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Abstract

Transformer architectures show significant promise for natural language processing.
Given that a single pretrained model can be fine-tuned to perform well on many
different tasks, these networks appear to extract generally useful linguistic features.
How do such networks represent this information internally? This paper describes
qualitative and quantitative investigations of one particularly effective model, BERT.
At a high level, linguistic features seem to be represented in separate semantic and
syntactic subspaces. We find evidence of a fine-grained geometric representation of
word senses. We also present empirical descriptions of syntactic representations in
both attention matrices and individual word embeddings, as well as a mathematical
argument to explain the geometry of these representations.

1 Introduction

Neural networks for language processing have advanced rapidly in recent years. A key breakthrough
was the introduction of transformer architectures [25]. One recent system based on this idea, BERT
[5], has proven to be extremely flexible: a single pretrained model can be fine-tuned to achieve
state-of-the-art performance on a wide variety of NLP applications. This suggests the model is
extracting a set of generally useful features from raw text. It is natural to ask, which features are
extracted? And how is this information represented internally?

Similar questions have arisen with other types of neural nets. Investigations of convolutional neural
networks [9, 8] have shown how representations change from layer to layer [27] ; how individual
units in a network may have meaning [2]; and that “meaningful” directions exist in the space of
internal activations [7]. These explorations have led to a broader understanding of network behavior.

Analyses on language-processing models (e.g., [1, 6, 10, 20, 24]) point to the existence of similarly
rich internal representations of linguistic structure. Syntactic features seem to be extracted by RNNs
(e.g., [1, 10]) as well as in BERT [24, 23, 11, 20]. Inspirational work from Hewitt and Manning [6]
found evidence of a geometric representation of entire parse trees in BERT’s activation space.

Our work extends these explorations of the geometry of internal representations. Investigating
how BERT represents syntax, we describe evidence that attention matrices contain grammatical
representations. We also provide mathematical arguments that may explain the particular form of the
parse tree embeddings described in [6]. Turning to semantics, using visualizations of the activations
created by different pieces of text, we show suggestive evidence that BERT distinguishes word senses
at a very fine level. Moreover, much of this semantic information appears to be encoded in a relatively
low-dimensional subspace.
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2 Context and related work

Our object of study is the BERT model introduced in [5]. To set context and terminology, we briefly
describe the model’s architecture. The input to BERT is based on a sequence of tokens (words or
pieces of words). The output is a sequence of vectors, one for each input token. We will often refer to
these vectors as context embeddings because they include information about a token’s context.

BERT’s internals consist of two parts. First, an initial embedding for each token is created by
combining a pre-trained wordpiece embedding with position and segment information. Next, this
initial sequence of embeddings is run through multiple transformer layers, producing a new sequence
of context embeddings at each step. (BERT comes in two versions, a 12-layer BERT-base model and
a 24-layer BERT-large model.) Implicit in each transformer layer is a set of attention matrices, one
for each attention head, each of which contains a scalar value for each ordered pair (tokeni, tokenj).

2.1 Language representation by neural networks

Sentences are sequences of discrete symbols, yet neural networks operate on continuous data–vectors
in high-dimensional space. Clearly a successful network translates discrete input into some kind of
geometric representation–but in what form? And which linguistic features are represented?

The influential Word2Vec system [16], for example, has been shown to place related words near each
other in space, with certain directions in space correspond to semantic distinctions. Grammatical
information such as number and tense are also represented via directions in space. Analyses of the
internal states of RNN-based models have shown that they represent information about soft hierarchi-
cal syntax in a form that can be extracted by a one-hidden-layer network [10]. One investigation of
full-sentence embeddings found a wide variety of syntactic properties could be extracted not just by
an MLP, but by logistic regression [3].

Several investigations have focused on transformer architectures. Experiments suggest context
embeddings in BERT and related models contain enough information to perform many tasks in the
traditional “NLP pipeline” [23]–tagging part-of-speech, co-reference resolution, dependency labeling,
etc.–with simple classifiers (linear or small MLP models) [24, 20]. Qualitative, visualization-based
work [26] suggests attention matrices may encode important relations between words.

A recent and fascinating discovery by Hewitt and Manning [6], which motivates much of our work, is
that BERT seems to create a direct representation of an entire dependency parse tree. The authors find
that (after a single global linear transformation, which they term a “structural probe”) the square of
the distance between context embeddings is roughly proportional to tree distance in the dependency
parse. They ask why squaring distance is necessary; we address this question in the next section.

The work cited above suggests that language-processing networks create a rich set of intermediate
representations of both semantic and syntactic information. These results lead to two motivating
questions for our research. Can we find other examples of intermediate representations? And, from a
geometric perspective, how do all these different types of information coexist in a single vector?

3 Geometry of syntax

We begin by exploring BERT’s internal representation of syntactic information. This line of inquiry
builds on the work by Hewitt and Manning in two ways. First, we look beyond context embeddings
to investigate whether attention matrices encode syntactic features. Second, we provide a simple
mathematical analysis of the tree embeddings that they found.

3.1 Attention probes and dependency representations

As in [6], we are interested in finding representations of dependency grammar relations [4]. While [6]
analyzed context embeddings, another natural place to look for encodings is in the attention matrices.
After all, attention matrices are explicitly built on the relations between pairs of words.

To formalize what it means for attention matrices to encode linguistic features, we use an atten-

tion probe, an analog of edge probing [24]. An attention probe is a task for a pair of tokens,
(tokeni, tokenj) where the input is a model-wide attention vector formed by concatenating the

2



Figure 1: A model-wide attention vector for an ordered pair of tokens contains the scalar attention
values for that pair in all attention heads and layers. Shown: BERT-base.

entries aij in every attention matrix from every attention head in every layer. The goal is to classify
a given relation between the two tokens. If a linear model achieves reliable accuracy, it seems
reasonable to say that the model-wide attention vector encodes that relation. We apply attention
probes to the task of identifying the existence and type of dependency relation between two words.

3.1.1 Method

The data for our first experiment is a corpus of parsed sentences from the Penn Treebank [13].
This dataset has the constituency grammar for the sentences, which was translated to a dependency
grammar using the PyStanfordDependencies library [14]. The entirety of the Penn Treebank consists
of 3.1 million dependency relations; we filtered this by using only examples of the 30 dependency
relations with more than 5,000 examples in the data set. We then ran each sentence through BERT-
base, and obtained the model-wide attention vector (see Figure 1) between every pair of tokens in the
sentence, excluding the [SEP ] and [CLS] tokens. This and subsequent experiments were conducted
using PyTorch on MacBook machines.

With these labeled embeddings, we trained two L2 regularized linear classifiers via stochastic gradient
descent, using [19]. The first of these probes was a simple linear binary classifier to predict whether
or not an attention vector corresponds to the existence of a dependency relation between two tokens.
This was trained with a balanced class split, and 30% train/test split. The second probe was a
multiclass classifier to predict which type of dependency relation exists between two tokens, given
the dependency relation’s existence. This probe was trained with distributions outlined in table 2.

3.1.2 Results

The binary probe achieved an accuracy of 85.8%, and the multiclass probe achieved an accuracy of
71.9%. Our real aim, again, is not to create a state-of-the-art parser, but to gauge whether model-wide
attention vectors contain a relatively simple representation of syntactic features. The success of this
simple linear probe suggests that syntactic information is in fact encoded in the attention vectors.

3.2 Geometry of parse tree embeddings

Hewitt and Manning’s result that context embeddings represent dependency parse trees geometrically
raises several questions. Is there a reason for the particular mathematical representation they found?
Can we learn anything by visualizing these representations?

3.2.1 Mathematics of embedding trees in Euclidean space

Hewitt and Manning ask why parse tree distance seems to correspond specifically to the square of
Euclidean distance, and whether some other metric might do better [6]. We describe mathematical
reasons why squared Euclidean distance may be natural.
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First, one cannot generally embed a tree, with its tree metric d, isometrically into Euclidean space
(Appendix 6.1). Since an isometric embedding is impossible, motivated by the results of [6] we might
ask about other possible representations.
Definition 1 (power-p embedding). Let M be a metric space, with metric d. We say f : M ! Rn is
a power-p embedding if for all x, y 2 M , we have

||f(x)� f(y)||p = d(x, y)

We will refer to the special case of a power-2 embedding as a Pythagorean embedding.

In these terms, we can say [6] found evidence of a Pythagorean embedding for parse trees. It turns
out that Pythagorean embeddings of trees are especially simple. For one thing, it is easy to write
down an explicit model–a mathematical idealization–for a Pythagorean embedding for any tree.
Theorem 1. Any tree with n nodes has a Pythagorean embedding into Rn�1

.

Proof. Let the nodes of the tree be t0, ..., tn�1, with t0 being the root node. Let {e1, ..., en�1} be
orthogonal unit basis vectors for Rn�1. Inductively, define an embedding f such that:

f(t0) = 0

f(ti) = ei + f(parent(ti))

Given two distinct tree nodes x and y, where m is the tree distance d(x, y), it follows that we can
move from f(x) to f(y) using m mutually perpendicular unit steps. Thus

||f(x)� f(y)||2 = m = d(x, y)

Remark 1. This embedding has a simple informal description: at each embedded vertex of the graph,
all line segments to neighboring embedded vertices are unit-distance segments, orthogonal to each
other and to every other edge segment. (It’s even easy to write down a set of coordinates for each
node.) By definition any two Pythagorean embeddings of the same tree are isometric; with that in
mind, we refer to this as the canonical Pythagorean embedding. (See [12] for an independent version
of this theorem.)

In the proof of Theorem 1, instead of choosing basis vectors in advance, one can choose random
unit vectors. Because two random vectors will be nearly orthogonal in high-dimensional space,
the Pythagorean embedding condition will approximately hold. This means that in space that
is sufficiently high-dimensional (compared to the size of the tree) it is possible to construct an
approximate Pythagorean embedding with essentially “local” information, where a tree node is
connected to its children via random unit-length branches. We refer to this type of embedding as a
random branch embedding. (See Appendix 6.2 for visualizations, and Appendix 6.1 for mathematical
detail.)

It is also worth noting that power-p embeddings will not necessarily even exist when p < 2. (See
Appendix 6.1)
Theorem 2. For any p < 2, there is a tree which has no power-p embedding.

Remark 2. A result of Schoenberg [22], phrased in our terminology, is that if a metric space X has a
power-p embedding into Rn, then it also has a power-q embedding for any q > p. Thus for p > 2
there will always be a power-p embedding for any tree. Unlike the case of p = 2, we do not know of
a simple way to describe the geometry of such an embedding.

The simplicity of Pythagorean tree embeddings, as well as the fact that they may be approximated by
a simple random model, suggests they may be a generally useful alternative to approaches to tree
embeddings that require hyperbolic geometry [18].

3.2.2 Visualization of parse tree embeddings

How do parse tree embeddings in BERT compare to exact power-2 embeddings? To explore this
question, we created a simple visualization tool. The input to each visualization is a sentence from
the Penn Treebank with associated dependency parse trees (see Section 3.1.1). We then extracted the

4



Figure 2: Visualizing embeddings of two sentences after applying the Hewitt-Manning probe. We
compare the parse tree (left images) with a PCA projection of context embeddings (right images).

Figure 3: The average squared edge length between two words with a given dependency.

token embeddings produced by BERT-large in layer 16 (following [6]), transformed by the Hewitt
and Manning’s “structural probe” matrix B, yielding a set of points in 1024-dimensional space. We
used PCA to project to two dimensions. (Other dimensionality-reduction methods, such as t-SNE
and UMAP [15], were harder to interpret.)

To visualize the tree structure, we connected pairs of points representing words with a dependency
relation. The color of each edge indicates the deviation from true tree distance. We also connected,
with dotted line, pairs of words without a dependency relation but whose positions (before PCA) were
far closer than expected. The resulting image lets us see both the overall shape of the tree embedding,
and fine-grained information on deviation from a true power-2 embedding.

Two example visualizations are shown in Figure 7, next to traditional diagrams of their underlying
parse trees. These are typical cases, illustrating some common patterns; for instance, prepositions are
embedded unexpectedly close to words they relate to. (Figure 8 shows additional examples.)

A natural question is whether the difference between these projected trees and the canonical ones is
merely noise, or a more interesting pattern. By looking at the average embedding distances of each
dependency relation (see Figure 3) , we can see that they vary widely from around 1.2 (compound :
prt, advcl) to 2.5 (mwe, parataxis, auxpass). Such systematic differences suggest that BERT’s
syntactic representation has an additional quantitative aspect beyond traditional dependency grammar.

4 Geometry of word senses

BERT seems to have several ways of representing syntactic information. What about semantic
features? Since embeddings produced by transformer models depend on context, it is natural to
speculate that they capture the particular shade of meaning of a word as used in a particular sentence.
(E.g., is “bark” an animal noise or part of a tree?) We explored geometric representations of word
sense both qualitatively and quantitatively.
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