
Appendix

A Hyperparameters

We tune almost all hyperparameters for random 3-SAT and use the same ones for the other problem
classes. For optimization we use RMSprop [45]. At the first curriculum step (smallest distribution),
we start with a learning rate of 0.001 and halve it at predefined points in training which continues for
10000 iterations. For subsequent curriculum steps we start with a learning rate of 0.0001 and multiply
it by 0.8 at predefined points. During training we sample 5 trajectories, and set the maximum allowed
number of steps per distribution, determined by the maximum number of steps that WalkSAT takes
over a sample of problems from the same distribution. We use a discount factor of γ = 0.25. We
realize this is an unconventional choice for the discount factor. However, in our experiments, using a
small discount translated to faster convergence, especially in the initial curriculum steps.

Each of the functions described in Section 4.3 are MLPs with a single hidden layer and ReLU
activation (except for the final layer of Z, after which we apply softmax). The GNN runs T = 2
message-passing iterations, and after each iteration we perform batch normalization [23] where we
treat all the nodes in the factor graph as a minibatch. We observed that batch normalization was
crucial to achieve our results. In experiments using T > 2 we saw no benefits to performance. This
also goes along with the conventional wisdom that the intuition from supervised learning with neural
networks where larger and deeper models are often better might not be applicable to reinforcement
learning. For all message and update MLPs we have d = 32, and the hidden layer also has size 32 for
all MLPs except Z, which has 64 hidden units.

We also experimented with an actor-critic architecture and entropy regularization. For the set of
hyperparameters that we searched over, these more complex approaches were on par with or worse
than vanilla REINFORCE.

B Training algorithm

Algorithm 2 Learning a heuristic with REINFORCE

Input: Problem distribution D, policy ρθ, discount rate γ, learning rate α
1: Initialize parameters of the policy ρθ
2: for i← 1 to NumTrainIterations do
3: Sample a problem φ ∼ D
4: Initialize g ← 0 . g accumulates gradients.
5: for j ← 1 to NumTrajectories do
6: Initialize history = ()
7: Assign X ← Initialize(φ)
8: for k ← 1 to MaxFlips do
9: if φ(X) = 1 then . X satisfies φ.

10: break
11: else
12: Sample action a ∼ ρθ(φ,X)
13: Append (X, a) to history
14: X ← Flip(X, a)
15: end if
16: end for
17: Set reward r ← φ(X)
18: for t← 1 to T = length(history) do
19: X, a← history[t]
20: if a was sampled using πθ then
21: p̂← πθ(φ,X)
22: g ← g + γT−tr∇θ log p̂(a)
23: end if
24: end for
25: end for
26: θ ← θ + αg . Update policy parameters.
27: end for

13


	Introduction
	Related work
	Background
	Boolean formulas
	Local search
	Graph neural networks

	Model
	Factor graph of CNF formulas
	Input representation
	Policy network architecture

	Data
	Training
	Markov decision process formulation
	Curriculum learning

	Experiments
	Results

	Conclusion
	Hyperparameters
	Training algorithm


