
2

16

Where the last inequality is by Cauchy-Schwartz inequality. Now, using Jensen’s inequality, we have

Eσ

∥∥∥∥∥∥
N∑
j=1

σj

(
λ
Aj
i

)2

U
Aj
i

∥∥∥∥∥∥
2

≤

Eσ

∥∥∥∥∥∥
N∑
j=1

σj

(
λ
Aj
i

)2

U
Aj
i

∥∥∥∥∥∥
2

2

1/2

=

 N∑
j=1

(
λ
Aj
i

)4

1/2

≤
√
N

(9)

Combining (5), (7), (8) and (9), we have R(M̂D,ρ,δ ◦ Tr) ≤ ρ′ + 1−δ
2δ + d√

N
.

Combining with Theorem 2, we get our main theorem:
Theorem 3 (Main Theorem). Given a training set Tr = {Aj}Nj=1 sampled uniformly from D, and
fixed constants 1 > ρ ≥ 0, δ > 0, 1 > η > 0, if there exists a (ρ, δ)-robust solution s ∈ B̂d

with respect to Tr, then with probability at least 1− C
εd
e−

η2pN
2 − C

εd
e−

η2pN
3(1−η) , for s ∈ B̂d that is a

(ρ, δ)-robust solution with respect to Tr,

L(s) ≤ L̂Tr(s) +
2(1 + η)ρ

1− η
+

1− δ
δ

+
2d√
N

+ 4

√
2 log(4/δ)

N

Proof. Since we can find s ∈ B̂d s.t. s is (ρ, δ)-robust with respect to Tr, by Lemma 5, with

probability 1− C
εd
e−

η2pN
2 , s is (ρ

1−η , δ)-robust with respect to D. Therefore, s ∈ M̂D, ρ
1−η ,δ

. Apply

Lemma 7, we have With probability at least 1− C
εd
e−

η2ρN
3(1−η) , R(M̂D,ρ,δ ◦Tr) ≤ ρ(1+η)

1−η + 1−δ
2δ + d√

N
.

Combined with Theorem 2, the proof is complete.

In summary, Theorem 3 states that if we can find a solution s which “fits” the training set, and is very
robust, then it generalizes to the test set.

D Missing Proofs of Section 4

Fact 1 (Pythagorean Theorem). If A and B are matrices with the same number of rows and columns,
then AB> = 0 implies ||A+B||2F = ||A||2F + ||B||2F .

Proof of Lemma 1. Note that AV V > is a row projection of A on the colsp(V). Then, for any
conforming Y ,

(A−AV V >)(AV V > − Y V >)> = A(I − V V >)V (AV − Y)>

= A(V − V V >V)(AV − Y)> = 0.

where the last equality follows from the fact if V has orthonormal columns then V V >V = V (e.g.,
see Lemma 3.5 in [Clarkson and Woodruff, 2009]). Then, by the Pythagorean Theorem (Fact 1), we
have

||A− Y V >||2F = ||A−AV V >||2F + ||AV V > − Y V >||2F (10)

Since V has orthonormal columns, for any conforming x, ||x>V >|| = ||x||. Thus, for any Z of rank
at most k,

||AV V > − [AV]kV
>||F = ||(AV − [AV]k)V >||F = ||AV − [AV]k||F

≤ ||AV − Z||F = ||AV V > − ZV >||F
(11)

Hence,

||A− [AV]kV
>||2F = ||A−AV V >||2F + ||AV V > − [AV]kV

>||2F B By (10)

≤ ||A−AV V >||2F + ||AV V > − ZV >||2F B By (11)

This implies that [AV]kV
> is a best rank-k approximation of A in the colsp(V).

17

	Introduction
	Related work

	Preliminaries
	Training Algorithm
	Worst Case Bound
	Experimental Results
	Average test error
	Comparing Random, Learned and Mixed
	Mixing Training Sets
	Running Time

	Conclusions
	The case of m=1
	Optimization Bounds
	Generalization Bounds
	Generalization bound

	Missing Proofs of Section 4

