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Abstract

Mapping structural brain connectomes for living human brains typically requires
expert analysis and rule-based models on diffusion-weighted magnetic resonance
imaging. A data-driven approach, however, could overcome limitations in such rule-
based approaches and improve precision mappings for individuals. In this work, we
explore a framework that facilitates applying learning algorithms to automatically
extract brain connectomes. Using a tensor encoding, we design an objective with a
group-regularizer that prefers biologically plausible fascicle structure. We show that
the objective is convex and has a unique solution, ensuring identifiable connectomes
for an individual. We develop an efficient optimization strategy for this extremely
high-dimensional sparse problem, by reducing the number of parameters using a
greedy algorithm designed specifically for the problem. We show that this greedy
algorithm significantly improves on a standard greedy algorithm, called Orthogonal
Matching Pursuit. We conclude with an analysis of the solutions found by our
method, showing we can accurately reconstruct the diffusion information while
maintaining contiguous fascicles with smooth direction changes.

1 Introduction

A fundamental challenge in neuroscience is to estimate the structure of white matter connectivity
in the human brain or connectomes [14, 29]. Connectomes are made up of neuronal axon bundles
wrapped with myelin sheaths, called fascicles, and connect different areas of the brain. Acquiring
information about brain tissue is possible by measuring the diffusion of water molecules at different
spatial directions. Fascicles can be inferred by employing tractography algorithms, which calculate
mathematical models from the diffusion-weighted signal. Currently, diffusion-weighted magnetic
resonance imaging (dMRI) combined with fiber tractography is the only method available to map
structural brain connectomes in living human brains [3, 30, 23]. This method has revolutionized our
understanding of the network structure of the human brain and the role of white matter in health and
disease.

Standard practice in mapping connectomes is comprised of several steps:a dMRI is acquired (Fig
1A), a model is fit to the signal in each brain voxel (Fig. 1B) and a tractography algorithm is used to
estimate long range brain connections (Fig. 1C). Multiple models can be used at each one of these
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Figure 1: A: Measurements of white matter using diffusion-weighted magnetic resonance imaging
(dMRI). B: Multiple models can describe the dMRI signal in each brain voxel. For example, the
diffusion-tensor model (DTI; top, [2]) and the constrained-spherical deconvolution model (CSD,
bottom; [28]) are commonly used. C: Multiple tractography methods integrate model fits across
voxels to estimate long-range brain connections. There are many tractography algorithms exist, each
with multiple parameters, for both deterministic and probabilistic methods [27]. In principle several
combinations of methods and parameters are used by investigators. D: Left: Two major white matter
tracts, the Arcuate Fasciculus in gold and superior lateral fasciculus in lilac, reconstructed in a single
brain using deterministic (top) and probabilistic (bottom) tractography. Right: Cortical termination
of the superior lateral fasciculus in the same brain estimated with deterministic (top) and probabilistic
(bottom) tractography. Arrows show multiple possible choices of model and parameters to generate
connectome estimates (D) from dMRI data (A).

steps and each model allows multiple parameters to be set. Currently, best practice in the field is
to choose one model and pick a single set of parameters using heuristics such as recommendations
by experts or previous publications. This rule-based approach has several limitations. For example,
different combinations of models and parameters generate different solutions (Fig 1D). Figure 1
exemplifies how from a single dMRI data set collected in a brain, choosing a single model and
parameters set (Fig. 1A-C) can generate vastly different connectome mapping results (Fig 1D;
adapted from [20]). In the figure, we show that both estimates of white matter tracts (Fig 1D left) and
cortical connections (Fig. 1D right) vary substantially even within a single brain.

There have been some supervised learning approaches proposed for tractography. These supervised
methods, however, such as those using random forests [17] and neural networks [22, 5] require
labelled data. This means tractography solutions must first be given for training, limiting the models
mainly to mimic expert solutions rather than learn structures beyond them. A few methods have used
regularized learning strategies, but for different purposes, such as removing false connections in the
given tractography solution [12] and using radial regularization for micro-structure [9].

This work presents a fully unsupervised learning framework for tractography. We exploit a recently
introduced encoding for connectome data, called ENCODE [8], which represents dMRI (and white
matter fascicles) as a tensor factorization. This factorization was previously used only to represent
expert connectomes as a tensor, generated using a standard rule-based tractography process introduced
in Fig. 1. We propose to instead learn this tensor using the dMRI data, to learn the structure of
brain connectomes. We introduce a regularized objective that attempts to extract a tensor that reflects
a biologically plausible fascicle structure while also reconstructing the diffusion information. We
address two key challenges: (1) designing regularizers that adequately capture biologically plausible
tract structures and (2) optimizing the resulting objective for an extremely high-dimensional and
sparse tensor. We develop a group regularizer that captures both spatial and directional continuity of
the white matter fascicles. We solve this extremely high-dimensional sparse problem using a greedy
algorithm to screen the set of possible solutions upfront. We prove both that the objective is convex,
with a unique solution, and provide approximation guarantees on the greedy algorithm. We then
show that this greedy algorithm much more effectively selects possible solutions, as compared to a
standard greedy algorithm called Orthogonal Matching Pursuit (OMP). We show, both quantitatively
and qualitatively, that the solutions provided by our method effectively reconstruct the diffusion
information in each voxel while maintaining contiguous, smooth fascicles.

The code is available at: https://github.com/framinmansour/Learning-Macroscopic-Brain-Connectomes-
via-Group-Sparse-Factorization
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2 Encoding Brain Connectomes as Tensors

1
A. Natural brain space and tensor encoding 
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Figure 2: A: The ENCODE method; from natural brain space to tensor encoding. Left: Two example
white matter fascicles (f1 and f2) passing through three voxels (v1, v2 and v3). Right: Encoding of
the two fascicles in a three dimensional tensor. The non-zero entries in Φ indicate fascicles orientation
(1st mode), position (voxel, 2nd mode) and identity (3rd mode). B: Model formulation and group sparse
regularization. Depiction of how ENCODE facilitates integration of dMRI signal, Y, connectome
structure, Φ, and a dictionary of predictions of the dMRI signal, D, for each fascicle orientation. The
group regularizers (orange and green squares) defines pairwise groups of neighbouring voxels and
similar orientations. Note that the voxels are linearized to enable Φ and the groups to be visualized.
This allows us to flatten four-dimensional hyper-cubes—three dimensions for voxels and one for
orientations—to squares.

ENCODE [8] maps fascicles from their natural brain space into the three dimensions of a sparse
tensor Φ ∈ RNa×Nv×Nf (Fig. 2A - right). The first dimension of Φ (1st mode, size Na) encodes
individual white matter fascicles orientation at each position along their path through the brain.
Individual segments (nodes) in a fascicle are coded as non-zero entries in the sparse array (dark-blue
cubes in Fig. 2A - right). The second dimension of Φ (2nd mode, size Nv) encodes fascicles spatial
position within the voxels of dMRI data. Slices in this second dimension represent single voxels
(cyan slice in Fig. 2A - right). The third dimension (3rd mode, size Nf ) encodes the indices of each
fascicle within the connectome. Full fascicles are encoded as Φ frontal slices (cf., yellow and blue in
Fig. 2A - right). Within one tract, such as the Arcuate Fasciculus, the model we use has fine-grained
orientations Na = 1057, with number of fascicles Nf = 868 and number of voxels Nv = 11, 823.

ENCODE facilitates the integration of measured dMRI signals with the connectome structure (Fig.
2B - right). DMRI measurements are collected with and without a diffusion sensitization magnetic
gradient and along several gradient directions or Nθ, i.e. θ ∈ R3. In the Arcuate Fasciculus for
instance, the data was collected for Nθ = 96 different angles of gradient direction. Then, the dMRI
signal is represented as matrix Y ∈ RNθ×Nv , which represents the value of diffusion signal received
from each voxel when any individual angle of gradient directions were applied during the scanning.

Moreover, ENCODE allows factorizing the dMRI signal as the product of a 3-dimensional tensor
Φ ∈ RNa×Nv×Nf and a dictionary of dMRI signals D ∈ RNθ×Na :Y ≈ Φ×1 D×3 1. The notation
“×n” is the tensor-by-matrix product in mode-n (see [15]). The dot product with 1 ∈ RNf sums over
the fascicle dimension.1 The matrix D is a dictionary of representative diffusion signals: each column
represents the diffusion signal we expect to receive from any axon in the direction of any possible
fascicle orientation a by sensitizing magnetic gradient in each direction of θ. More specifically,
the entries are computed as follows: D(θ, a) = e−bθ

TQaθ − 1
Nθ

∑
θ e
−bθTQaθ, in which Qa is an

approximation of diffusion tensor per fascicle-voxel and scalar b denotes the diffusion sensitization
gradient strength. θTQaθ gives us the diffusion at direction θ generated by fascicle f .

3 A Tractography Objective for Learning Brain Connectomes

The original work on ENCODE assumed the tensor Φ was obtained from a tractography algorithm.
In this section, we instead use this encoding to design an objective to learn Φ directly from dMRI

1The original encoding uses a set of fascicles weights w ∈ RNf , to get Y ≈ Φ×1 D×3 w. For a fixed
Φ, w was learned to adjust the magnitude of each fascicle dimension. We do not require this additional vector,
because these magnitudes can be incorporated into Φ and implicitly learned when Φ is learned.
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data. First consider the problem of estimating tensor Φ to best predict Y, for a given D ∈ RNθ×Na .
We can use a standard maximum likelihood approach (see Appendix A for the derivation), to get the
following reconstruction objective

Φ̂ = argmin
Φ∈RNa×Nv×Nf

‖Y −Φ×1 D×3 1‖2F , (1)

where ‖·‖F is the Frobenius norm that sums up the squared entries of the given matrix. This objective
prefers Φ that can accurately recreate the diffusion information in Y. This optimization, however, is
highly under-constrained, with many possible (dense) solutions.

In particular, this objective alone does not enforce a biologically plausible fascicle structure in Φ.
The tensor Φ should be highly sparse, because each voxel is expected to have only a small number
of fascicles and orientations [20]. For example, for the Arcuate Fasciculus, we expect at most an
activation level in Φ of (Nv × 10 × 10/(Na × Nv × Nf ) ≈ 1e−6, using a conservative upper
bound of 10 fascicles and 10 orientations on average per voxel. Additionally, the fascicles should be
contiguous and should not sharply change orientation.

We design a group regularizer to encode these properties. Anatomical consistency of fascicles is
enforced locally within groups of neighboring voxels and orientations. Overlapping groups are used
to encourage this local consistency to result in global consistency. Group regularization prefers to
zero all coefficients for a group. This zeroing has the effect of clustering non-zero coefficients in
local regions within the tensor, ensuring similar fascicles and orientations are active based on spatial
proximity. Further, overlapping groups encourages neighbouring groups to either both be active
or inactive for a fascicle and direction. This promotes contiguous fascicles and smooth direction
changes. These groups are depicted in Figure 2B, with groups defined separately for each fascicle
(slice). We describe the group regularizer more formally in the remainder of this section.

Assume we have groups of voxels GV ∈ V based on spatial coordinates and groups of orientations
GA ∈ A based on orientation similarity. For example, each GV could be a set of 27 voxels in a local
cube; these cubes of voxels can overlap between groups, such as {(1, 1, 1), (1, 1, 2), . . . , (3, 3, 3)} ∈
V and {(2, 1, 1), (2, 1, 2), . . . , (4, 3, 3)} ∈ V . Each GA can be defined by selecting one atom (one
orientation) and including all orientations in the group that have a small angle to that central atom, i.e.,
an angle that is below a chosen threshold. Consider one orientation, voxel, fascicle triple (a, v, f).
Assume a voxel has a non-zero coefficient for a fascicle: Φa,v,f is not zero for some a. A voxel
within the same group GV is likely to have the same fascicle with a similar orientation. A distant
voxel, on the other hand, is highly unlikely to share the same fascicle. The goal is to encourage
as many pairwise groups (GV ,GA) to be inactive—have all zero coefficients for a fascicle—and
concentrate activation in Φ within groups.

We can enforce this group sparsity by adding a regularizer to (1). Let xGA,v,f ∈ R indicate whether a
fascicle f is active for voxel v, for any orientation a ∈ GA. Let xGA,GV ,f be the vector composed
of these identifiers for each v ∈ GV . Either we want the entire vector xGA,GV ,f to be zero, meaning
the fascicle is not active in any of the voxels v ∈ GV for the orientations a ∈ GA. Or, we want more
than one non-zero entry in this vector, meaning multiple nearby voxels share the same fascicle. This
second criterion is largely enforced by encouraging as many blocks to be zero as possible, because
each voxel will prefer to activate fascicles and orientations in already active pairs (GV ,GA). As with
many sparse approaches, we use an `1 regularizer to set entire blocks to zero. In particular, as has
been previously done for block sparsity [26], we can use an `1 across the blocks xGA,GV ,f∑

f∈F

∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2. (2)

The outer sums can be seen as an `1 norm across the vector of norm values containing ‖xGA,GV ,f‖2.
This encourages ‖xGA,GV ,f‖2 = 0, which is only possible if xGA,GV ,f = 0.

Finally, we need to define a continuous indicator variable xGA,GV ,f to simplify the optimization. A
0-1 indicator is discontinuous, and would be difficult to optimize. Instead, we use the following
continuous indicator

xGA,GV ,f = [‖ΦGA,v1,f‖1, . . . , ‖ΦGA,vn,f‖1] for each vi ∈ GV (3)

An entry in xGA,GV ,f is 0 if fascicle f is not active for (GV ,GA). Otherwise, the entry is proportional
to the sum of the absolute coefficient values for that fascicle for orientations in GA.
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Our proposed group regularizer is

R(Φ) =
∑
f∈F

∑
GV∈V

∑
GA∈A

‖xGA,GV ,f‖2 =
∑
f∈F

∑
GV∈V

∑
GA∈A

√√√√∑
v∈GV

(∑
a∈GA

|Φa,v,f |

)2

, (4)

which, combined with equation (1), gives our proposed objective. Given the observed Y, and the
dictionary D, find the Φ s.t.

min
Φ∈RNa×Nv×Nf

‖Y −Φ×1 D×3 1‖2F + λR(Φ) (5)

for regularization weight λ > 0. This objective balances between reconstructing diffusion data and
constraints on the structure in Φ. Crucially, this objective is convex in Φ and has a unique solution,
which we show in Theorem 1 in Appendix B. Uniqueness ensures identifiable tractography solutions
and convexity facilitates obtaining optimal solutions.

4 An Efficient Algorithm for the Tractography Objective

Standard gradient descent algorithms can be used directly on (5) to find the optimal solution. Unfor-
tunately, the number of parameters in the optimization is very large: Nv ×Nf ×Na is billions even
for just one tract. At the same time, the number of active coefficients at the end of the optimization is
much smaller, only on the order of Nv, because there are only handful of fascicles and orientations
per voxel. Even when initializing Φ to zero, the gradient descent optimization might make all of Φ
active during the optimization. Screening algorithms have been developed to prune entries for sparse
problems [31, 6]. These generic methods, however, still have too many active coefficients to make
this optimization tractable for wide application, as we have verified empirically.

Instead, we can design a screening algorithm specialized to our objective. Orientations can largely be
selected independently for each voxel, based solely on diffusion information. We can infer the likely
orientations of fascicles in a voxel that could plausibly explain the diffusion information, without
knowing precisely which fascicles are in that voxel. If we can select a plausible set of orientations for
each voxel before optimizing the objective, we can significantly reduce the number of parameters.
For example, 20 orientations is a large superset, but would reduce the number of parameters by a
factor of 10,000 because the whole Na = 120, 000.

One strategy is to generate these orientations greedily, such as with a method like Orthogonal
Matching Pursuit (OMP). This differs from most screening approaches, which usually iteratively
prune starting from the full set. Generating orientations starting from an empty set, rather than
pruning, is a more natural strategy for such an extremely sparse solution, where only 0.017% of the
items are used. Consider how OMP might generate orientations. For a given voxel v, the next best
orientation is greedily selected based on how much it reduces the residual error for the diffusion. On
the first step, it adds the single best orientation for predicting the Nθ = 96 dimensional diffusion
vector for voxel v. It generates up to a maximum of k orientations greedily and then stops. Then
only coefficients for this set of orientations will be considered for voxel v in the optimization of the
tractography objective. This procedure is executed for each voxel, and is very fast.

Though a greedy strategy for generating orientations is promising, the criterion used by OMP is
not suitable for this problem. Using residual errors for the criterion prefers orthogonal or dissimilar
orientations, to provide a basis with which to easily reconstruct the signal. The orientations in
voxels, however, are unlikely to be orthogonal. Instead, it is more likely that there are multiple
fascicles with similar orientations in a voxel, with some fascicles overlapping in a different—but
not necessarily orthogonal—direction. We must modify the selection criterion to select a number of
similar orientations to reconstruct the diffusion information in a voxel.

To do so, we rely on the more general algorithmic framework for subselecting items from a set, of
which OMP is a special case. We need to define a criterion which evaluates the quality of subsets S
from the full set of items S. In our setting, S is the full set of orientations and S a subset of those
orientations. Our goal is to find S ⊂ S with |S| ≤ k such that ḡ(S) is maximal. If we can guarantee
this criterion ḡ : P(S)→ R is (approximately) submodular, then we can rely on a wealth of literature
showing the effectiveness of greedy algorithms for picking S to maximize ḡ.
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We use a simple modification on the criterion for OMP, the g(S) = the squared multiple correlation
[13]. We propose a simple yet effective modification, and define the Orientation Greedy criterion as

ḡ(S)
def
= g(S) +

∑
s∈S

g({s})

This objective balances between preferring a set S with high multiple correlation, and ensuring that
each orientation itself is useful. Each orientation likely explains a large proportion of the diffusion
for a voxel. This objective will likely prefer to pick two orientations that are similar that recreate the
diffusion in the voxel well. This contrasts two orthogonal orientations, that can be linearly combined
to produce those two orientation but that themselves do not well explain the diffusion information.
This modification is conceptually simple, yet now has a very different meaning. The simplicity of
the modification is also useful for the optimization, since a linear sum of submodular functions is
itself again submodular. We provide approximation guarantees for this submodular maximization in
Appendix D, using results for the multiple correlation [13].

The full algorithm consists of two key steps. The first step is to screen the orientations, using
Orientation Greedy in Algorithm 1. We then use subgradient descent to optimize the Tractography
Objective using this much reduced set of parameters. The second step prunes this superset of possible
orientations further, often to only a couple of orientations. The resulting solution only has a small
number of active fascicles and orientations for each voxel. We provide a detailed derivation and
description of the algorithm in Appendix C.

The optimization given the screened orientations remains convex. The main approximation in
the algorithm is introduced from the greedy selection of orientations. We provide approximation
guarantees for how effectively the greedy algorithm maximizes the criterion ḡ. But, this does not
characterize whether the criterion itself is a suitable strategy for screening. In the next section, we
focus our empirical study on the efficacy of this greedy algorithm, which is critical for obtaining
efficient solutions for the tractography objective.

5 Empirical results: Reconstructing the anatomical structure of tracts

We investigate the properties of the proposed objective on two major structures in the brain. The first
is the Arcuate Fasciculus, hereafter Arcuate. The other is the Arcuate combined with one branch
of the Superior Longitudinal Fasciculus, SLF1, hereafter ARC-SLF. Due to space constraints, we
relegate additional empirical results on ARC-SLF to Appendix E.6. We learn on data generated by an
expert connectome solution within the ENCODE model (Appendix E.2). This allows us to objectively
investigate the efficacy of the objective and greedy optimization strategy, because we have access to
the ground truth Φ that generated the data. To the best of our knowledge, this is the first completely
unsupervised data-driven approach for extracting brain connectomes. We, therefore, focus primarily
on understanding the properties of our learning approach for tractography.

We particularly (a) investigate how effectively our Greedy algorithm selects orientations, (b) inves-
tigate how accurately the group regularized objective with this screening approach can reconstruct
the diffusion information, and (c) visualize the plausibility of the solutions produced by our method,
particularly in terms of smoothness of the fascicles. Even with screening, this optimization when
learning over all fascicles and voxels, is prohibitively expensive for running thorough experiments.
We therefore focus first on evaluating the model given the assignment of fascicles to voxels, meaning
for the following experiments fascicles are fixed. Because the largest approximation in the algorithm
is the greedy selection of orientations, this is the most important step to understand first. For a given
set of (greedily chosen) orientations, the objective remains convex with a unique solution. We know,
therefore, that further optimizing over fascicles as well would only reduce the reconstruction error.

5.1 Screening

We define two error metrics to demonstrate the utility of GreedyOrientation over OMP for this task.
The first is the total number of orientations present in Φ-expert that are not present in Φ generated by
the screening approach, measuring the exactness of the solution. The second metric is the minimum
possible angular distance between each of the orientations in Φ-expert with any arbitrary set of
orientations in the corresponding voxel of Φ generated by the screening approach, so that the set
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Figure 3: (a): Average number of missing orientations per voxel in candidate sets of increasing size.
(b): The distribution of angular distances from the ground truth of OMP and GreedyOrientation after
global optimization procedure. The angular distance is the minimum possible distance given some
weighted combination of selected orientations. (c): Average angular distance between the weighted
sum of predicted node orientations and the ground truth in each voxel for candidate sets of increasing
size.
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Figure 4: (a): Comparing the distribution of reconstruction error for ground truth, OMP, and
GreedyOrientation over voxels after optimization. (b): The improvement of reconstruction error
during the steps of gradient decent shows that the objective is not able to improve the OMP selected
orientation sets while it is improving the GreedyOrientation choices constantly.

would provide the best possible approximation of that orientation. The details of algorithm can be
found in Appendix E.5.

We demonstrate the screening method’s performance using both error metrics in Figure 3. In Figure
3a, we show the effect of increasing the size of our candidate set of orientations on the number
of missing orientations compared to the ground truth. GreedyOrientation’s advantage is likely
because OMP continually adds dissimilar orientations, thus is less likely to add the exactly correct
orientations because these are too similar to orientations already in the candidate set. Figure 3b
shows the minimum angular distance given a linear combination of orientations in the candidate set
compared to the ground truth. GreedyOrientation has high probability mass near zero, showing that it
generates appropriate candidate sets. Finally, Figure 3c shows that the angular distances between the
orientations weighted with the optimized weights and ground truth for different size of orientations
candidate set.

We can clearly see that increasing the size of the orientation set in OMP results in a larger angular
distance since more dissimilar orientations are included. On the other hand, the angular distance of
candidate sets chosen by GreedyOrientation decreases fast and then stabilized, which indicates that
GreedyOrientation forward selection criterion is defined well so that the best candidate orientations
approximate the ground truth are among the immediate ones. Moreover, we can infer the minimum
best choice of k since a larger value would not affect the final connectome structure significantly.
Although, the best choice was k = 10, we set k = 5 in our experiments, which means that we had
larger approximation than the best choice.

We additionally demonstrate the effects of each screen method on final reconstruction error after
optimization. Figure 4a shows the distribution of reconstruction error over voxels. Starting the
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(a) Ground truth (b) OMP after optimization (c) Greedy after optimization

Figure 5: Solutions learned after the group sparse optimization for both screening strategies, compared
to ground truth.

optimization with GreedyOrientation leads to much lower bias in the final optimization result than
OMP, as demonstrated by the shift of these distributions away from the Ground Truth distribution.
In Figure 4b, we show the reconstruction error on each step of optimization. The reconstruction
error when initialized with orientations generated by OMP is decreasing at a rate several orders of
magnitude slower than GreedyOrientation.

5.2 Group Sparse Optimization

After Φ has been initialized with one of the locally greedy screening algorithms, we learn the ap-
propriate weighting of Φ by optimizing the global objective. We applied batch gradient decent with
15 iterations and a dynamic step-size value which started from 1e-5 and decreased each time the
algorithm could not improve the total objective error. The `1 and group regularizer coefficients were
chosen to be 10 for most of the experiments, we tested the following values of the regularization coef-
ficient [10−3, 10−2, . . . , 102, 103] and found that results were negligibly affected. For `1 regularizer,
we applied a proximal operator to truncate weights less than the threshold of 0.001. The derivation of
the gradient and optimization procedure can be found in Appendices C.2 and E.3, respectively. The
visualization algorithm, for a given Φ, is given in Appendix E.4.

Figure 5 visualizes the results of Φ after optimization with both OMP and GreedyOrientation
initialization strategies. Comparing the GreedyOrientation predicted Φ with expert Φ shows that the
group regularizer performed well in regenerating macrostructure of the Arcuate. Figure 5b shows
that the OMP initialization strategy for Φ is not appropriate for this setting, and prevents the global
optimization procedure from generating the desired macrostructure.

To get a better sense for the generated fascicles, we illustrate the best and the worst fascicles for
Φ initialized with GreedyOrientation and OMP in Figure 6. GreedyOrientation produces plausible
fascicles in terms of orientation, in some cases seemingly even more so than the ground truth which
was obtained with a tractography algorithm. In the best case, in Figure 6a the reconstruction is
highly accurate. In the worst case, in Figure 6b, GreedyOrientation produces fascicles with sharply
changing direction. Looking closer, the worst reconstructed fascicles tend to be long winding fascicles
with abrupt direction changes. Because the objective attempts to minimize these features during
optimization, these tracts are very difficult to reconstruct. Fascicles such as these are unlikely to occur
in the brain, and are likely a result of imperfect tractography methods that were used for creating the
ground truth data for this experiment. Solutions with OMP are generally poor.

6 Conclusion and Discussion

In this work, we considered the problem of learning macroscopic brain connectomes from dMRI
data. This involves inferring locations and orientations of fascicles given local measurements of
diffusion of water molecules within the white-matter tissue. We proposed a new way to formulate this
learning problem, using a tensor encoding. Our proposed group sparse objective facilitates the use of
optimization algorithms to automatically extract brain structure, without relying on expert tractogra-
phy solutions. We proposed an efficient greedy screening algorithm for this objective, and proved
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(a) Best 5 GreedyOrientation Fascicles (b) Worst 5 GreedyOrientation Fascicles

(c) Best 5 OMP Fascicles (d) Worst 5 OMP Fascicles

Figure 6: Top five best and worst fascicles for OMP and GreedyOrientation after optimization
according to reconstruction error. Solid lines show the predicted Φ and dashed lines ground truth.

approximation guarantees for the algorithm. We finally demonstrated that our specialized screening
algorithm resulted in a much better orientations than a generic greedy subselection algorithm, called
OMP. The solutions with our group sparse objective, in conjunction with these selected orientations,
resulted in smooth fascicles and low reconstruction error of the diffusion data. We also highlighted
some failures of the solution, and that more needs to be done to get fully plausible solutions.

Our tractography learning formulation has the potential to open new avenues for learning-based
approaches for obtaining brain connectomes. This preliminary work was necessarily limited, focused
on providing a sound formulation and providing an initial empirical investigation into the efficacy of
the approximations. The next step is to demonstrate the real utility of a full tractography solution
using this formulation. This will involve learning solutions across brain datasets; understanding
strengths and weaknesses compared to current tractography approaches; potentially incorporating
new regularizers and algorithms; and even incorporating different types of data. All of this can build
on the central idea introduced in this work: using a factorization encoding to automatically learn
brain structure from data.
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A Maximum likelihood formulation

We first consider a maximum likelihood formulation for the reconstruction loss, paralleling the
losses considered for non-matrix data. This approach involves making distributional assumptions
on the matrix Y; we begin with the standard normal, though this could be generalized to other
distributions—as is commonly done for generalized linear models—without eschewing convexity.
Using the matrix normal distribution [18], we can formulate the loss between Y and the factorization
by parameterizing the matrix normal using the factorized variables. Assume Y ∼MN (M,U,V),
whereMN is the Multivariate Normal, M is the mean matrix, U is the row variance, and V is the
column variance. As a common simplification, we will take U = σ2

uI and V = σ2
vI. Then the pdf of

Y is

P (Y) =
exp

(−1
2 tr(V−1(Y −M)>U−1(Y −M))

)
(2π)NθNv/2|V|Nθ/2|U|Nv/2

=
exp

(−1
2 σvσutr((Y −M)>(Y −M))

)
(2π)NθNv/2σ

N2
θ

v σ
N2
v

u

because |U| = |σ2
uI| = σ2Nv

u . This type of modeling approach assumes zero-mean, independent
noise across entries in Y, which is a common assumption [4]. Taking the negative of the log
likelihood, and dropping constants which do not affect the minimum, we obtain the optimization

argmin
M

tr((Y −M)>(Y −M)) = argmin
M

‖Y −M‖2F

B Theoretical Properties of the Tractography Objective

An important property of this objective is that it is convex and has a unique solution for Φ (up to
permutation), as we show in the below theorem. The convexity of the objective ensures that gradient
descent can obtain optimal solutions, which is critical for both improving the objective and ensuring
that accurate tractography solutions are extracted. The uniqueness is further important, because it
provides an identifiable solution. For tractography, we would like to identify the fascicle structure for
an individual; for an objective with multiple equivalent solutions, it is not clear which solution to
select, and reflects an impreciseness in the objective. Any solution for Φ will always be equivalent,
up to permutations of the fascicles (frontal slices, see Fig 2A - left), but should not change which
fascicles are shared by which voxels.

Theorem 1. The objective in (5) is convex in Φ. Further, if the defined blocks A and V cover
all possible orientations and voxels in the sense that every v is included in at least one group GV
and every orientation a is included in at least one group GA, then (5) has a unique solution (up to
permutation).

Proof. Because the sum of convex functions is convex, to show that (5) is convex, we simply need to
show that each term in the objective is convex.

The first term ‖Y − Φ ×1 D ×3 1‖2F is convex in Φ because ‖Y −M‖2F is convex in M, and
M = Φ×1 D×3 1 is an affine transformation of Φ. The composition of an affine function and a
convex function is convex.

The second term is the sum of several functions of Φ, which only consider subparts of Φ. If each
of these functions in the group regularizer is convex, then the regularizer is composed of the sum
of convex functions and so is itself convex. Let RGA,GV ,f (Φ) = ‖xGA,GV ,f‖2. This function only
changes when elements in Φ related to GA,GV , f change, and is otherwise constant. However,
since a constant function is convex, RGA,GV ,f is convex in the entries of Φ that are ignored. Let
ΦGA,GV ,f be the entries in Φ that give xGA,GV ,f = [‖ΦGA,v1,f‖1, . . . , ‖ΦGA,vn,f‖1] for vi ∈ GV .
We can consider ‖xGA,GV ,f‖2 as a vector composition, of g : Rk → Rn and h : Rn → R, where
g(ΦGA,GV ,f ) = xGA,GV ,f and h(x) = ‖x‖2. The resulting composition is h(g(ΦGA,GV ,f )) =
‖xGA,GV ,f‖2. Each gi of the vector-valued function g is convex in ΦGA,GV ,f because it applies an `1
norm—which is convex—on a subset of ΦGA,GV ,f . Further, h is convex in x, and non-decreasing
in each xi = gi(ΦGA,GV ,f ), because h is a norm. Therefore, the composition h(g(·)) is convex.
Therefore, because RGA,GV ,f is convex w.r.t. ΦGA,GV ,f and constant w.r.t. all other values in Φ, we
know that RGA,GV ,f is convex in Φ. Since R(Φ) =

∑
f∈F

∑
GV∈V

∑
GA∈ARGA,GV ,f (Φ) is a sum

of convex function, it is convex.
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To show uniqueness, we need to show that the regularizer is strictly convex. Because the sum of a
strictly convex and convex function is again strictly convex, the resulting objective is itself strictly
convex and so must have a unique minimum. Each component of the regularizer only considers a
subset of Φ; however, as long as each possible entry in Φ is considered at least once in one of these
blocks, then that component of Φ has a strictly convex regularizer on it in the objective, because
norms are strictly convex.

C Sparse tensor factorization algorithm

In this section, we develop an algorithm to optimize our extremely sparse, high-dimensional objective.
A common strategy for sparse optimization problems is to first perform screening on the coefficients—
which corresponds to all of Φ in this setting—to avoid modifying coefficients that will remain zero.
A number of generalized screening approaches have been developed for general sparse problems,
either with a static screening before the start of the optimization [19] or with a dynamic screening
that adjust the set of feasible coefficients during the optimization [6]. We propose a specialized static
screening, where we first select a set of feasible orientations for each voxel. This static screening on
the entries in Φ significantly reduces the cost per iteration of gradient descent and reduces the number
of iterations. This significantly speeds up the optimization, without incurring much approximation
error, because of the approximation guarantees of the static screening approach. We first highlight
why standard matrix and tensor factorization algorithms are not suitable for this problem, and then
derive our specialized solver.

C.1 Issues with using standard matrix or tensor factorization algorithms

A natural community to turn to for solutions to obtain Φ is tensor factorization. The goal in this
work is to factorize a matrix Y in a tensor Φ, for a given dictionary D, such that Y = Φ×1 D×3 1.
Much of the work in tensor factorization, however, has focused on decomposing tensors into a set
of matrices, with a small core tensor with the Tucker decomposition focused on low rank tensor
factorizations (see [10] for a thorough overview). A few of these works have examined how to obtain
a sparse core tensor, but towards the aim of either enforcing uniqueness [16] or to obtain core tensors
that are more efficient to store and use [34, 7, 25, 11]. There has been some work on factorizing large
sparse tensors, for tensor-SVD [1, 33]; again, however, their goal is to factorize a sparse tensor, which
differs from our goal to factorize a dense matrix into an extremely sparse tensor with a particular
structure. The most closely related algorithm is derived for low-rank regularizers for non-negative
tensor factorization [32], but it is not designed for large sparse tensors.

C.2 Computing the subgradient of the objective

Once these orientations are set per voxel, we can much more efficiently compute the gradient for the
objective, because the sum over groups significantly reduces,∑

GV∈V

∑
GA∈A

‖xGA,GV ,f‖2 =
∑
GV∈V

∑
GA∈A(GV)

‖xGA,GV ,f‖2

where A(GV) = {GA ∈ A | GA ∩ S(v) 6= ∅, v ∈ GV}. The set A(GV) only includes groups with
orientations that are active for at least one voxel in GV .

Let there be NGa atom groups and NGv voxel groups. We use GA ∈ {0, 1}Na×NGa and GV ∈
{0, 1}Nv×NGv to denote if an atom or a voxel belongs to a group. Specifically, if GA(a, g) = 1, then
atom a belongs to group g; otherwise it does not. The subderivative of the group regularizer w.r.t.
Φ(a, v, f) is

λg

NGa∑
ag

GA(a, ag)

NGv∑
vg

GV (v, vg)

∑
ai∈Gag

|Φ(ai, v, f)|

A(ag, vg, f)
sign(Φ(a, v, f))
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where A =

√(
|Φ| ×1 G>A

)2 ×2 G>V . Additionally, we include a standard `1 regularizer on all of Φ

to further promote sparsity. The full subgradient of the objective w.r.t. Φ is

∇Φ =D>(Φ×1 D×3 1−Y)1>

+ λg

({(
|Φ| ×1 G>A

)
◦
(

1

A
×2 GV

)}
×1 GA

)
◦ sign(Φ) (6)

+ λ1 sign(Φ)

On each step, we step in the direction of the negative of the gradient, with a fixed stepsize which we
set to η = 1e− 3, until the objective improvement is below a threshold 1e− 4 or until a maximum
number of iterations is reached. In addition to the initial screening, we can obtain some speed
improvements on each step by only computing the gradient for currently active elements in Φ. For
any zeroed elements in Φ, the gradient of the regularizer would be zero, as the regularizer prefers
each element be zero.

C.3 Derivation of Forward Selection for Orientations

To derive an efficient forward selection for the orientations, we need to make each greedy step
efficient. For a fixed voxel v, the greedy algorithm selects the atom a which most increases ḡ:

max
a/∈S

ḡ(S ∪ {a}) = max
a/∈S

g(S ∪ {a}) +
∑
s∈S

g({s}) + g({a}).

To compute g({a}), we can compute this upfront for each a and store it before doing the full greedy
optimization. For the greedy optimization, the most naive solution would be to compute the full
regression solution for each new subset S ∪{a}, to obtain g(S ∪{a}). Unfortunately, this brute-force
approach is too expensive. Because of the structure of ḡ, however, we can take advantage of the
solution on the previous step, to compute the solution on this step.

We provide the recursive update mechanism in Lemma 1. Let y ∈ RNθ be the diffusion information
for one voxel. For given orientations S with |S| = k, let DS ∈ RNθ×k be the subset of columns in
D corresponding to orientations in S. Using similar subscript notation, with a /∈ S a new atom not
yet chosen in S, let

CS = D>SDS

bS = D>S y

Ca = D>a Da

ba = D>a y

cS,a = D>SDa

The squared multiple correlation is

g(S) = b>SC
−1

S bS

and g({a}) = C−1

a b2a. We provide the following lemma to obtain an efficient mechanism to compute
g(S ∪ {a}) for each a. These recursive updates are similar to the updates given by [24], for OMP.

Lemma 1. Given C−1

S ∈ Rk×k, bS and g(S), for

c = C
−1

S cS,a

ν = (Ca − c>S,ac)
−1

we get that

g(S ∪ {a}) = g(S) + ν(b>S c− ba)2

Further
ḡ(S ∪ {a}) = ḡ(S) + ν(b>S c− ba)2 + C

−1

a b2a

14



Proof. We know that g(S ∪ {a}) = b>S∪{a}C
−1

S∪{a}bS∪{a}. We need to compute the inverse of
CS∪{a} using the inverse of CS . We use the general block matrix inversion formula

C
−1

S∪{a} =

[
CS cS,a
c>S,a Ca

]−1

=

[
C−1

S + νC−1

S cS,ac
>
S,aC

−1

S −νC−1

S cS,a
−νc>S,aC

−1

S ν

]
Therefore,

g(S ∪ {a}) = b>S∪{a}C
−1

S∪{a}bS∪{a}

= b>SC
−1

S bS + νb>SC
−1

S cS,ac
>
S,aC

−1

S bS − 2νb>SC
−1

S cS,aba + νb2a

= g(S) + ν(b>S c)2 − 2νbab
>
S c + νb2a

= g(S) + ν(b>S c− νba)

Using this, we can see that

ḡ(S ∪ {a}) = g(S ∪ {a}) +
∑

s∈S∪{a}

g({s})

= g(S) + ν(b>S c− νba)2 +
∑
s∈S

g({s}) + g({a})

= ḡ(S) + ν(b>S c− νba)2 + g({a})

completing the proof, because g({a}) = C−1

a b2a.

Given this result, the computation of g(S ∪ {a}) for one atom a costs O(kNθ + k2) = O(kNθ),
since Nθ > k. To compute g for each a, therefore, costs a total of O(kNθNa). We summarize the
greedy algorithm for computing the directions for a voxel in Algorithm 1. A new point is added to
greedily maximize ḡ(S), until S has k directions.

Algorithm 1 GreedyOrientation: greedy algorithm to select orientations for each voxel

1: Input dictionary D, maximum number of orientations k, diffusion signal y
2: // Compute g({a}) for each a, g = diag(D>D)−1(D>y)2

3: c← D>D
4: b← D>y
5: g← 0
6: amax ← −1, gmax ← 0
7: for a = 1, . . . , Na do . O(NθNa)
8: g(a)← (b(a))2/c(a, a)
9: if gmax < g(a) then

10: gmax ← g(a), amax ← a

11: S ← amax
12: C−1 ← 1/c(amax, amax)
13: for i = 2, . . . , k do
14: // Compute g(S ∪ {a}) for every a
15: gS , ν ← ComputeGain(S,C−1, c,b) . O(kNθ)
16: ḡ← gS + g . ḡ ∈ RNa
17: amax ← argmaxa/∈S ḡ(a) . O(Na)

18: C−1 ←
[

C−1 + ν(amax)C−1c(S, amax)c(S, amax)>C−1 −ν(amax)C−1c(S, amax)
−ν(amax)c>S,aC

−1

S ν(amax)

]
19: S ← S ∪ {amax}
20: Output: S
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Algorithm 2 ComputeGain(S,C−1, c,b)

1: for a = 1, . . . , Na do
2: c̃← C−1c(S, a)
3: ν(a)← (c(a, a)− c(S, a)>c̃)−1

4: gS(a)← ν(a)(b(S)>c̃− b(a))2

5: Output: gS , ν

D Theoretical guarantees of the greedy screening strategy

We can obtain approximation guarantees from the fact that the approximately submodular function
for GreedyOrientation has at least as good a submodularity ratio as the typical forward selection
function g. The submodularity ratio is defined as

γ(g)
def
= min
S,L∈S,S∩L=∅

∑
y∈S g(L ∪ {y})− g(L)

g(L ∪ S)− g(L)
(7)

for non-negative functions g : P(S) → R+. If g is a monotone function and γ(g) ≥ 1, then
g is submodular. Otherwise, for γ(g) < 1, the function is not submodular and is instead called
approximately submodular for γ(g) close to 1. The closer γ(g) is to 1, the better the approximation
guarantees of greedy algorithms on these functions, with the best approximation guarantees for
γ(g) ≥ 1.

In the following theorem, we show that our GreedyOrientation function ḡ has a submodularity ratio
that is no worse than ForwardSelection. The proof highlights that in fact the ratio is likely strictly
better.
Theorem 2. For g : P(S)→ R+ a monotone function, and

ḡ(S)
def
= g(S) +

∑
s∈S

g({s})

then
γ(ḡ) ≥ γ(g).

Proof. For clarity, we introduce notation for the numerator and denominator of the submodularity
ratio:

γN (g, L, S)
def
=
∑
y∈S

g(L ∪ {y})− g(L)

γD(g, L, S)
def
= g(L ∪ S)− g(L)

Notice that

ḡ(L) = g(L) +
∑
x∈L

g({x})

ḡ(L ∪ {y}) = g(L) +
∑
x∈L

g({x}) + g({y})

ḡ(L ∪ S) = g(L ∪ S) +
∑
x∈L

g({x}) +
∑
y∈S

g({y})

giving

γN (ḡ, L, S) =
∑
y∈S

ḡ(L ∪ {y})− ḡ(L)

=
∑
y∈S

g(L ∪ {y}) + g({y})− g(L)

= γN (g, L, S) +
∑
y∈S

g({y})
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and

γD(ḡ, L, S) = ḡ(L ∪ S)− ḡ(L)

= g(L ∪ S) +
∑
y∈S

g({y})− g(L)

= γD(g, L, S) +
∑
y∈S

g({y}).

If we let aS
def
=
∑
y∈S g({y}) ≥ 0, then we get that

γ(ḡ) = min
S,L∈S,S∩L=∅

γN (ḡ, L, S)

γD(ḡ, L, S)

= min
S,L∈S,S∩L=∅

γN (g, L, S) + aS
γD(g, L, S) + aS

≥ min
S,L∈S,S∩L=∅

γN (g, L, S)

γD(g, L, S)
. because aS > 0

= γ(g)

completing the proof.

The following result now easily follows, from Theorem 4.2 [13] for approximately submodular
functions.

Corollary 1. The set of orientations S chosen by GreedyOrientation satisfies

ḡ(S) ≥
(

1− e−γ(ḡ)
)

OPT

where OPT = ḡ(S∗) for the optimal selection S∗ such that |S∗| = k.

E Experiments and Results

E.1 Computational Resources

All experiments in this paper were run using an Intel Xeon processor from 2014 with 8 cores at
2.4Ghz each and with 32GB of ram. The code relies heavily on the sparsity of the data, using efficient
sparse tensor operations to minimize memory usage and necessary computational resources. Scaling
up to larger dimensions or using higher resolution data would greatly increase the total number of
entries in the tensors (including empty values), but would increase the number of active entries at a
much lower rate.

E.2 Generating data

To generate synthetic data for our experiments, we used the dMRI data of one subject’s brain and
applied an expert tractography algorithm to over-generate fascicles, Nf = 500, 000, as our candidate
connectomes to fit the LiFE model [21]. LiFE takes any connectome as input and predicts demeaned
diffusion measurements as output in order to evaluate tractography algorithms. We employed LiFE to
purify connectomes and prune the number of candidate fascicles. It zeros out the weights of fascicles
that do not have significant contribution in reconstructing diffusion signal. This reduces the size of
fascicle set by a factor of 5 and decreases the reconstruction error of diffusion signal compared to the
tractography one. We also applied ENCODE to unified encoding of the brain structure and dMRI
signal by applying dictionary D. 2 The ENCODE model generated the predicted signal using the two
major structures that we consider in this paper, the Arcuate Fasciculus and the ARC-SLF; which is
the Arcuate combined with SLF1.

2The dataset can be downloaded from https://brainlife.io
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E.3 Optimization algorithm for mapping connectomes of the brain

Algorithm 3 Brain: Mapping Brain Connectomes

Input: dMRI signal Y, expert three dimensional sparse tensor Φe, dictionary D, weights or fascicles’
contribution w, voxels vicinity Vv matrix (group information GV ) and atoms vicinity Av matrix
(group information GA), maximum iteration max_iter, step size step_size, termination condition
tolerance

Ensure: ‖Y −Φ×1 D×3 1‖2F + λ
∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2 is minimum

1: for f = 1, . . . , Nf do
2: Φe(:, :, f) = Φe(:, :, f) ∗w(f) . Fold w in Φe

3: voxels← non-zero(Φe, 2) . Find necessary voxels from Φe (Non-zero elements after summing
up the other two dimensions)

4: atoms← non-zero(Φe, 1) . Find necessary atoms(orientations) from Φe (Non-zero elements
after summing up the other two dimensions)

5: Y = Y(:, voxels) . Remove unnecessary voxels of Y
6: fascicles← fascicles(non-zero(w)) . Remove unnecessary fascicles where contribution (weight)

is 0
7: Na, Nv , Nf ← size(atoms), size(voxels), size(fascicles)
8: for v = 1, . . . , Nv do
9: aA← GreedyOrientation(D, k) . Find indices of active atoms aF with Algorithm 1

10: aF← non-zero(Φe, 3) . Find indices of active fascicles aF from Φe

11: Φ(aA, v,aF)← Initialization() . Initialize Φ with non-zero values where atoms and
fascicles are active

12: GV ← find(Vv) . GV (i, j) ∈ {0, 1} Denotes that if voxel i is in the neighborhood of voxel j
13: GA ← find(Av) . GA(i, j) ∈ {0, 1} Denotes that if atom i is in the neighborhood of atom j
14: Emask← (Φ×2 GV )×1 GA . Entry mask tensor
15: Fmask← Emask×1 1 . Fascicles Mask matrix
16: Amask← Emask×3 1 . Atoms Mask matrix
17: Fscreen← Φ×1 1 . Fascicles Screen matrix. Unlike Fmask, this screen matrix does not

contain group information
18: Ascreen← Φ×3 1 . Atoms Screen matrix. Unlike Amask, this screen matrix does not

contain group information
19: Ydiff ←Y −Φ×1 D×3 1
20: R(Φ)←

∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2

21: lnew← ‖Ydiff‖2F + λR(Φ)
22: niter← 1
23: repeat
24: lold← lnew
25: grad_p1_x←D>(Φ×1 D×3 1−Y)1>

26: grad_g1_x1← |Φ| ×1 G>A . O(number of nonzero elements in Φ× number of nonzero
elements in GA)

27: A←
√

grad_g1_x12 ×2 G>V
28: grad_g1_x3← 1

A ×2 GV . O(Nv× number of nonzero elements in A)
29: grad_g1_x4← grad_g1_x3 ◦ grad_g1_x1
30: grad_g1_v← (grad_g1_x4×1 GA) ◦ sign(Φ)
31: g← grad_p1_x +λg grad_g1_v + λ1 sign(Φ)
32: Mask or Screen elements in g with Fmask,Amask or Fscreen,Ascreen
33: Φ← Φ− step_size ∗ g
34: Ydiff ←Y −Φ×1 D×3 1
35: R(Φ)←

∑
f∈F

∑
GV∈V

∑
GA∈A ‖ΦGA,GV ,f‖2

36: lnew← ‖Ydiff‖2F + λR(Φ)
37: niter← niter + 1
38: until lold− lnew < lold ∗ tolerance||niter > max_iter
39: set small values in Φ zeros
40: Output: Φ
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Figure 7: Results using the larger ARC-SLF dataset. (a): Number of missing orientations in the
candidate set generated by each screening algorithm, averaged over all voxels. (b): Angular distance
between orientations in the candidate set and the ground truth by voxel. (c): Average of the possible
minimum angular distance per voxel given some linear combination of orientations in candidate sets
versus the ground truth.

E.4 Visualization algorithm

This section explains the visualization algorithm of the brain connectomes based on the sparse tensor
Φ. Each entry of this sparse tensor represents one node, each having an orientation, being located in
a voxel, and belonging to a fascicle. There is no structure in Phi to indicate what order to put nodes
in. The nodes do not contain any positional information of the space and this leads to an ambiguity
in the accuracy of their order. The only positional information in hand is the coordinates of the
voxels. Therefore, displaying an accurate Φ is itself a challenging problem due to many possible
permutations of nodes in a voxel for each fascicle.

Our goal is to go over fascicles one by one and try to plot each at a time. We approach this by
selecting one voxel that the fascicle passes through and has the fewest number of neighbouring voxels
which also containing the same fascicle. A voxel with these properties should be at one end of the
fascicle. Then the algorithm examines all surrounding voxels and chooses the pair of nodes with the
smallest angular distance between them with one in the first voxel and one in the neighbours. We
plot the nodes in the first voxel so that the last node in that voxel is the one chosen. Then we move
forward through each voxel plotting first the node chosen in the previous pairing followed by the rest
of the nodes in the voxel greedily chosen based on angular distance from the last plotted node.

E.5 Angular distance evaluation measurement

The goal here is to measure a more precise metric for the angular differences of the nodes in Φ-predict
and Φ-expert. It is not a trivial task to measure this metric since a more precise measurement requires
finding a one-by-one relationship between the nodes in Φ-predict and Φ-expert. A reasonable way of
doing that is to loop over each individual orientation per fascicle-voxel in Φ-expert, aexp ∈ Φexp(:
, v, f), and find the optimal solution of active orientations from the candidate set corresponding to the
same voxel in Φ-predict so that they could better regenerate the diffusion signal of Φexp(aexp, v, f)×
D(:, aexp). Then the angular distance of the vector-sum of activated nodes in Φ-predict with aexp
would be calculated and the average angular difference over all aexp per voxel would be reported.

E.6 Evaluation results on ARC-SLF

In this section, we demonstrate the evaluation results on ARC-SLF. This tract has Na = 1057,
Nv = 15033, Nf = 1100, and Nθ = 96.
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Algorithm 4 Visualize Φ, the structure of connectomes

Input: Any three dimensional sparse tensor Φ, matrix A to map the indices of atoms in Φ to the
Cartesian components of the direction vector of that atom, and matrix V to map the indices of
voxels in Φ to the Cartesian coordinates of that voxel

1: for f = 1, . . . , Nf do
2: seen_v← ∅ . Initialize set to keep track of which voxels have been visited for fascicle f
3: v← get_voxels(Φ, f ) . Get all voxels that fascicle f passes through
4: vc← GetFirstVoxel(seen_v, v) . Select a voxel that has not been seen for fascicle f
5: seen_v← seen_v ∪ {vc}
6: an← PlotFirstVoxelNodes(vc, seen_v) . Plot the nodes of the current voxel and return the

next voxel
7: repeat
8: an← PlotNodes(an, seen_v)
9: until an is null

10: procedure PLOTFIRSTVOXELNODES(vc, seen_v)
11: anset← AllNeighbouringNodes(vc, seen_v) . Get all active nodes in the neighbouring

active to vc
12: acset← non-zero(Φ(:,f, vc)) . Get all active nodes in the current voxel
13: ac, an← argminan′∈anset,ac′∈acset(AngularDistance(an′, ac′)) . Finds the closest nodes

between acset and anset
14: astack← empty stack
15: while acset 6= ∅ do
16: push ac onto astack
17: acset← acset− ac . Remove ac from acset
18: ac← argminac′∈acset(AngularDistance(ac, ac′)) . Find the next closest node to the

previous node in the current voxel
19: while astack not empty do
20: ac← pop astack
21: Plot(ac) . Pop the nodes from astack and plot them

Output: an, The closest node to the last plotted node
22: procedure PLOTNODES(ac, seen_v)
23: vc← voxel containing ac
24: acset← non-zero(Φ(:,f, vc)) . Get all active nodes in the current voxel
25: while acset 6= ∅ do
26: acset← acset− ac . Remove ac from acset
27: Plot(ac) . Plot the current node
28: ac← argminac′∈acset(AngularDistance(ac, ac′)) . Find the next closest node to the

previous node in the current voxel
29: anset← AllNeighbouringNodes(vc, seen_v) . Get all active nodes in the neighbouring

active to vc
30: an← argminan′∈anset(AngularDistance(an′, ac)) . Finds the closest node in anset to the

last plotted node
Output: an . The closest node to the last plotted node
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Algorithm 5 Minimum angular distance metric

Input: Two three dimensional sparse tensors Φexp and Φpred, the expert and predicted brain struc-
tures.

1: total_dist← 0
2: for vp = 1, . . . , Nv do
3: dist_per_voxel← 0
4: ap_set← P({a|a ∈ Φpred(:, vp, :)}) . The power set of all orientations active in the current

voxel
5: for all aexp ∈ Φexp(:, vp, :) do
6: vecexp ← aexp ×

∑
fi∈Φexp(aexp,vp,:)

Φexp(aexp, vp, fi)

7: min_dist←∞
8: for all s ∈ ap_set do
9: vecpred ←

∑
ai∈s ai ×

∑
fi∈Φpred(ai,vp,:)

Φpred(ai, vp, fi)

10: distance← Angular_Distance(vecexp, vecpred)
11: if distance < min_dist then
12: min_dist← distance
13: dist_per_voxel← dist_per_voxel + min_dist
14: total_dist← total_dist + dist_per_voxel

Output: total_dist . The total angular distance
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Figure 8: (a): Distribution of reconstruction error over voxels for each initialization strategy for
orientations on the ARC-SLF dataset. (b): The improvement of reconstruction error during the steps
of gradient decent shows that the objective is not able to improve the OMP selected orientation sets
while it is improving the GreedyOrientation choices constantly.

(a) Ground truth (b) OMP (c) Greedy

Figure 9: The quality of orientation sets selected in screening stage comparing to the ground truth
orientations on the ARC-SLF dataset. (a): Initializing Φ with expert Φ, (b): Initializing Φ with
OMP, (c): Initializing Φ with GreedyOrientation.
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(a) Worst-GreedyOrientation-initialization (b) best-GreedyOrientation-initialization

(c) Worst-OMP-initialization (d) best-OMP-initialization

Figure 10: Top five best and worst fascicles for OMP and GreedyOrientation after optimization
according to reconstruction error. Solid lines show the predicted Φ while dashed lines are the ground
truth. The predicted Φ are of a different scale than the ground truth, making direct comparison
difficult; however, the structure and shape of the fascicles in b clearly align closely with their ground
truth counter parts.
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