
We would like to thank all the reviewers for thoughtful feedback. As the reviewers pointed out, SWAG is a very practical1

Bayesian deep learning method readily applicable to ImageNet-scale problems. SWAG achieves strong results on image2

classification, tabular regression and language modeling, out-performing strong and elaborate Bayesian deep learning3

methods. We also explicitly demonstrate that SWAG can capture the shape of the posterior (along certain directions) in4

Section 4, which justifies using SWAG as an approximation to the posterior distribution. We believe that our paper5

(i) sets a strong baseline for Bayesian deep learning and (ii) motivates researchers in the field to conduct realistic6

evaluations on large-scale datasets and models, and (iii) use loss surface visualizations to show that the approximate7

posterior distribution captures the shape of the true posterior.8

Inspired by reviewer suggestions, we ran two additional experiments. First, we evaluated ensembles of SGD iterates9

that were used to construct the SWAG approximation for all of our CIFAR models. We report NLLs in the table:10

CIFAR-100 CIFAR-10

Architecture SWAG SGD-Ens SWAG SGD-Ens
VGG-16 0.9480± 0.0038 0.8979± 0.0065 0.2016± 0.0031 0.1883± 0.002
PreResNet-164 0.6595± 0.0019 0.7839± 0.0046 0.1232± 0.0022 0.1312± 0.0023
WideResNet28x10 0.6078± 0.0006 0.7655± 0.0026 0.1122± 0.0009 0.1855± 0.0014

11

SWAG loses on VGG-16, but wins by a large margin on the larger PreResNet-164 and WideResNet28x10; the results for12

accuracy and ECE are analogous. We will include these results as well as results on ImageNet and transfer learning in the13

camera-ready version. Second, we evaluated ensembles of independently trained SGD solutions on PreResNet-16414

on CIFAR-100. We found that an ensemble of 3 SGD solutions has high accuracy (82.1%), but only achieves NLL15

0.6922, which is worse than a single SWAG solution. An ensemble of 5 SGD solutions achieves NLL 0.6478, which16

is competitive with a single SWAG solution, that requires 5× less computation to train. Moreover, we can similarly17

ensemble independently trained SWAG models; an ensemble of 3 SWAG models achieves NLL of 0.6178.18

R1: We thank the reviewer for the thoughtful and positive review. In addition to the new results we discuss above, we19

note that in appendix Figure 3a we show that in terms of accuracy SWAG outperforms an ensemble of SGD iterates.20

We would also like to note that in many problems, such as incremental learning (see e.g. [1]), it is desirable to represent21

uncertainty over weights as a closed form distribution, rather than just storing samples. Further, we can produce an22

arbitrary number of samples from a fixed SWAG approximation, and in appendix Figure 3b, we show that NLL of the23

ensemble continues to improve as we add more samples. With just using ensembles of SGD iterates, we cannot cheaply24

increase the ensemble.25

R2: Thank you for the thoughtful and positive review. See the above comparison with SGD-ensembles. [2] demonstrated26

that high-frequency ensembles of SGD iterates typically outperform snapshot ensembles, so we focus on the former.27

R3: While we value the feedback, and are happy you appreciate the quality of the work, we do not agree that the28

paper should be rejected unless SWAG is not called “an approximation to Bayesian learning”. The proposed method29

is unequivocally an approximate Bayesian inference approach, exactly analogous to the Laplace approximation or30

variational methods. Similar to many such canonical approximate Bayesian inference procedures, we use a Gaussian31

approximation to the posterior, but centred on the SWA solution, with curvature defined by the SGD trajectory; for32

comparison, the Laplace approximation uses a Gaussian centred on the SGD solution with curvature defined by the33

Hessian of the posterior log-density at that point. Whether or not the posterior is truly Gaussian (as modeled by34

Laplace or SWAG), or whether the Gaussian should be centred at an SGD solution (as in Laplace), or what its curvature35

should be, or whether the stationary distribution of SGD is Gaussian, are reasonable questions for Laplace, variational36

approaches, SWAG, and many other methods, but orthogonal to whether these methods provide approximate Bayesian37

inference. It is fair to question the assumptions – indeed we do so ourselves in the paper, and provide exhaustive38

empirical support in Section 4 – but calling SWAG an approximate Bayesian method is factually correct and thus not a39

fair reason for rejection. Moreover, the assumptions of our procedure are much milder than many standard approximate40

Bayesian inference procedures, such as the widespread mean-field variational approximations which assume fully41

factorized posteriors. While, as you mention, it is possible to construct special cases where the stationary distribution42

does not capture the shape of the posterior (Section 6.2 of [3]), in general these distributions are tightly constrained as43

in equation (13) of [3]. In Section 4 of the paper (in particular Figures 1 and Appendix Figure 2) we go beyond many44

works employing Gaussian posterior approximations to explicitly demonstrate that the posterior for our applications is45

approximately Gaussian in the PCA subspace of the SGD trajectory and SWAG is able to capture its shape.46

We evaluated ensembles of independent SGD solutions as you suggested; please see the discussion above.47
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