
<Expr> ::= <AlgExpr> | <BoolExpr>
<BoolExpr> ::= <AlgExpr> <<AlgExpr>

| <AlgExpr> <= <AlgExpr>
| <AlgExpr> == <AlgExpr>
| (!<BoolExpr>)
| (<BoolExpr> && <BoolExpr>)
| (<BoolExpr> || <BoolExpr>)

<AlgExpr> ::= <Term>
| (<AlgExpr> + <Term>)
| (<AlgExpr> - <Term>)
| (<AlgExpr> * <Term>)
| (<AlgExpr> / <Term>)
| (<AlgExpr> % <Term>)

<Term> ::= <Var> | <Const>
| max(<AlgExpr>,<AlgExpr>)
| min(<AlgExpr>,<AlgExpr>)
| select(<BoolExpr>,<AlgExpr>,<AlgExpr>)

Figure 6: Grammar of the Halide expressions in our evaluation. “select (c, e1, e2)” means that
when the condition c is satisfied, this term is equal to e1, otherwise is equal to e2. In our dataset, all
constants are integers ranging in [−1024, 1024], and variables are from the set {v0, v1, ..., v12}.

Number of expressions in the dataset Length of expressions Size of expression parse trees
Total: 1.36M Average: 106.84 Average: 27.39

Train/Val/Test: 1.09M/136K/136K Min/Max: 10/579 Min/Max:3/100
Train≤20: 17K Average: 16.76 Average: 4.66
Train≤30: 48K Average: 22.91 Average: 6.43

Train≤50: 170K Average: 35.62 Average: 10.18
Train≤100: 588K Average: 63.49 Average: 18.72

Test>100: 53K Average: 142.22 Average: 42.20

Table 2: Statistics of the dataset for expression simplification.

A More Details of the Dataset

A.1 Expression Simplification

Figure 6 presents the grammar of Halide expressions in our evaluation. We use the random pipeline
generator in the Halide repository to build the dataset 3. Table 2 presents the statistics of the datasets.

A.2 Job Scheduling

Description of different resource distributions. For each job j, we define dominant resources
ddom as the resources with 0.5 ≤ ρjddom ≤ 1, and auxiliary resources daux as those with 0.1 ≤ ρjdaux ≤
0.2. We refer to a job with both dominant and auxiliary resources as a job with non-uniform resources.
We also evaluate on workloads including only jobs with uniform resources, where each job only
includes either dominant resources or auxiliary resources.

A.3 Vehicle Routing

Our data generation follows the setup in [35, 29]. The positions of the depot and customer nodes
are uniformly randomly sampled from the unit square [0, 1] × [0, 1]. Each node is denoted as
vj = ((xj , yj), δj), where (xj , yj) is the position, and δj is the resource demand. We set δ0 = 0 for
the depot (i.e., node 0), and δj ∈ {1, 2, ..., 9} for customer nodes (i.e., j > 0).

3https://github.com/halide/Halide/tree/new_autoschedule_with_new_
simplifier/apps/random_pipeline.
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Figure 7: An example of the rewriting process for Halide expressions. The initial expression is
5 ≤ max(v0, 3) + 3, which could be reduced to 1, i.e., True.

Algorithm 1 Algorithm of a Single Rewriting Step for Job Scheduling Problem

1: function REWRITE(vj , vj′ , st)
2: if Cj′ < Aj or Cj′ == Bj then
3: return st
4: end if
5: if j′ 6= 0 then B′j = Cj′ else B′j = Aj fi
6: C ′j = B′j + Tj
7:
8: //Resolve potential resource occupation overflow within [B′j , C

′
j ]

9: J = all jobs in st except vj that are scheduled within [B′j , C
′
j ]

10: Sort J in the topological order
11: for vi ∈ J do
12: B′i = the earliest time that job vi can be scheduled
13: C ′i = B′i + Ti
14: end for
15: For vi 6∈ J , B′i = Bi, C ′i = Ci
16: st+1 = {(B′i, C ′i)}
17: return st+1

18: end function

B More Details on the Rewriting Ruleset

B.1 More Details for Expression Simplification Problem

The ruleset implemented in the Halide rule-based rewriter can be found in their public repository 4.

More discussions about the uphill rules. A commonly used type of uphill rules is “min/max”
expansion, e.g., min(a, b) < c → a < c||b < c. Dozens of templates in the ruleset of the Halide
rewriter are describing conditions when a “min/max” expression could be simplified. Notice that
although applying this rewriting rule has no benefit in most cases, since it will increase the expression
length, it is necessary to include it in the ruleset, because when either a < c or b < c is always
true, expanding the “min” term could reduce the entire expression to a tautology, which ends up
simplifying the entire expression. Figure 7 shows an example of the rewriting process using uphill
rules properly.

B.2 More Details for Job Scheduling Problem

Algorithm 1 describes a single rewriting step for job scheduling problem.

4 https://github.com/halide/Halide.
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Job embeddingJob schedule

Time

Job 1
!" = [0.1, 0.7], +" = 1, ," = 2, ." = 1

Job 2
!/ = [0.2, 0.5], +/ = 2, ,/ = 3, ./ = 3

Job 3
!2 = [0.6, 0.1], +2 = 3, ,2 = 1, .2 = 3

4"=[0.1, 0.7, 0.1, 0.7, 0.1, 0.7, 0.0, …, 0.0, 1.0]

4/=[0.2, 0.5, 0.8, 0.6, 0.2, 0.5, 0.2, 0.5, 0.0, …, 0.0, 4/3]

42=[0.6, 0.1, 0.8, 0.6, 0.0, …, 0.0, 1.0]
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Figure 8: An example to illustrate the job embedding approach for the job scheduling problem.
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Figure 9: An example to illustrate two possible job schedules on a single machine and their corre-
sponding graph representations. Node 0 was added to represent the start of the scheduling process.
For multiple machines, multiple node 0 will be added.

C More Details on Model Architectures

C.1 Model Details for Expression Simplification

Input embedding. Notice that in this problem, each non-terminal has at most 3 children. Thus, let
x be the embedding of a non-terminal, (hL, cL), (hM , cM ), (hR, cR) be the LSTM states maintained
by its children nodes, the LSTM state of the non-terminal node is computed as

(h, c) = LSTM(([hL;hM ;hR], [cL; cM ; cR]), x) (4)

Where [a; b] denotes the concatenation of vectors a and b. For non-terminals with less than 3 children,
the corresponding LSTM states are set to be zero. We use d to represent the size of h and c, i.e., the
hidden size of the LSTM.

Input representation. For each sub-tree ωi, its input to both the score predictor and the rule-
picking policy is represented as a 2d-dimensional vector [h0;hi], where h0 is the embedding of the
root node encoding the entire tree. The reason why we include h0 in the input is that looking at the
sub-tree itself is sometimes insufficient to determine whether it is beneficial to perform the rewriting.
For example, consider the expression max(a, b) + 2 < a + 2, by looking at the sub-expression
max(a, b)+2 itself, it does not seem necessary to rewrite it asmax(a+2, b+2). However, given the
entire expression, we can observe that this rewriting is an important step towards the simplification,
since the resulted expression max(a+ 2, b+ 2) < a+ 2 could be reduced to False. We have tried
other approaches of combining the parent information into the input, but we find that including the
embedding of the entire tree is the most efficient way.

Score predictor. The score predictor is an LP -layer fully connected network with a hidden size of
NP . For each sub-tree ωi, its input to the score predictor is represented as a 2d-dimensional vector
[h0;hi], where h0 embeds the entire tree.

Rule selector. The rule selector is an LS-layer fully connected network with the hidden size NS ,
and its input format is the same as the score predictor. A |U|-dimensional softmax layer is used as the
output layer.

C.2 More Details for Job Scheduling Problem

Job embedding. We embed each job into a (D × (Tmax + 1) + 1)-dimensional vector ej , where
Tmax is the maximal duration of a job. This vector encodes the information of the job attributes and
the machine status during its execution. We describe the details of job embedding as follows. Consider

15



a job vj = (ρj , Aj , Tj). We denote the amount of resources occupied by all jobs at each timestep
t as ρ′t = (ρ′t1, ρ

′
t2, ..., ρ

′
tD). Each job vj is represented as a (D × (Tmax + 1) + 1)-dimensional

vector, where the first D dimensions of the vector are ρj , representing its resource requirement. The
followingD×Tj dimensions of the vector are the concatenation of ρ′Bj

,ρ′Bj+1, ...,ρ
′
Bj+Tj−1, which

describes the machine usage during the execution of the job vj . When Tj < Tmax, the following
D × (Tmax − Tj) dimensions are zero. The last dimension of the embedding vector is the slowdown
of the job in the current schedule. We denote the embedding of each job vj as ej . The embedding
of the machine (i.e., v0) is a zero vector e0 = 0. Figure 8 shows an example of our job embedding
approach, and Figure 9 illustrates an example of the graph construction.

Model specification. To encode the graphs, we extend the Child-Sum Tree-LSTM architecture
in [46], which is similar to the DAG-structured LSTM in [53]. Specifically, for a job vj , suppose
(h1, c1), (h2, c2), ..., (hp, cp) are the LSTM states of all parents of vj , then its LSTM state is:

(h, c) = LSTM((

p∑

i=1

hi,

p∑

i=1

ci), ej) (5)

For each node, the d-dimensional hidden state h is used as the embedding for other two components.

Score predictor. This component is an LP -layer fully connected neural network with a hidden size
of NP , and the input to the predictor of job vj is hj .

Rule selector. The rewriting rules are equivalent to moving the current job vj to be a child of
another job vj′ or v0 in the graph, which means allocating job vj after job vj′ finishes or at its arrival
time Aj . Thus, the input to the rule selector not only includes hj , but also hj′ of all other vj′ that
could be used for rewriting. The rule selector has two modules. The first module is an LS-layer
fully connected neural network with a hidden size of NS . For each job vj , let Nj be the number of
jobs that could be the parent of vj , and {vj′k} denotes the set of such jobs. For each vj′k , the input is
[hj ;hj′k ], and this module computes a d-dimensional vector h′k to encode such a pair of jobs. The
second module of the rule selector is another LS-layer fully connected neural network with a hidden
size of NS . For this module, the input is a (|U| × d)-dimensional vector [h′1;h′2; ...;h′|U|], where
|U |= 2W . When Nj < |U|, h′Nj+1, h

′
Nj+2, ..., h

′
|U| are set to be zero. The output layer of this

module is a |U|-dimensional softmax layer, which predicts the probability of each different move of
vj .

C.3 More Details for Vehicle Routing Problem

Node embedding. We embed each node into a 7-dimensional vector ej . This vector encodes the
information of the node position, node resource demand, and the current status of the vehicle. We
describe the details of node embedding as follows. Consider a node vj = ((xj , yj), δj), where
(xj , yj) is the position, and δj is the resource demand. We set δ0 = 0 for the depot (i.e., node 0).
Denote Cap as the vehicle capacity. The first three dimensions of ej are xj , yj , and δj/Cap. The
next three dimensions of ej are the coordinates of the node visited at the previous step (set as the
depot position for the first visited node) and the Euclidean distance between vj and the previous node.
The last dimension is the amount of remaining resources carried by the vehicle at the current step,
which is also normalized by the vehicle capacity.

Score predictor. This component is an LP -layer fully connected neural network with a hidden size
of NP , and the input to the predictor of the node vj is hj , where hj is the output of the bi-directional
LSTM used to encode each node in the route.

Rule selector. The rewriting rules are equivalent to moving a node in the route vj after another
node vj′ , similar to the job scheduling setting. However, different from job scheduling, the number
of such nodes vj′ varies among different problems. Thus, we train an attention module to select vj′ ,
with a similar design to the pointer network [50].
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Algorithm 2 Forward Pass Algorithm for the Neural Rewriter during Training

Require: initial state s0, hyper-parameters ε, pc, Titer, Tω, Tu
1: for t = 0→ Titer − 1 do
2: for i = 1→ Tω do
3: Sample ωt ∼ πω(ωt|st; θ), where ωt ∈ Ω(st), πω(ωt|st; θ) = exp(Q(st,ωt;θ))∑

ωt
exp(Q(st,ωt;θ))

4: if Q(st, ωt; θ) < ε then
5: Re-sample ω′t ∼ πω(ω′t|st; θ) with a probability of 1− pc
6: if Re-sampling is not performed then break fi
7: else
8: break
9: end if

10: end for
11: for i = 1→ Tu do
12: Sample ut ∼ πu(ut|st[ωt];φ)
13: if ut can be applied to st[ωt] then break fi
14: end for
15: if ut does not applied to st[ωt] then break fi
16: st+1 = f(st, ωt, ut)
17: end for

C.4 Model hyper-parameters

For both the expression simplification and job scheduling tasks, LS = LP = 1. For the vehicle
routing task, LS = LP = 2. For all the three tasks, NS = NP = 256, d = 512.

D More Details on Training

Algorithm 2 presents the details of the forward pass during training. The forward pass during
evaluation is similar, except that we compute ωt and ut as ωt = arg maxω πω(ω|st; θ) and ut =
arg maxu(πu(u|st[ωt];φ)), and the inference immediately terminates when Q(st, ωt; θ) < ε or ut
does not apply.

Hyper-parameters. For all tasks in our evaluation, in Algorithm 2, ε = 0.0, Tω = 10, Tu = 10.
Titer = 50 for both the expression simplification and the job scheduling tasks. For the vehicle routing
task, we set Titer = 200, because we find that applying 50 rewriting steps could be insufficient for
finding a competitive solution, especially when the number of customer nodes is large. For all tasks
in our evaluation, pc is initialized with 0.5, and is decayed by 0.8 for every 1000 timesteps until
pc = 0.01, where it is not decayed anymore. In the training loss function, α = 10.0. The decay
factor for the cumulative reward is γ = 0.9. The initial learning rate is 1e − 4, and is decayed by
0.9 for every 1000 timesteps. Batch size is 128. Gradients with L2 norm larger than 5.0 are scaled
down to have the norm of 5.0. The model is trained using Adam optimizer. All weights are initialized
uniformly randomly in [−0.1, 0.1].

E More Results for Job Scheduling Problem

We observe that while OR-tools is a high-performance solver for generic combinatorial optimization
problems, it is less effective than both heuristic-based scheduling algorithms and neural network
approaches on our job scheduling problem, especially with more resource types. After looking into
the schedules computed by OR-tools, we find that they often prioritize long jobs over short jobs,
while swapping the scheduling order between them would clearly decrease the job waiting time.
On the other hand, both our neural rewriter and heuristic algorithms based on the job length would
usually schedule short jobs very soon after their arrival, which results in better schedules.

Table 3 and 4 present the results of ablation study on job frequency and resource distribution
respectively.
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Dynamic Job Frequency Steady Job Frequency
Earliest Job First (EJF) 14.53 24.23
Shortest Job First (SJF) 3.62 5.00

SJF-offline 2.70 4.26
NeuRewriter (dynamic) 2.56 3.99
NeuRewriter (steady) 2.59 3.94

Table 3: Experimental results of the job scheduling problem with different distribution of job
frequency.

Uniform Job Resources Non-uniform Job Resources
Earliest Job First (EJF) 11.06 24.23
Shortest Job First (SJF) 4.51 5.00

SJF-offline 2.76 4.26
NeuRewriter (uniform) 2.73 4.05

NeuRewriter (non-uniform) 3.13 3.94

Table 4: Experimental results of the job scheduling problem with different distribution of job
resources.

Initial average slowdown ≤ 10 10− 25 > 25
Final average slowdown 3.88 3.90 4.06
Earliest Job First (EJF) 24.23
Shortest Job First (SJF) 5.00

Shortest First Search (SJFS) 4.98
DeepRM 10.18
OR-tools 15.18

SJF-offline 4.26
NeuRewriter 3.94

Table 5: Experimental results of the job scheduling problem using initial schedules with different
average slowdown. The number of resource types D = 20.

To examine how the initial schedules affect the final results, besides earliest-job-first schedules, we
also evaluate initial schedules with different average slowdown. Specifically, for each job sequence,
we generate different initial schedules by randomly allocating one job at a time.

In Table 5, we present the results with D = 20 types of resources. For each job sequence, we
randomly generate 10 different initial schedules. We can observe that although the effectiveness of
initial schedules affects the final schedules, the performance is still consistently better than other
baseline approaches, which demonstrates that our neural rewriter is able to substantially improve the
initial solution regardless of its quality.

F More Discussion of the Evaluation on Vehicle Routing Problem

We generate the initial routes for NeuRewriter in the following way: starting from the depot, at
each timestep, the vehicle visits the nearest node that is either: (1) a customer node that has not been
visited yet, and its resource demand can be satisfied; or (2) the depot node, and the resources carried
by the vehicle is less than its capacity. See Figure 10 for examples of the initial solutions. In this way,
the average tour length is 7.74 for VRP20, 13.47 for VRP50, and 20.36 for VRP100. Note that these
results are even worse than the classic heuristics compared in Table 6.

Table 6 presents more results for vehicle routing problems, and Figure 10 shows an example of the
rewriting steps performed by NeuRewriter.

For generalization results, note that after training on VRP50, NeuRewriter achieves an average
tour length of 17.33 on VRP100 (See Figure 5b in the mainbody of the paper). This is better
than 18.00 reported in [35], suggesting that our approach could adapt better to different problem
distributions.
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Model VRP20, Cap30 VRP50, Cap40 VRP100, Cap50
NeuRewriter 6.16 10.51 16.10

AM-Greedy 6.40 10.98 16.80
AM-Sampling 6.25 10.62 16.23

Nazari et al. (RL-Greedy) 6.59 11.39 17.23
Nazari et al. (RL-BS(5)) 6.45 11.22 17.04

Nazari et al. (RL-BS(10)) 6.40 11.15 16.96
CW-Greedy 7.22 12.85 19.72

CW-Rnd(5,5) 6.89 12.35 19.09
CW-Rnd(10,10) 6.81 12.25 18.96

SW-Basic 7.59 13.61 21.01
SW-Rnd(5) 7.17 13.09 20.47
SW-Rnd(10) 7.08 12.96 20.33

OR-Tools 6.43 11.31 17.16
Gurobi (optimal) 6.10 - -

Table 6: Experimental results of the vehicle routing problems.

(a) Step 0. (b) Step 1.

(c) Steps 2-5. (d) Step 6.

Figure 10: An example of the rewriting steps for a VRP20 problem. The square is the depot, and
circles are customer nodes. The customer node sizes are proportional to their resource demands. At
each stage, red edges are to be rewritten at the next step, and green edges are rewritten ones. The tour
length of the initial route is 7.31, and the final tour length after rewriting is 5.98.

G More Results for Expression Simplification

In Figures 11 and 12, we present some success cases of expression simplification, where we can
simplify better than both the Halide rule-based rewriter and the Z3 solver.
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(a) Step 0. (b) Step 1.

(c) Step 2. (d) Step 3.

(e) Step 4.

Figure 11: The rewriting process that simplifies the expression ((v0− v1 + 18)/35 ∗ 35 + 35) ≤
v0− v1 + 119 to 34 ≤ (v0− v1 + 13)%35.

(a) Step 0. (b) Step 1.

(c) Step 2. (d) Step 3.

(e) Step 4. (f) Step 5.

(g) Step 6. (h) Step 7.

(i) Step 8. (j) Step 9.

(k) Step 10.

Figure 12: The rewriting process that simplifies the expression ((v0− v1 + 12)/137 ∗ 137 + 137) ≤
min((v0− v1 + 149)/137 ∗ 137, v0− v1 + 13) to 136 ≤ (v0− v1 + 12)%137.
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