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Abstract

The dominant approach to sequence generation is to produce a sequence in some
predefined order, e.g. left to right. In contrast, we propose a more general model
that can generate the output sequence by inserting tokens in any arbitrary order.
Our model learns decoding order as a result of its training procedure. Our ex-
periments show that this model is superior to fixed order models on a number
of sequence generation tasks, such as Machine Translation, Image-to-LaTeX and
Image Captioning.1

1 Introduction

Neural approaches to sequence generation have seen a variety of applications such as language
modeling [1], machine translation [2, 3], music generation [4] and image captioning [5]. All these
tasks involve modeling a probability distribution over sequences of some kind of tokens.

Usually, sequences are generated in the left-to-right manner, by iteratively adding tokens to the
end of an unfinished sequence. Although this approach is widely used due to its simplicity, such
decoding restricts the generation process. Generating sequences in the left-to-right manner reduces
output diversity [6] and could be unsuited for the target sequence structure [7]. To alleviate this
issue, previous studies suggested exploiting prior knowledge about the task (e.g. the semantic roles of
words in a natural language sentence or the concept of language branching) to select the preferable
generation order [6, 7, 8]. However, these approaches are still limited by predefined generation order,
which is the same for all input instances.

Figure 1: Examples of different decoding orders: left-to-right, alternative and right-to-left orders
respectively. Each line represents one decoding step.

In this work, we propose INTRUS: INsertion TRansformer for Unconstrained order Sequence
modeling. Our model has no predefined order constraint and generates sequences by iteratively
adding tokens to a subsequence in any order, not necessarily in the order they appear in the final
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1The source code is available at https://github.com/TIXFeniks/neurips2019_intrus.
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sequence. It learns to find convenient generation order as a by-product of its training procedure
without any reliance on prior knowledge about the task it is solving.

Our key contributions are as follows:

• We propose a neural sequence model that can generate the output sequence by inserting
tokens in any arbitrary order;

• The proposed model outperforms fixed-order baselines on several tasks, including Machine
Translation, Image-to-LaTeX and Image Captioning;

• We analyze learned generation orders and find that the model has a preference towards
producing “easy” words at the beginning and leaving more complicated choices for later.

2 Method

We consider the task of generating a sequence Y consisting of tokens yt given some input X . In
order to remove the predefined generation order constraint, we need to reformulate the probability
of target sequence in terms of token insertions. Unlike traditional models, there are multiple valid
insertions at each step. This formulation is closely related to the existing framework of generating
unordered sets, which we briefly describe in Section 2.1. In Section 2.2, we introduce our approach.

2.1 Generating unordered sets

In the context of unordered set generation, Vinyals et al. [9] proposed a method to learn sequence
order from data jointly with the model. The resulting model samples a permutation π(t) of the target
sequence and then scores the permuted sequence with a neural probabilistic model:

P (Yπ|x, θ) =
∏
t

p(yπ(t)|X, yπ(0), .., yπ(t−1), θ). (1)

The training is performed by maximizing the data log-likelihood over both model parameters θ and
target permutation π(t):

θ∗ = argmax
θ

∑
X,Y

max
π

logP (Yπ|x, θ). (2)

Exact maximization over π(t) requires O(|Y |!) operations, therefore it is infeasible in practice.
Instead, the authors propose using greedy or beam search. The resulting procedure resembles the
Expectation Maximization algorithm:

1. E step: find optimal π(t) for Y under current θ with inexact search,
2. M step: update parameters θ with gradient descent under π(t) found on the E step.

EM algorithms are known to easily get stuck in local optima. To mitigate this issue, the authors
sample permutations proportionally to p(yπ(t)|x, yπ(0), .., yπ(t−1), θ) instead of maximizing over π.

2.2 Our approach

The task now is to build a probabilistic model over sequences τ = (τ0, τ1, ..., τT ) of insertion opera-
tions. This can be viewed as an extension of the approach described in the previous section, which
operates on ordered sequences instead of unordered sets. At step t, the model generates either a pair
τt = (post, tokent) consisting of a position post in the produced so far sub-sequence (post ∈ [0, t])
and a token tokent to be inserted at this position, or a special EOS element indicating that the gener-
ation process is terminated. It estimates the conditional probability of a new insertion τt given X and
a partial output Ỹ (τ0:t−1) constructed from the previous inserts:

p(τ |X, θ) =
∏
t

p(τt|X, Ỹ (τ0:t−1), θ). (3)
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Training objective We train the model by maximizing the log-likelihood of the reference se-
quence Y given the source X , summed over the data set D:

L =
∑

{X,Y }∈D

log p(Y |X, θ) =
∑

{X,Y }∈D

log
∑

τ∈T∗(Y )

p(τ |X, θ) =

=
∑

{X,Y }∈D

log
∑

τ∈T∗(Y )

∏
t

p(τt|X, Ỹ (τ0:t−1), θ),
(4)

where T ∗(Y ) denotes the set of all trajectories leading to Y (see Figure 2).
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Figure 2: Graph of trajectories for T ∗(Y = “a cat sat”).

Intuitively, we maximize the total probability “flowing” through the acyclic graph defined by T ∗(Y ).
This graph has approximately O(|Y |!) paths from an empty sequence to the target sequence Y .
Therefore, directly maximizing (4) is impractical. Our solution, inspired by [9], is to assume that for
any input X there is a trajectory τ∗ that is the most convenient for the model. We want the model to
concentrate the probability mass on this single trajectory. This can be formulated as a lower bound of
the objective (4):

L =
∑

{X,Y }∈D

log p(Y |X, θ) =
∑

{X,Y }∈D

log
∑

τ∈T∗(Y )

∏
t

p(τt|X, Ỹ (τ0:t−1), θ) ≥

≥
∑

{X,Y }∈D

logmax
τ

∏
t

p(τt|X, Ỹ (τ0:t−1), θ) =
∑

{X,Y }∈D

max
τ

∑
t

log p(τt|X, Ỹ (τ0:t−1), θ).
(5)

The lower bound is tight iff the entire probability mass in T ∗ is concentrated along a single trajectory.
This leads to a convenient property: maximizing (5) forces the model to choose a certain “optimal”
sequence of insertions τ∗ = argmax

τ

∏
t
p(τt|X, Ỹ (τ0:t−1), θ) and concentrate most of the probability

mass there.

The bound (5) depends only on the most probable trajectory τ∗, thus is difficult to optimize directly.
This may result in convergence to a local maximum. Similar to [9], we replace max with an
expectation w.r.t. trajectories sampled from T ∗. We sample from the probability distribution over the
trajectories obtained from the model. The new lower bound is:∑

{X,Y }∈D

Eτ∼p(τ |X,τ∈T∗(Y ),θ)

∑
t

log p(τt|X, Ỹ (τ0:t−1), θ). (6)

The sampled lower bound in (6) is less or equal to (5). However, if the entire probability mass is
concentrated on a single trajectory, both lower bounds are tight. Thus, when maximizing (6), we also
expect most of the probability mass to be concentrated on one or a few “best” trajectories.

Training procedure We train our model using stochastic gradient ascent of (6). For
each pair {X,Y } from the current mini-batch, we sample the trajectory τ from the model:
τ ∼ p(τ | X, τ ∈ T ∗(Y ), θ). We constrain sampling only to correct trajectories by allowing
only the correct insertion operations (i.e. the ones that lead to producing Y ). At each step along
the sampled trajectory τ , we maximize log p(ref(Y, τ0:t−1)|X, Ỹ (τ0:t−1), θ), where ref(Y, τ0:t−1)
defines a set of all insertions τt immediately after τ0:t−1, such that the trajectory τ0:t−1 extended
with τt is correct: τ0:t−1 ⊕ τt ∈ T ∗(Y ). From a formal standpoint, this is a probability of picking
any insertion that is on the path to Y . The simplified training procedure is given in Algorithm 1.
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Algorithm 1: Training procedure (simplified)
Inputs: batch {X,Y }, parameters θ, learning rate α, ~g := ~0 // ~g is the gradient accumulator
for Xi, Yi ∈ {X,Y } do

τ ∼ p(τ |Xi, τ ∈ T ∗(Yi), θ)
for t ∈ 0, 1, . . . , |τ | − 1 do

ref := ref(Y, τ0:t−1) // correct inserts
Li,t = log p(ref |Xi, Ỹi(τ

∗
0:t−1), θ)

~g := ~g +
∂Li,t

∂θ
end

end
return θ + α · ~g

The training procedure is split into two steps: (i) pretraining with uniform samples from the set of
feasible trajectories T ∗(Y ), and (ii) training on samples from our model’s probability distribution
over T ∗(Y ) till convergence. We discuss the importance of the pretraining step in Section 5.2.

Inference To find the most likely output sequence according to our model, we have to compute the
probability distribution over target sequences as follows:

p(Y |X, θ) =
∑

τ∈T∗(Y )

p(τ |x, θ). (7)

Computing such probability exactly requires summation over up to O(|Y |!) trajectories, which is
infeasible in practice. However, due to the nature of our optimization algorithm (explicitly maximizing
the lower bound Eτ∼p(τ |X,τ∈T∗(Y ),θ)p(τ |x, θ) ≤ maxτ∈T∗(Y ) p(τ |x, θ) ≤ P (Y |X)), we expect
most of the probability mass to be concentrated on one or a few “best” trajectories:

P (Y |X) ≈ max
τ∈T∗(Y )

p(τ |x, θ). (8)

Hence, we perform approximate inference by finding the most likely trajectory of insertions, disre-
garding the fact that several trajectories may lead to the same Y .2 The resulting inference problem is
defined as:

Y ∗ = argmax
Y (τ)

log p(τ |X, θ). (9)

This problem is combinatoric in nature, but it can be solved approximately using beam search. In the
case of our model, beam search compares partial output sequences and extends them by selecting
the k best token insertions. Our model also inherits a common problem of the left-to-right machine
translation: it tends to stop too early and produce output sequences that are shorter than the reference.
To alleviate this effect, we divide hypotheses’ log-probabilities by their length. This has already been
used in previous works [10, 11, 12].

3 Model architecture

INTRUS follows the encoder-decoder framework. Specifically, the model is based on the Trans-
former [10] architecture (Figure 3) due to its state-of-the-art performance on a wide range of
tasks [13, 14, 15]. There are two key differences of INTRUS from the left-to-right sequence models.
Firstly, our model’s decoder does not require the attention mask preventing attention to subsequent
positions. Decoder self-attention is re-applied at each decoding step because the positional encodings
of most tokens change when inserting a new one into an incomplete subsequence of Y .3 Secondly,
the decoder predicts the joint probability of a token and a position corresponding to a single insertion
(rather than the probability of a token, as usually done in the standard setting). Consequently, the

2To justify this transition, we translated 104 sentences with a fully trained model using beam size 128 and
found only 4 occasions where multiple insertion trajectories in the beam led to the same output sequence.

3Though this makes training more computationally expensive than the standard Transformer, this does not
hurt decoding speed much: on average decoding is only 50% times slower than the baseline. We will discuss
this in detail in Section 5.2.
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predicted probabilities should add up to 1 over all positions and tokens at each step. We achieve this
by decomposing the insertion probability into the probabilities of a token and a position:

p(τt) = p(token|pos) · p(pos),
p(pos) = softmax(H × wloc),

p(token|pos) = softmax(hpos ×Wtok).

(10)

Here hpos ∈ Rd denotes a single decoder hidden state (of size d) corresponding to an insertion at
position pos; H ∈ Rt×d represents a matrix of all such states. Wtok ∈ Rd×v is a learned weight
matrix that predicts token probabilities and wloc ∈ Rd is a learned vector of weights used to predict
positions. In other words, the hidden state of each token in the current sub-sequence defines (i) the
probability that the next token will be generated at the position immediately preceding current and
(ii) the probability for each particular token to be generated next.

P(pos)

P(token | pos) ×

P(τt)
Linear
1 unit

Softmax
global

Linear
tokens

Softmax
col-wise

Transformer
Decoder with
full attention

HY(τ0:t-1)

Partial
output

 Encoder

~

 X
Input

Figure 3: Model architecture: p(τt|X, Ỹ (τ0:t−1), θ) for a single token insertion. Output of the
column i for the token j defines the probability of inserting the token j into Ỹ (τ0:t−1) before the
token at the i-th position.

The encoder component of the model can have any task-specific network architecture. For Machine
Translation task, it can be an arbitrary sequence encoder: any combination of RNN [3, 2], CNN [12,
16] or self-attention [10, 17]. For image-to-sequence problems (e.g. Image-To-LaTeX [18]) any 2d
convolutional encoder architecture from the domain of computer vision can be used [19, 20, 21].

3.1 Relation to prior work

The closest to our is the work by Gu et al. [22]4, who propose a decoding algorithm which supports
flexible sequence generation in arbitrary orders through insertion operations.

In terms of modeling, they describe a similar transformer-based model but use a relative-position-
based representation to capture generation orders. This effectively addresses the problem that
absolute positional encodings are unknown before generating the whole sequence. While in our
model positional encodings of most of the tokens change after each insertion operation and, therefore,
decoder self-attention is re-applied at each generation step, the model by Gu et al. [22] does not
need this and has better theoretical time complexity of O(len(Y )2) in contrast to our O(len(Y )3).
However, in practice our decoding is on average only 50% times slower than the baseline; for the
details, see Section 5.2.

In terms of training objective, they use lower bound (5) with beam search over T ∗(Y ), which is
different from our lower bound (6). However, we found our lower bound to be beneficial in terms of
quality and less prone to getting stuck in local optima. We will discuss this in detail in Section 5.1.

4 Experimental setup

We consider three sequence generation tasks: Machine Translation, Image-To-Latex and Image
Captioning. For each, we now define input X and output Y , the datasets and the task-specific encoder

4At the time of submission, this was a concurrent work.
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we use. Decoders for all tasks are Transformers in base configuration [10] (either original or INTRUS)
with identical hyperparameters.

Machine Translation For MT, input and output are sentences in different languages. The encoder
is the Transformer-base encoder [10].

Wu et al. [7] suggest that left-to-right NMT models fit better for right-branching languages (e.g.,
English) and right-to-left NMT models fit better for left-branching languages (e.g., Japanese). This
defines the choice of language pairs for our experiments. Our experiments include: En-Ru and Ru-En
WMT14; En-Ja ASPEC [23]; En-Ar, En-De and De-En IWSLT14 Machine Translation data sets.
We evaluate our models on WMT2017 test set for En-Ru and Ru-En, ASPEC test set for En-Ja,
concatenated IWSLT tst2010, tst2011 and tst2012 for En-De and De-En, and concatenated IWSLT
tst2014 and tst2013 for En-Ar.

Sentences of all translation directions except the Japanese part of En-Ja data set are preprocessed
with the Moses tokenizer [24] and segmented into subword units using BPE [25] with 32,000 merge
operations. Before BPE segmentation Japanese sentences were firstly segmented into words5.

Image-To-Latex In this task, X is a rendered image of LaTeX markup, Y is the markup itself. We
use the ImageToLatex-140K [18, 26] data set. We used the encoder CNN architecture, preprocessing
pipeline and evaluation scripts by Singh [26]6.

Image captioning Here X is an image, Y is its description in natural language. We use
MSCOCO [27], the standard Image Captioning dataset. Encoder is VGG16 [19] pretrained7 on the
ImageNet task without the last layer.

Evaluation We use BLEU8 [29] for evaluation of Machine Translation and Image-to-Latex models.
For En-Ja, we measure character-level BLEU to avoid infuence on word segmentation software. The
scores on MSCOCO dataset are obtained via the official evaluation script9.

Training details The models are trained until convergence with base learning rate 1.4e-3, 16,000
warm-up steps and batch size of 4,000 tokens. We vary the learning rate over the course of training
according to [10] and follow their optimization technique. We use beam search with the beam
between 4 and 64 selected using the validation data for both baseline and INTRUS, although our
model benefits more when using even bigger beam sizes. The pretraining phase of INTRUS is 105
batches.

5 Results

Table 1: The results of our experiments. En-Ru, Ru-En, En-Ja, En-Ar, En-De and De-En are machine
translation experiements. ∗ indicates statistical significance with p-value of 0.05, computed via
bootstrapping [30].

En-Ru Ru-En En-Ja En-Ar En-De De-En Im2Latex MSCOCO

Model BLEU BLEU CIDEr

Left-to-right 31.6 35.3 47.9 12.0 28.04 33.17 89.5 18.0 56.1
Right-to-left - - 48.6 11.5 - - - - -

INTRUS 33.2∗ 36.4∗ 50.3∗ 12.2 28.36∗ 33.08 90.3∗ 25.6∗ 81.0∗

5Open-source word segmentation software is available at https://github.com/atilika/
kuromoji

6We used https://github.com/untrix/im2latex
7We use pretrained weights from keras applications https://keras.io/applications/, the same

for both baseline and our model.
8BLEU is computed via SacreBLEU [28] script with the following parameters: BLEU+c.lc+l.[src-lang]-

[dst-lang]+.1+s.exp+tok.13a+v.1.2.18
9Script is available at https://github.com/tylin/coco-caption
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Among all tasks, the largest improvements are for Image Captioning: 7.6 BLEU and 25.1 CIDER.

For Machine Translation, INTRUS substantially outperforms the baselines for most considered
language pairs and matches the baseline for the rest. As expected, the right-to-left generation order is
better than the left-to-right for translation into Japanese. However, our model significantly outperforms
both baselines. For the tasks where left-to-right decoding order provides a strong inductive bias
(e.g. in De-En translation task, where source and target sentences can usually be aligned without any
permutations), generation in arbitrary order does not give significant improvements.

Image-To-Latex improves by 0.8 BLEU, which is reasonable difference considering the high perfor-
mance of the baseline.

5.1 Ablation analysis

In this section, we show the superior performance of the proposed lower bound of the data log-
likelihood (6) over the natural choice of (5). We also emphasize the importance of the pretraining
phase for INTRUS. Specifically, we compare performance of the following models:

• Default — using the training procedure described in Section 2.2;
• Argmax — trained with the lower bound (5) (maximum is approximated with using beam
search with the beam of 4; this technique matches the one used in Gu et al. [22]);
• Left-to-right pretraining — pretrained with the fixed left-to-right decoding order (in contrast
to the uniform samples in the default setting);
• No pretraining — with no pretraining phase;
• Only pretraining — training is performed with a model-independent order, either uniform or
left-to-right.

Table 2: Training strategies of INTRUS. MT task, scores on the WMT En-Ru 2012-2013 test sets.

Training INTRUS Argmax Pretraining No pre- Only pretraining Baseline

strategy left-to-right training uniform left-to-right left-to-right

BLEU 27.5 26.6 26.3 27.1 24.6 25.5 25.8

Table 2 confirms the importance of the chosen pretraining strategy for the performance of the model.
In preliminary experiments, we also observed that introducing any of the two pretraining strategies
increases the overall robustness of our training procedure and helps to avoid convergence to poor
local optima. We attribute this to the fact that a pretrained model provides the main algorithm with
a good initial exploration of the trajectory space T ∗, while the Argmax training strategy tends to
quickly converge to the current best trajectory which may not be globally optimal. This leads to poor
performance and unstable results. This is the only strategy that required several consecutive runs to
obtain reasonable quality, despite the fact that it starts from a good pretrained model.

5.2 Computational complexity

Despite its superior performance, INTRUS is more computationally expensive compared to the
baseline. The main computational bottleneck in the model training is the generation of insertions
required to evaluate the training objective (6). This generation procedure is inherently sequential.
Thus, it is challenging to effectively parallelize it on GPU accelerators. In our experiments, training
time of INTRUS is 3-4 times longer than that of the baseline. The theoretical computational
complexity of the model’s inference is O(|Y |3k) compared to O(|Y |2k) of conventional left-to-
right models. However, in practice this is likely not to cause drastic decrease of the decoding
speed. Figure 4 shows the decoding speed of both INTRUS and the baseline measured for machine
translation task. On average, INTRUS is only 50% slower because for sentences of a reasonable
length it performs comparably to the baseline.
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Figure 4: Inference time of INTRUS and the baseline models vs sentence length.

6 Analyzing learned generation orders

In this section, we analyze generation orders learned by INTRUS on the Ru-En translation task.

Visual inspection We noticed that the model often follows a general decoding direction that varies
from sentence to sentence: left-to-right, right-to-left, middle-out, etc. (Figure 5 shows several
examples10). When following the chosen direction, the model deviates from it for translation of
certain phrases. For instance, the model tends to decode pairs of quotes and brackets together. Also we
noticed that tokens which are generated first are often uninformative (e.g., punctuation, determiners,
etc.). This suggests that the model has preference towards generating “easy” words first.

Figure 5: Decoding examples: left-to-right (left), right-to-left (center) and middle-out (right). Each
line represents one decoding step.

Part of speech generation order We want to find out if the model has any preference towards
generating different parts of speech in the beginning or at the end of the decoding process. For each
part of speech,11 we compute the relative index on the generation trajectory (for the baseline, it
corresponds to its relative position in a sentence). Figure 6 shows that INTRUS tends to generate
punctuation tokens and conjunctions early in decoding. Other parts of speech like nouns, adjectives,
prepositions and adverbs are the next easiest to predict. Most often they are produced in the middle
of the generation process, when some context is already established. Finally, the most difficult for the
model is to insert verbs and particles.

These observations are consistent with the easy-first generation hypothesis: the early decoding steps
mostly produce words which are the easiest to predict based on the input data. This is especially
interesting in the context of previous work. Ford et al. [8] study the influence of token generation
order on a language model quality. They developed a family of two-pass language models that
depend on a partitioning of the vocabulary into a set of first-pass and second-pass tokens to generate
sentences. The authors find that the most effective strategy is to generate function words in the first
pass and content words in the second. While Ford et al. [8] consider three manually defined strategies,
our model learned to give preference to such behavior despite not having any inductive bias to do so.

10More examples and the analysis for Image Captioning are provided in the supplementary material.
11To derive part of speech tags, we used CoreNLP tagger [31].
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Figure 6: The distributions of the relative generation order of different parts of speech.

7 Related work

In Machine Translation, decoding in the right-to-left order improves performance for English-to-
Japanese [32, 7]. The difference in translation quality is attributed to two main factors: Error
Propagation [33] and the concept of language branching [7, 34]. In some languages (e.g. English),
sentences normally start with subject/verb on the left and add more information in the rightward
direction. Other languages (e.g. Japanese) have the opposite pattern.

Several works suggest to first generate the most “important” token, and then the rest of the sequence
using forward and backward decoders. The two decoders start generation process from this first
“important” token, which is predicted using classifiers. This approach was shown beneficial for video
captioning [6] and conversational systems [35]. Other approaches to non-standard decoding include
multi-pass generation models [36, 8, 37, 38] and non-autoregressive decoding [39, 38].

Several recent works proposed sequence models with arbitrary generation order. Gu et al. [22]
propose a similar approach using another lower bound of the log-likelihood which, as we showed
in Section 5.1, underperforms ours. They, however, achieve O(|Y |2) time complexity by utilizing
a different probability parameterization along with relative position encoding. Welleck et al. [40]
investigates the possibility of decoding output sequences by descending a binary insertion tree. Stern
et al. [41] focuses on parallel decoding using one of several pre-specified generation orders.

8 Conclusion

In this work, we introduce INTRUS, a model which is able to generate sequences in any arbitrary
order via iterative insertion operations. We demonstrate that our model learns convenient generation
order as a by-product of its training procedure. The model outperforms left-to-right and right-to-left
baselines on several tasks. We analyze learned generation orders and show that the model has a
preference towards producing “easy” words at the beginning and leaving more complicated choices
for later.
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