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Abstract

We study a variant of decision-theoretic online learning in which the set of experts
that are available to Learner can shrink over time. This is a restricted version of the
well-studied sleeping experts problem, itself a generalization of the fundamental
game of prediction with expert advice. Similar to many works in this direction, our
benchmark is the ranking regret. It is well-known that achieving optimal regret
in the fully adversarial sleeping experts problem is computationally hard. This
motivates our relaxation where any expert that goes to sleep will never again wake
up. We call this setting “dying experts” and study it in two different cases: the case
where the learner knows the order in which the experts will die and the case where
the learner does not. In both cases, we provide matching upper and lower bounds
on the ranking regret in the fully adversarial setting. Furthermore, we present new,
computationally efficient algorithms that obtain our optimal upper bounds.

1 Introduction

Decision-theoretic online learning (DTOL) [13, 20, 21, 6] is a sequential game between a learning
agent (hereafter called Learner) and Nature. In each round, Learner plays a probability distribution
over a fixed set of experts and suffers loss accordingly. However, in wide range of applications,
this “fixed” set of actions shrinks as the game goes on. One way this can happen is because experts
either get disqualified or expire over time; a key scenario of contemporary relevance is in contexts
where experts that discriminate are prohibited from being used due to existing (or emerging) anti-
discrimination laws. Two prime examples are college admissions and deciding whether incarcerated
individuals should be granted parole; here the agent may rely on predictions from a set of experts in
order to make decisions, and naturally experts detected to be discriminating against certain groups
should not be played anymore. However, the standard DTOL setting does not directly adapt to this
case, i.e., for a given round it does not make sense nor may it even be possible to compare Learner’s
performance to an expert or action that is no longer available.

Motivated by cases where the set of experts can change, a reasonable benchmark is the ranking regret
[12, 9], for which Learner competes with the best ordering of the actions (see (1) in Section 2 for
a formal definition). The situation where the set of available experts can change in each round is
known as the sleeping experts setting, and unfortunately, it appears to be computationally hard to
obtain a no-regret algorithm in the case of adversarial payoffs (losses in our setting) and adversarial
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availability of experts [10]. This motivates the question of whether the optimal regret bounds can
be achieved efficiently for the case where the set of experts can only shrink, which we will refer to
as the “dying experts” setting. Applying the results of [12] to the dying experts problem only gives
O(
√
TK logK) regret, for K experts and T rounds, and their strategy is computationally inefficient.

In more detail, the strategy in [12] is to define a permutation expert (our terminology) that is identified
by an ordering of experts, where a permutation expert’s strategy is to play the first awake expert in
the ordering. They then run Hedge [6] on the set of all possible permutation experts over K experts.
Although this strategy competes with the best ordering, the per-round computation of running Hedge
on K! experts is O(KK) if naïvely implemented, and the results of [10] suggest that no efficient
algorithm — one that uses computation poly(K) per round — can obtain regret that simultaneously is
o(T ) and poly(K). However, in the dying experts setting, we show that many of these K! orderings
are redundant and only O(2K) of them are “effective”. The notion of effective experts (formally
defined in Section 3) is used to refer to a minimal set of orderings such that each ordering in the set
will behave uniquely in hindsight. The behavior of an ordering is defined as how it uses the initial
experts in its predictions over T rounds. Interestingly, it turns out that this structure also allows for an
efficient implementation of Hedge which, as we show, obtains optimal regret in the dying experts
setting. The key idea that enables an efficient implementation is as follows. Our algorithms group
orderings with identical behavior into one group, where there can be at most K groups at each round.
When an expert dies, the orderings in one of the groups are forced to predict differently and therefore
have to redistribute to the other groups. This splitting and rejoining behavior occurs in a fixed pattern
which enables us to efficiently keep track of the weight associated with each group.

In certain scenarios, Learner might be aware of the order in which the experts will become unavailable.
For example, in online advertising, an ad broker has contracts with their providers and these contracts
may expire in an order known to Learner. Therefore, we will study the problem in two different
settings: when Learner is aware of this order and when it is not.

Contributions. Our first main result is an upper bound on the number of effective experts (The-
orem 3.1); this result will be used for our regret upper bound in the known order case. Also, in
preparation for our lower bound results, we prove a fully non-asymptotic lower bound on the minimax
regret for DTOL (Theorem 4.1). Our main lower bounds contributions are minimax lower bounds
for both the unknown and known order of dying cases (Theorems 4.2 and 4.4). In addition, we
provide strategies to achieve optimal upper bounds for unknown and known order of dying (Theo-
rems 4.3 and 4.5 respectively), along with efficient algorithms for each case. This is in particular
interesting since, in the framework of sleeping experts, the results of [10] suggest that no-regret
learning is computationally hard, but we show that it is efficiently achievable in the restricted problem.
Finally, in Section 5.3, we show how to generalize our algorithms to other algorithms with adaptive
learning rates, either adapting to unknown T or achieving far greater forms of adaptivity like in
AdaHedge and FlipFlop [5].

All formal proofs not found in the main text can be found in the appendix.

2 Background and related work

The DTOL setting [6] is a variant of prediction with expert advice [13, 20, 21] in which Learner
receives an example xt in round t and plays a probability distribution pt over K actions. Nature
then reveals a loss vector `t that indicates the loss for each expert. Finally, Learner suffers a loss
ˆ̀
t := pt · `t =

∑K
i=1 pi,t`i,t.

In the dying experts problem, we assume that the set of experts can only shrink. More formally, for
the set of experts E = {e1, e2, . . . eK}, at each round t, Nature chooses a non-empty set of experts
Eta to be available such that Et+1

a ⊆ Eta for all t ∈ {1, . . . , T − 1}. In other words, in some rounds
Nature sets some experts to sleep, and they will never be available again. Similar to [12, 11, 10], we
adopt the ranking regret as our notion of regret. Before proceeding to the definition of ranking regret,
let us define π to be an ordering over the set of initial experts E. We use the notion of orderings and
permutation experts interchangeably. Learner can now predict using π ∈ Π, where Π is the set of all
the orderings. Also, denote by σt(π) the first alive expert of ordering π in round t; expert σt(π) is
the action that will be played by π. The cumulative loss of an ordering π with respect to the available
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experts Eta is the sum of the losses of σt(π) at each round. We can now define the ranking regret:

RΠ(1, T ) =

T∑
t=1

ˆ̀
t −min

π∈Π

T∑
t=1

`σt(π),t . (1)

Since we will use the notion of classical regret in our proofs, we also provide its formal definition:

RE(1, T ) =

T∑
t=1

ˆ̀
t − min

i∈[K]

T∑
t=1

`i,t . (2)

We use the convention that the subscript of a regret notionR represents the set of experts against which
we compare Learner’s performance. Also, the argument in parentheses represents the set of rounds in
the game. For example, RΠ(1, T ) represents the regret over rounds 1 to T with the comparator set
being all permutation experts Π. Also, we assume that `i,t ∈ [0, 1] for all i ∈ [K], t ∈ [T ].

Similar to the definition of Eta, let Etd := E \Eta be the set of dead experts at the start of round t. We
refer to a round as a “night” if any expert becomes unavailable on the next round. A “day” is defined
as a continuous subset of rounds where the subset starts with a round after a night and ends with a
night. As an example, if any expert become unavailable at the beginning of round t, we refer to round
t− 1 as a night (and we say the expert dies on that night) and the set of rounds {t, t+ 1 . . . , t′} as a
day, where t′ is the next night. We denote by m the number of nights throughout a game of T rounds.

Related work. The papers [7] and [1] initiated the line of work on the sleeping experts setting.
These works were followed by [2], which considered a different notion of regret and a variety of
different assumptions. In [7], the comparator set is the set of all probability vectors over K experts,
while we compare Learner’s performance to the performance of the best ordering. In particular, the
problem considered in [7] aims to compare Learner’s performance to the best mixture of actions,
which also includes our comparator set (orderings). However, in order to recover an ordering as
we define, one needs to assign very small probabilities to all experts except for one (the first alive
action), which makes the bound in [7] trivial. As already mentioned, we assume the set Eta is chosen
adversarially (subject to the restrictions of the dying setting), while in [11] and [15] the focus is on
the (full) sleeping experts setting with adversarial losses but stochastic generation of Eta.

For the case of adversarial selection of available actions (which is more relevant to the present paper),
[12] studies the problem in the cases of stochastic and adversarial rewards with both full information
and bandit feedback. Among the four settings, the adversarial full-information setting is most related
to our work. They prove a lower bound of Ω(

√
TK logK) in this case and a matching upper bound

by creatingK! experts and running Hedge on them, which, as mentioned before, requires computation
of order O(KK) per round. They prove an upper bound of O(K

√
T logK) which is optimal within

a log factor for the bandit setting using a similar transformation of experts. A similar framework in
the bandits setting introduced in [4] is called “mortal bandits”; we do not discuss this work further as
the results are not applicable to our case, given that they do not consider adversarial rewards. There
is also another line of work which considers the contrary direction of the dying experts game. The
setting is usually referred to as “branching” experts, in which the set of experts can only expand. In
particular, part of the inspiration for our algorithms came from [8, 14].

The hardness of the sleeping experts setting is well-studied [10, 9, 12]. First, [12] showed for a
restricted class of algorithms that there is no efficient no-regret algorithm for sleeping experts setting
unless RP = NP . Following this, [10] proved that the existence of a no-regret efficient algorithm
for the sleeping experts setting implies the existence of an efficient algorithm for the problem of
PAC learning DNFs, a long-standing open problem. For the similar but more general case of online
sleeping combinatorial optimization (OSCO) problems, [9] showed that an efficient and optimal
algorithm for “per-action” regret in OSCO problems implies the existence of an efficient algorithm
for PAC learning DNFs. Per-action regret is another natural benchmark for partial availability of
actions for which the regret with respect to an action is only considered in rounds in which that action
was available.

3 Number of effective experts in dying experts setting

In this section, we consider the number of effective permutation experts among the set of all possible
orderings of initial experts. The idea behind this is that, given the structure in dying experts, not
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all the orderings will behave uniquely in hindsight. Formally, the behavior of π is a sequence of
predictions (σ1(π), σ2(π), . . . , σT (π)). This means that the behaviors of two permutation experts π
and π′ are the same if they use the same initial experts in every round. We define the set of effective
orderings E ⊆ Π to be a set such that, for each unique behavior of orderings, there only exists one
ordering in E .

To clarify the definition of unique behavior, suppose initial expert e1 is always awake. Then two
orderings π1 = (e1, e2, . . . ) and π2 = (e1, e3, . . . ) will behave the same over all the rounds,
making one of them redundant. Let us clarify that behavior is not defined based on losses, e.g.,
if π1 = (ei, . . . ) and π2 = (ej , . . . ) where i 6= j both suffer identical losses over all the rounds
(i.e. their performances are equal) while using different original experts, then they are not considered
redundant and hence both of them are said to be effective.

Let di be the number of experts dying on the i th night. Denote by A the number of experts that will
always be awake, so that A = K −

∑m
i=1 di. We are now ready to find the cardinality of set E .

Theorem 3.1. In the dying experts setting, for K initial experts and m nights, the number of effective
orderings in Π is f({d1, d2, . . . dm}, A) = A ·

∏m
s=1(ds + 1).

In the special case where no expert dies (m = 0), we use the convention that the (empty) product
evaluates to 1 and hence f({}, A) = A. We mainly care about |E| as we use it to derive our upper
bounds; hence, we should find the maximum value of f . We can consider the maximum value of f in
three regimes.

1. In the case of a fixed number of nights m and fixed A, the function f is maximized by
equally spreading the dying experts across the nights. As the number of dying experts might
not be divisible by the number of nights, some of the nights will get one more expert than
the others. Formally, the maximum value is (

⌈
D
m

⌉D mod m ·
⌊
D
m

⌋m−(D mod m) ·A), where
D = K −A+m and K −A ≤ m.

2. In the case of a fixed number of dying experts (fixed A), the maximum value of f is (2K−A ·
A) which occurs when one expert dies on each night. The following is a brief explanation
on how to get this result. Denote by B = (d1, d2, . . . , db) a sequence of numbers of dying
experts where more than one expert dies on some night and B maximizes f (for fixed A),
so that F = f ({d1, d2, . . . , db}, A). Without loss of generality, assume that d1 > 1. Split
the first night into d1 days where one expert dies at the end of each day (and consequently
each of those days becomes a night). Now F ′ = f ({1, 1, . . . , 1, d2, . . . , db}, A) where 1 is
repeated d1 times. If d1 > 1 then F ′ = F · 2d1/(d1 + 1) > F . We see that by splitting the
nights we can achieve a larger effective set.

3. In the case of a fixed number of nights m, similar to the previous cases, the maximum value
is obtained when each night has equal impact on the value of f , i.e., when A = d1 + 1 =
d2 + 1 = · · · = dm + 1; however, it might not be possible to distribute the experts in a way
to get this, in which case we should make the allocation {A, d1 + 1, d2 + 1, . . . , dm + 1} as
uniform as possible.

By looking at cases 2 and 3, we see that by increasing m and the number of dying experts, we
can increase f ; thus, the maximum value of f with no restriction is 2K−1 and is achieved when
m = K − 1 and A = 1.

4 Regret bounds for known and unknown order of dying

In this section, we provide lower and upper bounds for the cases of unknown and known order of
dying. In order to prove the lower bounds, we need a non-asymptotic minimax lower bound for the
DTOL framework, i.e., one which holds for a finite number of experts K and finite T . During the
preparation of the final version of this work, we were made aware of a result of Orabona and Pál (see
Theorem 8 of [16]) that does give such a bound. However, for completeness, we present a different
fully non-asymptotic result that we independently developed; this result is stated in a simpler form
and admits a short proof (though we admit that it builds upon heavy machinery). We then will prove
matching upper bounds for both cases of unknown and known order of dying.
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4.1 Fully non-asymptotic minimax lower bound for DTOL

We analyze lower bounds on the minimax regret in the DTOL game with K experts and T rounds.
We assume that all losses are in the interval [0, 1]. Let ∆K := ∆([K]) denote the simplex over K
outcomes. The minimax regret is defined as

inf
p1∈∆K

sup
`1∈[0,1]K

. . . inf
pT∈∆K

sup
`T∈[0,1]K

{
T∑
t=1

pt · `t − min
j∈[K]

T∑
t=1

`j,t

}
. (3)

Theorem 4.1. For a universal constant L, the minimax regret (3) is lower bounded by

1

L
min

{√
(T/2) logK,T

}
.

The proof (in the appendix) begins similarly to the proof of the often-cited Theorem 3.7 of [3], but
it departs at the stage of lower bounding the Rademacher sum; we accomplish this lower bound by
invoking Talagrand’s Sudakov minoration for Bernoulli processes [17, 18].

4.2 Unknown order of dying

For the case where Learner is not aware of the order in which the experts die, we prove a lower bound
of Ω(

√
mT logK). Given that we have Et+1

a ⊆ Eta, the construction for the lower bound of [12]
cannot be applied to our case. In other words, our adversary is much weaker than the one in [12], but,
surprisingly, we show that the previous lower bound still holds (by setting m = K) even with the
weaker adversary. We then analyze a simple strategy to achieve a matching upper bound.

In this section, we further assume that
√
T/2 logK < T for every T and K so that there is hope to

achieve regret that is sublinear with respect to T . We now present our lower bound on the regret for
the case of unknown order of dying.
Theorem 4.2. When the order of dying is unknown, the minimax regret is Ω(

√
mT logK).

Proof Sketch. We construct a scenario where each day is a game decoupled from the previous ones.
This means that the algorithm will be forced to have no prior information about the experts at the
beginning of each day. First, partition the T rounds into m + 1 days of equal length. The days
are split into two halves. On the first half, each expert suffers loss drawn i.i.d. from a Bernoulli
distribution with p = 1/2. At the end of the first half of the day, we choose the expert with the lowest
cumulative loss until that round, and that expert will suffer no loss on the second half. For any other
expert ei, we use the loss `(1)

i,t of ei on the t th round of the first half to define the loss `(2)
i,t of ei on the

t th round of the second half; specifically, we choose the setting `(2)
i,t := 1− `(1)

i,t . We show that the
ranking regret of the set of orderings over T rounds is obtained by summing the classical regrets of
each day over the set of days.

A natural strategy in the case of unknown dying order is to run Hedge over the set of initial experts
E and, after each night, reset the algorithm. We will refer to this strategy as “Resetting-Hedge”.
Theorem 4.3 gives an upper bound on regret of Resetting-Hedge.
Theorem 4.3. Resetting-Hedge enjoys a regret of RΠ(1, T ) = O(

√
mT logK).

Proof. Let τs be the set of round indices of day s; hence, we have
∑m+1
s=1 |τs| = T . The overall

ranking regret can be upper bounded by the sum of classical regrets for every interval. Hence, the
analysis is as follows:

RΠ(1, T ) ≤
m+1∑
s=1

√
|τs| log(K − s) ≤

√
logK

m+1∑
s=1

√
|τs| ≤

√
(m+ 1)T logK; (4)

the last inequality is essentially from the Cauchy-Schwarz inequality (see Lemma B.2).

Although the basic Resetting-Hedge strategy adapts to m, it has many downsides. For example,
resetting can be wasteful in practice. Another natural strategy, simply running Hedge on the set of

5



all K! permutation experts, is non-adaptive (obtaining regret O(
√
TK logK) and computationally

inefficient if implemented naïvely). However, as we show in Section 5.1, this algorithm can be
implemented efficiently (with runtime linear in K rather than K!) and also, as we show in Section 5.3,
by running Hedge on top of several copies of Hedge (one per specially chosen learning rate), we can
obtain a guarantee that is far better than Theorem 4.3. Moreover, our efficient implementation of
Hedge can be extended to adaptive algorithms like AdaHedge and FlipFlop [5].

4.3 Known order of dying

A natural question is whether Learner can leverage information about the order of experts that are
going to die to achieve a better regret. We show that the answer is positive: the bound can be improved
by a logarithmic factor. We also give a matching lower bound for this case (so both bounds are tight).

Similar to the unknown setting, we provide a construction to prove a lower bound on the ranking
regret in this case. We still assume that

√
T/2 logK < T .

Theorem 4.4. When Learner knows the order of dying, the minimax regret is Ω(
√
mT ).

Proof Sketch. Our construction involves first partitioning all the rounds to m/2 days of equal length.
On day s, all experts will suffer loss 1 on all the rounds except for experts e2s−1 and e2s, who will
suffer losses drawn i.i.d. from a Bernoulli distribution with success probability p = 1/2. Experts
e2s−1 and e2s will die at the end of day s, and therefore, each “day game” effectively has 2 experts;
our lower bound holds even when Learner knows this fact. Furthermore, Learner will be aware that
these two experts (e2s−1 and e2s) will die at the end of day s. Similar to the proof of Theorem 4.2,
the minimax regret is lower bounded by the sum of the minimax regrets over each day game.

Although the proof is relatively simple, it is at least a little surprising that knowing such rich
information as the order of dying only improves the regret by a logarithmic factor.

To achieve an optimal upper bound, using the results of Theorem 3.1, the strategy is to create
2m(K −m) experts (those that are effective) and run Hedge on this set.

Theorem 4.5. For the case of known order of dying, the strategy as described above achieves a
regret of O

(√
T (m+ logK)

)
.

Proof. Hedge has regret of O(
√
T logK) for K number of experts. Therefore, running Hedge on

2m(K −m) experts yields the desired bound.

Though the order of computation in the above strategy is better than O(KK), it is still exponential in
K. In the next section, we introduce algorithms that simulate these strategies but in a computationally
efficient way.

5 Efficient algorithms for dying experts

The results of [10] imply computational hardness of achieving no-regret algorithms in sleeping
experts; yet, we are able to provide efficient algorithms for dying experts in the cases of unknown and
known order of dying. For the sake of simplicity, we initially assume that only one expert dies each
night. Later, in Section 5.3, we show how to extend the algorithms for the general case where multiple
experts can die each night. We then show how to extend these algorithms to adaptive algorithms such
as AdaHedge [5]. The algorithms for both cases are given in Algorithms 1 and 2.

5.1 Unknown order of dying

We now show how to efficiently implement Hedge over the set of all the orderings. Even though
Resetting-Hedge is already efficient and achieves optimal regret, it has its own disadvantages. The
issue arises when one needs to extend Resetting-Hedge to adaptive algorithms. This is particularly
important in real-world scenarios, where Learner wants to adapt to the environment (such as stochastic
or adversarial losses). We show that Algorithm 1, Hedge-Perm-Unknown (HPU), can be adapted to
AdaHedge [19] and, therefore, we can simulate FlipFlop [5]. Next, we give the main idea on how the
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Algorithm 1: Hedge-Perm-Unknown (HPU)
∀i ∈ [K] ci,1 := 1, hi,1 := (K − 1)!
Ea := {e1, e2, . . . eK}
for t = 1, 2, . . . , T do

play pt=
[
1 [ei ∈ Ea] · hi,t·ci,t∑k

j=1 hj,t·cj,t

]
i∈[K]

receive (`1,t, . . . , `K,t)
for ei ∈ Ea do

ci,t+1 := ci,t · e−η`i,t
hi,t+1 := hi,t

if expert j dies then
Ea := Ea \ {ej}
for ei ∈ Ea do

hi,t+1 := hi,t+1 · ci,t+1

+(hj,t+1 · cj,t+1)/|Ea|
ci,t+1 := 1

Algorithm 2: Hedge-Perm-Known (HPK)

∀i ∈ [K] ci,1 := 1, hi,1 := d2K−i−1e
Ea := {e1, e2, . . . eK}
for t = 1, 2, . . . , T do

play pt=
[
1 [ei ∈ Ea] · hi,t·ci,t∑k

j=1 hj,t·cj,t

]
i∈[K]

receive (`1,t, . . . , `K,t)
for ei ∈ Ea do

ci,t+1 := ci,t · e−η`i,t
hi,t+1 := hi,t

if expert j dies then
Ea := Ea \ {ej}
for each i = j + 1 to K do

hi,t+1 := hi,t+1 · ci,t+1

+(hj,t+1 · cj,t+1)(d2
i−2e/2K−1−j)

ci,t+1 := 1

algorithm works, after which we prove that Algorithm 1 efficiently simulates running Hedge over Π.
Before proceeding further, let us recall how Hedge makes predictions in round t. First, it updates the
weights using wi,t = wi,t−1e

−η`i,t , and it then assigns a probability to expert i as follows:

pi,t =
wi,t−1∑K
i=1 wi,t−1

.

Recall that e1, e2, . . . , eK denote the original experts while π1, π2, . . . πK! denote the orderings.
Denote by wtπ the weight that Hedge assigns to π in round t. Define Πt

i ⊆ Π to be the set of orderings
predicting as expert ei in round t. The main ideas behind the algorithm are as follows:

1. When π and π′ have the same prediction e in round t (i.e. σt(π) = σt(π′) = e), then we do
not need to know wtπ and wtπ′ ; we use wtπ + wtπ′ instead for the weight of e.

2. The algorithm maintains
∑
π∈Πtj

e−ηL
t−1
π , where η is the learning rate and Ltπ is the cumu-

lative loss of ordering π up until round t, i.e., Ltπ =
∑t
s=1 `σs(π),s.

We will discuss how to tune η later. Let J = {j1, . . . , jm} represent the rounds on which any expert
will die. Denote by jt the last night observed so far at the end of round t, formally defined as
jt = maxj∈J j ≤ t. We maintain a tuple (hi,t, ci,t) for each original expert ei’s in the algorithm
in round t, where hi,t is the sum of non-normalized weights of the experts in Πt

i in round jt. We
similarly maintain ci,t, except that it only considers the loss suffered from jt + 1 to round t− 1 for
experts in Πt

i. Formally:

hi,t =
∑
π∈Πti

e−η(
∑jt
s=1 `σs(π),s), ci,t =

∑
π∈Πti

e−η(
∑t−1
s=jt+1 `σs(π),s) .

It is easy to verify that hj,t · cj,t =
∑
π∈Πtj

e−ηL
t−1
π .

The computational cost of the algorithm at each round will beO(K). We claim that HPU will behave
the same as executing Hedge on Π. We use induction on rounds to show the weights are the same
in both algorithms. By “simulating” we mean that the weights over the original experts will be
maintained identically to how Hedge maintains them.
Theorem 5.1. At every round, HPU simulates running Hedge on the set of experts Π.

Proof Sketch. The main idea is to group the permutation experts with similar predictions (the first
expert alive in the permutation) in one group. Hence, initially there will be K groups. Then, if expert
ej dies, every ordering in the group associated with ej will be moved to another group and the empty
group will be deleted. We prove that the orderings will distribute to other groups symmetrically after
a night. Using this fact, we show that we do not need to know the elements of a group; we only
maintain the sum of the weights given to all the orderings in each group.
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5.2 Known order of dying

For the case of known order of dying, we propose Algorithm 2, Hedge-Perm-Known (HPK), which
is slightly different than HPU. In particular, the weight redistribution (when an expert dies) and
initialization of coefficient hi,1 is different. In the proof of Theorem 5.1, we showed that when the
set of experts includes all the orderings, the weight of the expert j that died will distribute equally
between initial experts (ej ∈ E). But when the set of experts is only the effective experts, this no
longer holds. In this section, we assume without loss of generality that the experts die in the order
e1, e2, . . . and recall that E denotes the set of effective orderings. Based on Theorem 3.1, the number
of experts starting with ei in E is d2K−i−1e; we denote the set of such experts as Eei .
Theorem 5.2. At every round, HPK simulates running Hedge on the set of experts E .

Remarks for tuning learning rates. For both algorithms, we assume T is known beforehand. So,
the learning rate for HPU is η =

√
(2 log(K!))/T and for HPK is η =

√
(2 log(2m(K −m)))/T .

One can use a time-varying learning rate to adapt to T in case it is not known.

5.3 Extensions for algorithms

As we mentioned at the beginning of Section 5, for the sake of simplicity we initially assumed that
only one expert dies each night. First, we discuss how to handle a night with more than one death.
Afterwards, we explain how to extend/modify HPU and HPK to implement the Follow The Leader
(FTL) strategy. We then introduce a new algorithm which simulates FTL efficiently and maintains L∗t
as well, where L∗t is the cumulative loss of the best permutation expert through the end of round t.
Finally, using L∗t , we explain how to simulate AdaHedge and FlipFlop [5] by slightly extending HPU
and HPK.

More than one expert dying in a night. We handle nights with more than one death as follows.
We have one of the experts die on that night, and, for each expert j among the other experts that
should have died that night, we create a “dummy round”, give all alive experts (including expert j) a
loss of zero, keep the learning rate the same as the previous round, and have expert j die at the end
of the dummy round (which hence becomes a “dummy night”). Even though the number of rounds
increases with this trick, it is easy to see that the regret is unchanged since in dummy rounds all
experts have the same loss (and also the learning rate after the sequence of dummy rounds is the same
as what it would have been had there been no dummy rounds). Moreover, since now one expert dies
on each night (some of which may be dummy nights), we may use Theorems 5.1 or 5.2 to conclude
that our algorithm correctly distributes any dying experts’ weights among the alive experts.

Beyond adaptivity to m. Consider the case of unknown order and let the number of nights m be
unknown. As promised, we show that we can improve on the simple Resetting-Hedge strategy.
Theorem 5.3. Consider running Hedge on top ofK copies of HPU where, for r ∈ {0, 1, . . . ,K−1},
we set εr =

∏r−1
l=0

1
K−l and the r th copy of HPU uses learning rate ηεrt :=

√
8 log(1/εr)/t. Let

π∗ be a best permutation expert in hindsight and suppose that the sequence (σ1(π∗), . . . , σT (π∗)

changes experts at most l times. Then the regret of this algorithm is O
(√

T (l + 1) logK)
)
.

Note that this theorem does better than adapt to m, as with m nights we always have l ≤ m but l can
in fact be much smaller than m in practice. Hence, Theorem 5.3 recovers and can improve upon the
regret of Resetting-Hedge and, moreover, wasteful resetting is avoided. Also, while the computation
increases by a factor of K, it is easy to see that one can instead use an exponentially spaced grid of
size log2(K) to achieve regret of the same order.

Follow the Leader. FTL might be the most natural algorithm proposed in online learning. In
round t the algorithm plays the expert with the lowest cumulative loss up to round t, L∗t−1. By
setting η = ∞ in Hedge and similarly, in HPU and HPK, we recover FTL; hence, our algorithms
can simulate FTL. The motivation for FTL is that it achieves constant regret (with respect to T )
when the losses are i.i.d. stochastic and there is a gap in mean loss between the best and second best
(permutation) experts. Our algorithms do not maintain L∗t , but we need L∗t to implement AdaHedge
(which we discuss in the next extension). Here, we propose a simple algorithm to perform FTL on
the set of orderings. The algorithm works as follows:

8



1. Perform as FTL on alive initial experts and keep track of their cumulative losses
(Lt1, L

t
2, . . . , L

t
K), while ignoring the dead experts;

2. If expert j dies in round t′, then for every alive expert i where Lt
′

i > Lt
′

j do: Lt
′

i := Lt
′

j .

This not only performs the same as FTL but also explicitly keeps track of L∗t . We will use this
implementation to simulate AdaHedge.

AdaHedge. The following change to the learning rate in HPU/HPK recovers AdaHedge. Let
L̂t =

∑t
r=1

ˆ̀
r. For round t, AdaHedge on N experts sets the learning rate as ηt = (lnN)/∆t−1

and ∆t = L̂t −Mt where Mt =
∑t
r=1mr and mr = − 1

ηr
ln(wr · e−ηr`r ); here, mr can easily be

computed using the weights from HPU/HPK. As we have the loss of the algorithm at each round,
we can calculate Mt. Also, using the implementation of FTL describe above, we can maintain L∗t .
Finally, we can compute ∆t and the regret of HPU/HPK.

FlipFlop. By combining AdaHedge and FTL, [5] proposes FlipFlop which can do as well as either
of AdaHedge (minimax guarantees and more) or FTL (for the stochastic i.i.d. case). We can adapt
HPK and HPU to FlipFlop by implementing AdaHedge and FTL as described above and switching
between the two based on ∆ah

t and ∆ftl
t , where ∆ftl

t is defined similar to ∆ah
t but the learning rate

associated with mt for FTL is ηftl =∞ while for AdaHedge it is ηah
t = lnK

∆t−1
.

Corollary 5.1. By combining FTL and AdaHedge as described above, HPU and HPK simulate
FlipFlop over set of experts A (where A = Π for HPU and A = E for HPK) and achieve regret

RA(1, T ) < min

{
C0R

ftl
A (1, T ) + C1, C2

√
L∗T (T − L∗T )

T
ln (|A|) + C3 ln (|A|)

}
,

where C0, C1, C2, C3 are constants.

The interest in FlipFlop is that in the real-world we may not know if losses are stochastic or adversarial.
This motivates one to use an algorithms that detect and adapt to easier situations.

6 Conclusion

In this work, we introduced the dying experts setting. We presented matching upper and lower
bounds on the ranking regret for both the cases of known and unknown order of dying. In the case
of known order, we saw that the reduction in the number of effective orderings allows our bounds
to be reduced by a

√
logK factor. While it appears to be computationally hard to obtain sublinear

regret in the general sleeping experts problem, in the restricted dying experts setting we provided
efficient algorithms with optimal regret bounds for both cases. Furthermore, we proposed an efficient
implementation of FTL for dying experts which, combined with efficiently maintaining mix losses,
enabled us to extend our algorithms to simulate AdaHedge and FlipFlop. It would be interesting to
see if the notion of effective experts can be extended to other settings such as multi-armed bandits.
Furthermore, it might be interesting to study the problem in regimes in between known and unknown
order.
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A Proofs for Section 3

A.1 Proof of Theorem 3.1

We define a new operator denoted by + which operates between an expert e on the left hand side and
a multi-set of orderings Π on the right hand side and returns a new multi-set of orderings in which e
is added to the left side of every ordering π ∈ Π. Let J = {j1, . . . , jm} be the rounds on which any
expert will die.

Proof. Without loss of generality, assume that experts die in the order of their indices, i.e., e1 dies
first, e2 second, . . . , and dK−A dies last. We use mathematical induction on m to prove the claim.

Induction Basis: For m = 0, or the case that no expert dies (i.e. A = K), the number of effective
permutation experts is equal to A, the number of experts that never die. Hence,

f ({}, A) = A.

Induction Hypothesis: We assume that the number of effective experts when there are only i − 1
nights is equal to

f ({d1, d2, . . . , di−1}, A) = A

i−1∏
s=1

(ds + 1)

Denote the set of the effective permutations created in the induction hypothesis as Ei−1.

Induction Step: First, notice that any expert e ∈ Ej1+1
d has an impact on the behavior of a

permutation expert π only if e = σ1(π). If we ignore the first night and remove every e ∈ Ej1+1
d

from the orderings, the theorem would behave as though those experts do not exist and there are only
i− 1 nights. Due to the induction hypothesis we know that

f({d2, . . . , di}, A) = A

i∏
s=2

(ds + 1).

Denote by F the number of effective orderings π where e = σ1(π) for some e ∈ Ej1+1
d . It is easy to

see that
f({d1, d2, . . . , di}, A) = F + f({d2, . . . , di}, A).

On the other hand, the effective orderings which start with es ∈ Ej1+1
d can be constructed as

(es) + Ei−1, so
|(es) + Ei−1| = |Ei−1| = f ({d2, . . . , di}, A) ,

and it follows that Ei = (∪
es∈E

j1+1

d
((es) + Ei−1)) ∪ Ei−1. Then due to the induction hypothesis we

get:

f({d1, d2, . . . , di}, A) = (d1 + 1)f({d2, . . . , di}, A) = (A)Πi
s=1(ds + 1) (5)

and (5) completes the induction step, concluding the proof.

B Proofs for Section 4

B.1 Proof of Theorem 4.1

Our lower bound strategy is similar2 to the proof of Theorem 3.7 of [3] until our equation (6).

Proof. Any strategy of Learner over T rounds can be represented as a sequence p of T maps
p1, . . . ,pT , where

pt : [0, 1]t−1 → ∆K .

2But it is simpler since we do not consider the more general game of prediction with expert advice.
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By representing Learner’s strategy in this way, we can write the above minimax regret as:

inf
p

sup
`1,...,`T

{
T∑
t=1

pt · `t − min
j∈[K]

T∑
t=1

`j,t

}
.

The minimax regret can only decrease by replacing the supremum over the experts’ losses by an
expectation over random i.i.d. losses `j,t, where, for all j ∈ [K] and t ∈ [T ], we take `j,t to be
independently drawn uniformly from {0, 1}; hence, the above is lower bounded by

inf
p

E

[
T∑
t=1

pt · `t − min
j∈[K]

T∑
t=1

`j,t

]
= E

[
T

2
− min
j∈[K]

T∑
t=1

`j,t

]

=
1

2
E

[
max
j∈[K]

T∑
t=1

(1− 2`j,t)

]
.

Now, observe that each random variable (1− 2`j,t) has the same law as an independent Rademacher
random variable (i.e. uniform over ±1). Therefore, the above is equal to

1

2
E

[
max
j∈[K]

T∑
t=1

εj,t

]
, (6)

where the εj,t are independent Rademacher random variables.

Our approach will be to express the above as the expected maximum of a Bernoulli process. To this
end, for each j ∈ [K] define the matrix τ (j) ∈ RT×K whose j th column is equal to the ones vector
and whose remaining columns each are equal to the zero vector. Our lower bound on the minimax
regret now can be rewritten as (one half of)

E

[
max
j∈[K]

T∑
t=1

εj,t

]
= E

[
max
j∈[K]

K∑
i=1

T∑
t=1

εi,tτ
(j)
i,t

]
.

This is just the expected supremum of a Bernoulli process indexed by {τ (1), . . . , τ (K)}. A result of
[18], restated as Lemma B.1 after this proof, can be used to lower bound this process in terms of T
and K. In our setting, treating the matrices τ (j) as vectors by stacking their columns, we see that the
vectors (τ (j))j satisfy

• ‖τ (i) − τ (j)‖2 ≥
√

2T for all distinct i, j ∈ [K];

• ‖τ (j)‖∞ ≤ 1 .

Hence, Lemma B.1 implies that the minimax regret is lower bounded by
1

2L
min

{√
2T logK, 2T

}
,

for L a universal constant.

The above proof uses the following powerful result of Talagrand on Sudakov minoration for Bernoulli
processes; here, the most convenient form is stated as Theorem 4.2.4 in [18], but the result first
appeared as Proposition 2.2 of [17] in a quite different form.
Lemma B.1 (Sudakov minoration for Bernoulli processes [18, Theorem 4.2.4]). Let a, b > 0 and
τ (1), . . . , τ (K) ∈ `2 satisfy the conditions:

• ‖τ (i) − τ (j)‖2 ≥ a for all distinct i, j ∈ [K] ;

• ‖τ (j)‖∞ ≤ b for all j ∈ [K] ,

Let ε1, ε2, . . . be i.i.d Rademacher random variables.

Then for a universal constant L we have

E sup
j≤K

∑
s≥1

τ (j)
s εs ≥

1

L
min

{
a
√

logK,
a2

b

}
.
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B.2 Proof of Theorem 4.2

Proof. We prove the theorem using a construction as follows. Recall that we refer to a round as a
“night” if an expert dies on that round and to each segment between two nights as a “day”. First,
partition T rounds to rounds of length T ′ = T/(m+ 1), where m is the number of nights. The goal
is to construct a scenario where each day is a game decoupled from the previous ones. This means
that the algorithm will be forced to have no prior information about the experts at the beginning of
each day. Recall that τs is the set of time-step indices of day s, i.e.,τs = {t|(s− 1)T ′ < t ≤ sT ′}.
Each day is divided into two equal parts. Denote by τ1

s and τ2
s sets of time-step indices of the first

half and the second half of day s, respectively. Let `τ1
s ,i

and `τ2
s ,i

be the sequences of losses of an
expert i on the first and second half of the day s, respectively. On the first half of day s, each expert
suffers loss drawn i.i.d. from a Bernoulli distribution with p = 1/2. At the end of the first half of
the day, we choose the expert with the lowest cumulative loss up until now, denoted by e∗s . This
expert will suffer no loss in the second half. Also, the adversary forces every other expert i where
ei 6= e∗s to suffer losses according to loss sequence `s2,i on the second half of the day, where we have
element-wise subtraction as `s2,i = 1− `s1,i. Denote by Ea(s) the set of experts alive on day s.

We now analyze the ranking regret of any algorithm for this construction over T rounds. Without
loss of generality, suppose the order of experts that are going to die is as D = (e1, e2, . . . , em). Also,
denote by π∗ ∈ Π the best ordering over T . From the construction, it is clear that π∗ = (D, . . . ).
Therefore, the ranking regret over T rounds is obtained from (7).

RΠ(1, T ) = L̂− Lπ∗ = L̂−
m+1∑
s=1

∑
t∈τs

lσt(π∗),t (7)

where Lπ∗ is the cumulative loss of playing according to ordering π∗. Now we write RΠ(1, T ) in
terms of a sum of classical regrets over each day. Since in our construction the best expert of the day
will die at the end of that day, then, for all rounds in a given day, σt(π∗) yields the same expert as the
expert that is best for that day according to the ordinary regret. Therefore, we have:

L̂−
m+1∑
s=1

∑
t∈τs

lσt(π∗),t =

m+1∑
s=1

(∑
t∈τs

l̂t − min
s≤i≤K

∑
t∈τs

li,t

)

=

m+1∑
s=1

REa(s)(τs) (8)

where the last equality is obtained from the fact that in our construction, each day is an independent
day from the others, meaning the history of losses of the experts does not matter. Combining (8) and
(7), we have:

RΠ(1, T ) =

m+1∑
s=1

REa(s) (τs) (9)

Now it remains to analyze the regret of each day separately. For this, first, we lower bound the regret
of each half of the days. Denote by L̂1

s and L̂2
s the cumulative losses of the algorithm on the first and

second half of the day s with length, respectively. It is easy to verify that REa(s)(τs) ≥ REa(s)(τ
2
s ),

hence for the regret of each day we have

REa(s)(τs) = L̂1
s + L̂2

s −
∑
t∈τs

lσt(π∗),t ≥ L̂1
s −

∑
t∈τ1

s

lσt(π∗),t

≥ 1

L
min{

√
T ′/2 log(K − s), T ′} (10)

where the last inequality is based on (the proof of) Theorem 4.1. Combining (9) and (10) we have:

RΠ(1, T ) ≥
m+1∑
s=1

1

L
min{

√
T ′/2 log(K − s), T ′}

=

m+1∑
s=1

√
T/2(m+ 1) log(K − s) = Ω

(√
Tm logK

)
, (11)

yielding the desired bound.
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The proof of Theorem 4.2 uses the results of following Lemma.
Lemma B.2. For variables x1, . . . , xm > 0 and subject to

∑m
i=1 xi = T , we have:

m∑
i=1

√
xi ≤

√
mT

Proof. Denote by T the vector
[√
x1,
√
x2, . . . ,

√
xm
]

and I = [1, 1, . . . , 1] vectors of length m
where all the elements are equal to one. We have:

m∑
i=1

√
xi = T · IT ≤ ||T || · ||I|| ≤

√
m
√

(
√
x1)2 + (

√
x2)2 + · · ·+ (

√
xm)2 ≤

√
mT

where the first inequality follows from the Cauchy-Schwarz inequality.

B.3 Proof of Theorem 4.4

Proof. The construction for this case is similar to the one we previously had for the unknown order
of dying. We divide the T rounds into m/2 days each of size T ′ = 2T/m. We choose two experts
{e2s−1, e2s} at each day s and they will suffer losses drawn i.i.d. from a Bernoulli distribution with
success probability of p = 1/2. Every expert ei 6∈ {e2s−1, e2s} will suffer constant loss of 1 during
day s. At the end of day s, both the experts {e2s−1, e2s} will die. Therefore, at the beginning of
each day, all the experts have the same loss history and consequently, each day is decoupled from the
previous ones. Additionally, we provide extra information to the algorithm, that the best expert of
day s is one of the two experts {e2s−1, e2s}. Thus, the algorithm needs to track only two experts on
a single day.

Denote by Ea(s) the set of experts alive on day s. In the following, we analyze the ranking regret
of this construction. We will use the same result from the proof of Theorem 4.2 to connect ranking
regret to the classical regret over each day. Hence, using (9), we have:

RΠ(1, T ) =

m/2∑
s=1

REa(s)(τs) (12)

Using the bound we obtained from Theorem 4.1, for each day s, K = 2 and T ′ rounds we have:

REa(s)(τs) ≥
1

L
min{

√
T ′/2 log 2, T ′} (13)

Combining (12) and (13), we obtain the bound on ranking regret over time horizon T as follows:

RΠ(1, T ) ≥
m/2∑
s=1

1

L
min{

√
T ′/2 log 2, T ′} =

m/2∑
s=1

√
T/m = Ω

(√
mT

)
The theorem follows.

C Proofs for Section 5

Wherever we refer to Theorem 3.1 in this section, we assume that only one expert dies each night;
therefore for m nights (consequently, m dying experts) the value of f (the function defined in
Theorem 3.1) is 2m(K −m) where K is the number of experts.

C.1 Proof of Theorem 5.1

Proof. We show that the loss and weights of the algorithms are the same at each round, therefore,
their regret is the same. Define ΠD to be the set of all possible orderings of elements in set D of
length |D|. We claim that based on the update rules of HPU for hj,t and cj,t, for every round and
expert we have

∑
π∈Πtj

e−ηL
t−1
π = hj,t · cj,t.

Induction Basis: At round t = 1, in Hedge, every expert has non-normalized weight of 1. The size of
each Π1

ej is (K − 1)!. The algorithm assigns hi,1 = (K − 1)! and ci,1 = 1, therefore the claims hold.
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Induction Hypothesis: At the beginning of round t− 1, for every alive expert ej , the following holds:∑
π∈Πt−1

j

e−ηL
t−2
π = hj,t−1 · cj,t−1 (14)

Induction Step: This step is divided into two cases. First, when Eta = Et−1
a . Second, when an expert

dies, |Eta| = |Et−1
a | − 1.

Case I: If no expert dies at the end of round t − 1, then for every i we have Πt
i = Πt−1

i and
hi,t = hi,t−1, thus for every alive expert ej following holds

∑
π∈Πtj

e−ηL
t−2
π = hj,t−1 · cj,t−1. After

the update in Hedge, the weights on Πt
j is

∑
π∈Πtj

e−η(Lt−2
π +`j,t−1). On the other hand, in the HPU

algorithm, we have the following:

hj,t · cj,t = e−η`j,t−1 · cj,t−1 · hj,t−1 = e−η`j,t−1

∑
π∈Πt−1

j

e−ηL
t−2
π

=
∑
π∈Πtj

e−η(Lt−2
π +`j,t−1) =

∑
π∈Πtj

e−ηL
t−1
π

Where the second equality follows from the induction hypothesis. It can be observed that the weights
are identical to the ones from running Hedge on K! experts.

Case II: The second case is when the expert j dies at the end of round t− 1. Let i, k be arbitrary alive
experts not equal to j. Observe that any π ∈ Πt

i∩Πt−1
j takes the form (πd, ej , πd′ , ei, πRi), where, for

someD,D
′ ⊆ Etd whereD∩D′ = ∅ andRi := E \ (D∪D′ ∪{ej , ei}), we have that πd ∈ ΠD and

πd′ ∈ Π
′

D and πRi ∈ ΠRi . Then Πt
k ∩Πt−1

j contains a unique element π′ = (πd, ej , πd′ , ek, πRk),
where D is taken as before and (like before) Rk := E \ (D ∪D′ ∪ {ej , ek}) and πRk is created only
by replacing ei as ek in πRi . Moreover, since their behavior is the same over the first t− 1 rounds, π
and π′ satisfy Lt−1

π = Lt−1
π′ .

Therefore by symmetry, we can obtain (16) from (15).∑
π∈Πti

e−ηL
t−1
π =

∑
π∈Πt−1

i

e−ηL
t−1
π +

∑
π∈(Πti∩Πt−1

j )

e−ηL
t−1
π (15)

=
∑

π∈Πt−1
i

e−ηL
t−1
π +

1

|Eta|

 ∑
π∈Πt−1

j

e−ηL
t−1
π

 (16)

= hi,t · ci,t

Notice that, given expert j dies at the end of round t − 1 hence,
∑
π∈Πt−1

j
e−ηL

t−1
π is calculable.

Therefore, HPU is always maintaining the weights correctly.

C.2 Proof of Theorem 5.2

Here we follow a construction similar to the proof of Theorem 5.1, i.e., we do induction on t.
Before proceeding to the proof, define λ(π, t) as a function that will remove ineffective elements
of a permutation expert at round t. An element is said to be ineffective, if it will never be used
for the prediction in that permutation or it is dead. Recall that in this section we assumed that
the experts die in order, e1 dies first and eK−A last. For example, (e4) = λ((e4, e3, e2, e1), t) and
(e1, e3, e4) = λ((e1, e3, e2, e4), 1) with respect to the assumption we made earlier on the order
of dying, and if e1 dies at t = 1 and e3 dies at t = 5, then (e3, e4) = λ((e1, e3, e2, e4), 3) and
(e4) = λ((e1, e3, e2, e4), 6). Naturally, λ(E , t) performs the function λ(π, t) on every permutation
π ∈ E . The output of λ(E , t) is a multi-set, not a set.

Proof. Induction Basis: At round t = 0, each of the permutation-experts have the same weight. Due
to the Theorem 3.1, we know the number of the orderings starting by expert ei is equal to d2K−i−1e.
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Therefore, in Hedge, the cumulative non-normalized weight put on E1
ei is d2K−i−1e which is equal

to hi,1 · ci,1 in HPK.

Induction Hypothesis: At the beginning of round t− 1, in Hedge, the cumulative non-normalized
weight put on Et−1

ei for every ei ∈ Et−1
a , is equal to hi,t−1 · ci,t−1

Induction Step: As in the proof of Theorem 5.1, for round t, we split the step into two cases. In the
first case, no expert dies, i.e., Eta = Et−1

a . For the second case, one expert dies at the end of round
t− 1. The proof for the first case is omitted as it is identical to the proof for Case I of Theorem 5.1.
For the case that an expert dies at the end of round t− 1, we show that the weight distribution works
correctly.

Let E(i+1,K) = {ei+1, . . . , eK}. Due to the discussions in Section 3, first, we have the number of
initial orderings starting by ei as d2K−i−1e at the beginning. Second, due to Lemma C.1, if ei dies at
round t− 1, we have:

λ
(
Et−1
ei , t

)
= λ

( ⋃
e∈E(i+1,K)

Et−1
e , t

)
(17)

therefore, for every ej where j > i, (|E1
ej |)/(|E

1
ei |) fraction of hi,t−1 · ci,t−1 must be added to the

weight of Etej to maintain the weight of Etej .

Before proceeding to Lemma C.1, recall that operator + operates between an expert e on LHS and a
multi-set of orderings Π on RHS and returns a new multi-set of orderings which e is added to the left
side of every ordering π ∈ Π.

Lemma C.1. At round t, where Etd = {e1, e2, . . . ei−1} are dead and the rest of the experts are alive,
we have:

λ
(
Etei , t

)
= (ei) + λ

( ⋃
e∈E(i+1,K)

Ete, t

)
and therefore: ∣∣Etei∣∣ =

∣∣∣∣∣λ
( ⋃
e∈E(i+1,K)

Ete, t

)∣∣∣∣∣ .
Before proving the statement, let us define two new operators. For E as the set of permutation-experts,
E − {ei} removes element ei from every permutation π ∈ E . Also, E ′ = xE is a multi-set where
each item in E is copied x times. As a result, trivially we have |E ′| = x · |E|.

Proof. Recall that we assumed that the experts die in order. Due to constructive structure of the
Theorem 3.1, E1

ei is equal to adding ei as the first element for every permutation in E1
E(i+1,K) .

λ
(
(E1
ei), 1

)
= (ei) + λ

( ⋃
e∈E(i+1,K)

E1
e , 1

)

Therefore, the claim holds for t = 1 and we have |λ(E1
ei , 1)| = |E1

ei |. It is easy to verify that:∣∣∣∣∣λ
( ⋃
e∈E(i+1,K)

E1
e , 1

)∣∣∣∣∣ =

∣∣∣∣∣ ⋃
e∈E(i+1,K)

E1
e

∣∣∣∣∣
Due to Lemma C.2, similar claim holds for t when {e1, . . . , ei−1} are dead. λ(Etei , t) will be 2i−1

copies of λ(E1
ei , 1) and similarly

λ

( ⋃
e∈E(i+1,K)

Ete, t

)
= 2i−1λ

( ⋃
e∈E(i+1,K)

E1
e , 1

)
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hence:

2i−1λ
(
E1
ei , 1

)
= (ei) + 2i−1λ

( ⋃
e∈E(i+1,K)

E1
e , 1

)

λ
(
Etei , t

)
= (ei) + λ

( ⋃
e∈E(i+1,K)

Ete, t

)

Lemma C.2. At round t when m experts have died so far and ej ∈ Eta, λ(Etej , t) is equal to 2m

copies of λ(E1
ej , 1) .

Recall that ΠD is the set of all possible orderings of elements in set D of length |D| and similarly,
ED is the set of all effective orderings with respect to ΠD.

Proof. Due to the constructive building of E1
ei , λ(E1

ei) is equal to

(ei) + λ
(
E1
{ei+1,...,eK}, 1

)
= (ei) + λ

( ⋃
i+1≤j≤K

E1
ej , 1

)
= (ei) +

⋃
i+1≤j≤K

λ
(
E1
ej , 1

)
(18)

We use induction on m to prove the claim.

Induction Basis: The claim trivially holds when m = 0.

Induction Hypothesis: When e1, e2, . . . , ei−1 are dead before round t− 1, for any j ≥ i we have
λ(Et−1

ej , t− 1) = 2i−1λ(E1
ej , 1)

Induction Step: Assume that at round t− 1, ei dies.

λ
(
E1
ei , 1

)
= (ei) +

⋃
e∈E(i+1,K)

λ
(
E1
e , 1

)
2i−1λ

(
E1
ei , 1

)
= (ei) + 2i−1 ⋃

e∈E(i+1,K)

λ
(
E1
e , 1

)
2i−1λ

(
E1
ei , 1

)
= (ei) +

⋃
e∈E(i+1,K)

2i−1λ
(
E1
e , 1

)
λ
(
Et−1
ei , t− 1

)
= (ei) +

⋃
e∈E(i+1,K)

λ
(
Et−1
e , t− 1

)
(19)

Where the second and forth equality follows by applying the induction hypothesis to the left and right
sides of the first and third line and first equality holds due to Section 3. Therefore when ei dies, any
π ∈ Et−1

ei we have π ∈ Ete where e ∈ E(i+1,K) hence⋃
e∈E(i+1,K)

λ
(
Ete, t

)
=

⋃
e∈E(i+1,K)

2λ
(
Et−1
e , t− 1

)
=

⋃
e∈E(i+1,K)

2iλ
(
E1
e , 1

)
where the second equality is from the induction hypothesis. This is easy to see that each set in the
union is independent from others, so λ(Etej , t) = 2iλ(E1

ej , 1) where j > i.

C.3 Proof of Theorem 5.3 (Adapting to the number of nights m)

Proof of Theorem 5.3. The idea is to use a simple counting argument. Let π be a best permutation
expert (it typically will not be unique). For the dying sequence that actually occurs, we will lower
bound how many other permutations have the same behavior as this one (we call these behavioral
copies). First, observe that if there are m nights, then each permutation expert can only change the
actual expert it uses for prediction at most m times (for a total of m+ 1 different experts). Suppose
that, over the course of the game, π predicts as ei1 , ei2 , . . . , eil where l ≤ m + 1. Now, consider
those permutations that actually begin as ei1 , ei2 , . . . , eil . As the first l positions are fixed, there are
(K − l)! such permutations and hence at least (K − l)! behavioral copies of π. Hence, if π is the best
expert, then we can compete with it using an ε-quantile bound with ε = (K−l)!

K! =
∏l−1
r=0

1
K−r = εl.

17



Although we do not know the best choice of ε, as we run Hedge on top of K copies of Hedge-Perm-
Unknown and as one of the copies will use learning rate εl, we can compete with this optimally tuned
copy with additional regret overhead of

√
T logK. Moreover, a basic quantile bound exercise shows

that the regret of the optimally tuned copy will be O(
√
T (l + 1) logK), where l ≤ m.
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