
Supplementary Materials for Efficient
Communication in Multi-Agent Reinforcement

Learning via Variance Based Control

1 Proof for theorem 1

Theorem 1. Assume 0 ≤ ηk ≤ 1,
∑

k ηk = ∞,
∑

k η
2
k < ∞. Also assume the number of

possible actions and states are finite. By performing equation 2 iteratively, we have ||Qk
tot(ot, at)−

Q∗
tot(ot, at)|| ≤ λNG ∀ot, at, as k →∞, where G satisfies ||∂Std(fenc(c

t
i))

∂Qk
tot(ot,at)

|| ≤ G,∀i, k, t, ot, at.

Proof. The proof is based on [4] and [5]. If we subtract Q∗
tot(ot, at) from equation 2 in the paper,

and rearrange the equation, we get:

δk+1(ot, at) = (1−ηk)δk(ot, at)+ηk
[
rt+γmaxaQ

k
tot(ot+1, a)−Q∗

tot(ot, at)−λ
N∑
i=1

∂Std(fenc(c
t
i))

∂Qk
tot(ot, at)

]
(1)

where δk(ot, at) = Qk
tot(ot, at) − Q∗

tot(ot, at). Let rt + γmaxaQ
k
tot(ot+1, a) − Q∗

tot(ot, at) =

Fk(ot, at), and
∑N

i=1
∂Std(fenc(c

t
i))

∂Qk
tot(ot,at)

= Uk(ot, at) we have:

δk+1(ot, at) = (1− ηk)δt(ot, at) + ηk

[
Fk(ot, at)− λUk(ot, at)

]
(2)

Decompose δk+1(ot, at) into two random processes, δk+1
1 (ot, at) and δk+1

2 (ot, at), where
δk+1(ot, at) = δk+1

1 (ot, at) + δk+1
2 (ot, at), we have the following two random iterative processes:

δk+1
1 (ot, at) = (1− ηk)δk1 (ot, at) + ηkFk(ot, at) (3)

δk+1
2 (ot, at) = (1− ηk)δk2 (ot, at)− ηkλUk(ot, at) (4)

From Theorem 1 of [5], we know that δk+1
1 (ot, at) converges to zero w.p. 1. From equation 6, we

notice that:

||δk+1
2 (ot, at)|| ≤ ||(1− ηk)δk2 (ot, at)||+ ηkλ||Ut(ot, at)|| (5)

≤ (1− ηk)||δk2 (ot, at)||+ ηkλNG (6)

Therefore we have ||δk+1
2 (ot, at)|| − λNG ≤ (1 − ηk)(||δk2 (ot, at)|| − λNG). This is linear in

δk+1
2 (ot, at) and ||δk+1

2 (ot, at)|| − λNG will converge to a nonpositive number as k approaches
infinity. However, because ||δk+1

2 (ot, at)|| is always greater or equal to zero, hence ||δk+1
2 (ot, at)||

must converge to a number between 0 and λNG. Therefore we get:

||Qk
tot(ot, at)−Q∗

tot(ot, at)|| = ||δk(ot, at)|| (7)

= ||δk1 (ot, at) + δk2 (ot, at)|| (8)

≤ ||δk1 (ot, at)||+ ||δk2 (ot, at)|| (9)
≤ λNG (10)

as k approaches infinity.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Table 1: Agent types of the six battles

Symm. 2s3z MMM 3s5z
User 2 Stalkers & 3 Zealots 1 Medivac, 2 Marauders & 7 Marines 3 Stalkers & 5 Zealots

Enemy 2 Stalkers & 3 Zealots 1 Medivac, 2 Marauders & 7 Marines 3 Stalkers & 5 Zealots
Unsymm. 3s vs 4z 6h vs 8z 6z vs 24zerg

User 3 Stalkers 6 Hydralisks 6 Zealots
Enemy 4 Zealots 8 Zealots 24 Zerglings

2 Experiment settings and hyperparameters

In this section, we describe in detail the experiment settings.

2.1 StarCraft micromanagement challenges

StarCraft II [1] is a real-time strategy (RTS) game that has recently been utilized as a challenging
benchmark by the reinforcement learning community [7, 3, 6, 2]. In this work, we concentrate on
the decentralized micromanagement problem in StarCraft II. Specifically, the user controls an army
that consists of several army units (agents). We consider the battle scenario where two armies, one
controlled by the user, and the other controlled by the build-in StarCraft II AI, are placed on the same
map and try to defeat each other. The agent type can be different between the two armies, and the
agent type can also be different within the same army. The goal of the user is to control the allied
units wisely to kill all the enemy units, while minimizing the damage on the health of each individual
agent. The difficulty of the computer AI is set to Medium. We consider six different battle settings,
which is shown in Table 1. Among these six settings, three are symmetrical battles, where the user
group and the enemy group are identical in terms of type and quantity of agents. The other three
are unsymmetrical battles, where the agent type of user groups and enemy group are different, and
user group contains less number of allied units than the enemy group. The unsymmetrical battles is
consider to be harder than the symmetrical battles because of the difference in the army size.

During execution, each agent are allowed to perform the following actions: move[direction],
attack[enemy id], stop and no-op. There are four directions for the ’move’ operation: east, west,
south, or north. Each agent can only attack the enemy within its shooting range. The Medivacs
can only heal the partner by performing the heal[partner id] instead of attacking the enemies. The
number of possible actions for an agent ranges from 11 (2s3z) to 30 (6z vs 24zerg). Each agent
has a limited sight range, and can only receive information from the partners or enemies within the
sight range. Furthermore, the shooting range is smaller than the sight range so the agent can not
attack the opponents without observing them, and the attack operation is not available when the
opponents are outside the shooting range. Finally, agents can only observe the live agents within the
sight range, and can not discern the agents that are dead or outside the range. At each timestep, the
joint reward received by the allied units equals to the total damage on the health levels of the enemy
units. Additionally, the agents are rewarded 100 extra points after killing each enemy unit, and 200
extra points for killing all the enemies. The user group wins the battle only when the allied units kill
all the enemies within the time limit. The user group loses the battle if either all the allied units are
killed, or the time limit reaches. The time limit for different battles are: 120 timesteps for 2s3z and
MMM, 150 for 3s5z and 3s vs 4z, and 200 for 6h vs 8z and 6z vs 24zerg.

The input observation of each agent consisting of a vector which involves the following information of
each allied unit and enemy unit in its sight range: relative x,y coordinates, relative distance and agent
type. For the mixing network of QMIX, the global state vector st contains the following elements:

1. Shield levels, health levels and cooldown levels of all the units at t.

2. The actions taken by all the units at t− 1.

3. The x,y coordinates of all the units relative to the center of the map at t.

For all the six battles, each allied or enemy agent has a sight range of 9 and shooting range of 6 for
all types of agents. For additional information, please refer to [8].

2

2.2 Hyperparameter

For network of agent i, at timestep t, raw observation oti is first passed through a single-layer MLP,
which outputs a intermediate result with size of 64. The GRU then takes this intermediate result, as
well as the hidden states ht−1

i from the previous timestep and generates hti and cti. Both hti and cti has
a size of 64. The cti is then passed through a FC layer, which generates the local action-value function
Qi(o

t
i, h

t
i, .). The message encoder contains two FC layers with 196 and 64 units respectively. The

combiner performs elementwise summation on the outputs of local action generator and the message
encoders.

During the training, we set the γ = 0.99 and decrease ε linearly from 1.0 to 0.05 over the first 200000
timesteps and keep it to 0.05 for the rest of the learning process. The replay buffers stores the most
recent 5000 episode. We perform a test run for every 200 training episodes to update the replay buffer.
The training batch size is set to 32 and the test batch size is set to 8. We adopt a RMSprop optimizer
with a learning rate η = 5× 10−4 and α = 0.99.

References
[1] Starcraft official game site. https://starcraft2.com/.

[2] J. N. Foerster, C. A. S. de Witt, G. Farquhar, P. H. Torr, W. Boehmer, and S. Whiteson. Multi-agent
common knowledge reinforcement learning. arXiv preprint arXiv:1810.11702, 2018.

[3] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[4] T. Jaakkola, M. I. Jordan, and S. P. Singh. Convergence of stochastic iterative dynamic pro-
gramming algorithms. In Advances in neural information processing systems, pages 703–710,
1994.

[5] F. S. Melo. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics, Tech.
Rep, pages 1–4, 2001.

[6] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang. Multiagent bidirectionally-
coordinated nets: Emergence of human-level coordination in learning to play starcraft combat
games. arXiv preprint arXiv:1703.10069, 2017.

[7] T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv
preprint arXiv:1803.11485, 2018.

[8] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR,
abs/1902.04043, 2019.

3

https://starcraft2.com/

	Proof for theorem 1
	Experiment settings and hyperparameters
	StarCraft micromanagement challenges
	Hyperparameter

