
A Convergence proofs335

Lemma 2. Suppose X and Y are r.v.s having CDFs F1 and F2, respectively. Then,336

sup |E(f(X)− E(f(Y ))| = W1(F1, F2) =

∫ ∞
−∞
|F1(s)−F2(s)|ds =

∫ 1

0

|F−1
1 (β)−F−1

2 (β)|dβ,

(14)
where the supremum in (2) is over all functions f : R→ R that are 1-Lipschitz.337

Proof. The first equality in (14) is given by the Kantorovich-Rubinstein theorem (see [Givens and338

Shortt, 1984, Edwards, 2011]). The second equality is given in [Vallander, 1974].339

To prove the third inequality in (14), we note that the integral on the left hand side of the third inequal-340

ity is unchanged if we replace F1 and F2 by the pointwise maximum and minimum, respectively, of341

F1 and F2. Hence, without loss of generality, we may assume that F1(s) ≥ F2(s) for all s ∈ R. The342

integral in question then reduces to343 ∫ ∞
−∞
|F1(s)− F2(s)|ds =

∫ ∞
−∞

(F1(s)− F2(s))ds =

∫ ∞
−∞

∫ F1(s)

F2(s)

dβds. (15)

It can easily be shown from the definition of the generalized inverse that344

{(β, s) ∈ R2 : F2(s) < β < F1(s)} ⊆ {(β, s) ∈ R2 : F−1
1 (β) ≤ s ≤ F−1

2 (β)}
⊆ {(β, s) ∈ R2 : F2(s) ≤ β ≤ F1(s)}.

This justifies interchanging the order of integration (see Theorem 14.14 of Apostol [1974]) in (15),345

which yields346 ∫ ∞
−∞
|F1(s)− F2(s)|ds =

∫ 1

0

∫ F−1
2 (β)

F−1
1 (β)

dsdβ =

∫ 1

0

[F−1
2 (β)− F−1

1 (β)]dβ. (16)

The third inequality in (14) now follows by noting that, under our assumption that F1(s) ≥ F2(s) for347

all s ∈ R, we have F−1
2 (β) ≥ F−1

1 (β) for all β ∈ [0, 1].348

A.1 Proof of Proposition 1349

Proof. Consider the event A = {W1(Fn, F ) ≤ (1− α)ε}, where Fn is as defined in (5). Lemma 1350

provides a lower bound on P (A) depending on whether the r.v.s satisfy (C1) or (C2). In particular,351

we have352

P (A) ≥ 1−B(n, (1− α)ε), (17)

where B(·, ·) is as defined in Lemma 1.353

Applying Lemma 2, we have on the event A,354 ∣∣∣∣∫
R
f(x)dF (x)−

∫
R
f(x))dFn(x)

∣∣∣∣ ≤ (1− α)ε, (18)

for any 1-Lipschitz function f : R→ R.355

Choose ξ ∈ R arbitrarily and let gξ(x) = (1− α)ξ + (x− ξ)+. Then,356 ∫
R
gξ(x)dF (x) = (1− α)ξ + E(X − ξ)+ , D(ξ), and∫

R
gξ(x)dFn(x) = (1− α)ξ +

1

n

n∑
i=1

(Xi − ξ)+ , Dn(ξ).

Observing that gξ is 1-Lipschitz in x for every ξ ∈ R and using (18), we obtain357

|D(ξ)−Dn(ξ)| ≤ (1− α)ε, on A, for any ξ ∈ R.
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Choose m > 0 arbitrarily, and let ξ1, ξ2 ∈ R be such that358

D(ξ1) ≤ inf
ξ
D(ξ) +

1

m
, and Dn(ξ2) ≤ inf

ξ
Dn(ξ) +

1

m
.

Then, on the event A, we have359

− (1− α)ε− 1

m
≤ D(ξ1)−Dn(ξ1)− 1

m
≤ inf

ξ
D(ξ)− inf

ξ
Dn(ξ)

≤ D(ξ2)−Dn(ξ2) +
1

m
≤ (1− α)ε+

1

m
.

Since the chain of inequalities above hold for any m > 0, we conclude that360 ∣∣∣∣inf
ξ
D(ξ)− inf

ξ
Dn(ξ)

∣∣∣∣ ≤ (1− α)ε, on A. (19)

Notice that, by definition, infξD(ξ) = (1− α)Cα(X) and infξDn(ξ) = (1− α)Cn. Thus,361

|Cα(X)− Cn| ≤ ε, on the event A.

The main claim now follows by using the bound on P (A) in (17).362

A.2 Proof of Proposition 2363

Proof. Consider the event A = {W1(Fn, F ) ≤ ε/K}, where Fn is as defined in (5). Lemma 1364

provides a lower bound on P (A) depending on whether the r.v.s satisfy (C1) or (C2). In particular,365

we have366

P (A) ≥ 1−B(n, ε/K), (20)

where B(·, ·) is as defined in Lemma 1.367

Equation (10) implies that A ⊆ {|mn,φ −Mφ(X)| ≤ ε}. The main claim now follows by using the368

bound on P (A) in (20).369

A.3 Proof of Proposition 3370

Proof. Let371

∆+
n =

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz −

∫ ∞
0

w+
(

1− F̂+
n (z)

)
dz. (21)

The quantity above is the difference between the first integral in CPT-value estimate (13) and the first372

integral in the CPT-value (11). Using (C3), we have373 ∣∣∆+
n

∣∣ ≤ L∫ ∞
0

|F+(z)− F̂+
n (z)|αdz, (22)

where F+(·) is the CDF of the r.v. u+(X).374

Recall that the r.v. u+(X) is bounded a.s. in [0, u+(T2)] by our assumptions on u+ and X . Applying375

Jensen’s inequality to the concave x 7→ xα after normalizing the Lebesgue measure on the interval376

[0, u+(T2)], we obtain377

1

u+(T2)

∫ u+(T2)

0

|F+(z)− F̂+
n (z)|αdz ≤

[
1

u+(T2)

∫ u+(T2)

0

|F+(z)− F̂+
n (z)|dz

]α
≤
[

1

u+(T2)

∫ ∞
−∞
|F+(z)− F̂+

n (z)|dz
]α
.

Applying the second equality in Lemma 2 to the CDFs F+ and F̂+
n gives378 ∫ u+(T2)

0

|F+(z)− F̂+
n (z)|αdz ≤ [W1(F+, F̂+

n )]α[u+(T2)]1−α.
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Using the bound obtained above in (22), we obtain379 ∣∣∆+
n

∣∣ ≤ L[W1(F+, F̂+
n )]α[u+(T2)]1−α.

Next, for any ε > 0, consider the event A = {W1(F+, F̂+
n ) ≤ [ε/{2L[u+(T2)]1−α}]1/α}. Then,380

from Lemma 1,381

P (A) ≥ 1−B(n, [ε/{2L[u+(T2)]1−α}]1/α),

where B is as given in Lemma 1. On the event A, we have |∆+
n | ≤ ε/2.382

Along similar lines, letting ∆−n =
∫∞

0
w− (P (u−(X) > z)) dz −

∫∞
0
w−

(
1− F̂−n (z)

)
dz, it is383

easy to infer that384 ∣∣∆−n ∣∣ ≤ ε/2 on the set A′ = {W1(F−, F̂−n ) ≤ [ε/{2L[u−(T1)]1−α}]1/α}, (23)

where F−(·) is the CDF of u−(X). The main claim follows by using triangle inequality, that is,385

P (|Cn − C(X)| > ε) ≤ P
(∣∣∆+

n

∣∣ > ε/2
)

+ P
(∣∣∆−n ∣∣ > ε/2

)
≤ [1− P (A)] + [1− P (A′)]

≤ B(n, [ε/{2L[u+(T2)]1−α}]1/α) +B(n, [ε/{2L[u−(T1)]1−α}]1/α)

≤ 2B(n, [ε/{2LT 1−α}]1/α).

This completes the proof.386

A.4 Proof of Proposition 4387

Proof. For some positive τn to be specified later, we have388

∆+
n =

∫ ∞
0

w+
(
P
(
u+(X) > z

))
dz −

∫ τn

0

w+
(

1− F̂+
n (z)

)
dz

=

∫ ∞
0

w+
(
1− F+(z)

)
dz −

∫ τn

0

w+
(
1− F+(z)

)
dz

+

∫ τn

0

w+
(
1− F+(z)

)
dz −

∫ τn

0

w+
(

1− F̂+
n (z)

)
dz

= I1 + I2,

where389

I1 =

∫ ∞
τn

w+
(
1− F+(z)

)
dz, I2 =

∫ τn

0

w+
(
1− F+(z)

)
dz −

∫ τn

0

w+
(

1− F̂+
n (z)

)
dz.

For handling the first term in the RHS above, we start with the following observation:390

I1 =

∫ ∞
τn

w
(
P
(
u+(X) > z

))
dz ≤ L

∫ ∞
τn

(
P
(
u+(X) > z

))α
dz ≤ 8L

∫ ∞
τn

z

τn
exp(−αz2/2)dz

=
8L

τn

2

α
exp(−ατ2

n),

where we used the following facts: (i) w is Hölder continuous; (ii) w(0) = 0; and (iii) a tail bound391

for the sub-Gaussian r.v. u+(X).392

The second term, i.e., I2 is bounded as follows:393

P (I2 > ε) ≤ B

(
n,

(
ε

Lτ
(1−α)
n

)1/α
)

= C exp(−cnε
2/α

τ
2/α
n

).

Or, equivalently I2 ≤ τn
(

log(C/δ)

cn

)α/2
w.p. 1− δ.
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where the inequality above follows by applying Proposition 3 to the r.v. Z = max(u+(X), τn),394

which takes values in the bounded interval [0, τn]. Using the bounds on I1 and I2, w.p. 1 − δ, we395

have396

∆+
n ≤

16L

ατn
exp(−ατ2

n) + τn

(
log(C/δ)

cn

)α/2
. (24)

Setting τn =
√

1
2 log n, we obtain397

∆+
n ≤

16L

αnα/2
+

√
log n

2

(
log(C/δ)

cn

)α/2
w.p. 1− δ,

leading to398

P
(
∆+
n > ε

)
≤ C exp

(
−cn

(
2

log n

) 1
α
(
ε− 16L

αnα/2

) 2
α

)
.

The main claims by inferring a bound similar to the above for the second integrals in Cn and C(X)399

and then, using a triangle inequality as in the proof of Proposition 3.400

B Proof of Theorem 1401

Proof. The proof follows by using arguments analogous to that in the proof of Theorem 1 in [Auer402

et al., 2002]. For the sake of completeness, we provide the complete proof.403

Let 1 denote the optimal arm, without loss of generality. We bound the number of pulls Ti(n) of any404

suboptimal arm i 6= 1. Fix a round t ∈ {1, . . . , n} and suppose that a sub-optimal arm i is pulled in405

this round. Then, we have406

ci,Ti(t−1) −
2

(1− α)

√
log(Ct)

c Ti(t− 1)
≤ c1,T1(t−1) −

2

(1− α)

√
log(Ct)

c T1(t− 1)
. (25)

The LCB-value of arm i can be larger than that of 1 only if one of the following three conditions407

holds:408

(1) c1,T1(t−1) is outside the confidence interval:

c1,T1(t−1) −
2

(1− α)

√
log(Ct)

c T1(t− 1)
> Cα(1), (26)

(2) ci,Ti(t−1) is outside the confidence interval:

ci,Ti(t−1) +
2

(1− α)

√
log(Ct)

c Ti(t− 1)
< Cα(i), (27)

(3) Gap ∆i is small: If we negate the two conditions above and use (25), then we obtain409

Cα(i)− 4

(1− α)

√
log(Ct)

c Ti(t− 1)
≤ ci,Ti(t−1) −

2

(1− α)

√
log(Ct)

c Ti(t− 1)

≤ c1,T1(t−1) −
2

(1− α)

√
log(Ct)

c T1(t− 1)
≤ Cα(1)

⇒ ∆i <
4

(1− α)

√
log(Ct)

c Ti(t− 1)
or Ti(t− 1) ≤ 16 log(Ct)

(1− α)2∆2
i

(28)
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Let u =
16 log(Cn)

(1− α)2∆2
i

+ 1. When Ti(t− 1) ≥ u, i.e., when the condition in (28) does not hold, then410

either (i) arm i is not pulled at time t, or (ii) (26) or (27) occurs. Thus, we have411

Ti(n) = 1 +

n∑
t=K+1

I {It = i}

≤ u+

n∑
t=u+1

I {It = i;Ti(t− 1) ≥ u}

≤ u+

n∑
t=u+1

I

{
ci,Ti(t−1) −

2

(1− α)

√
log(Ct)

c Ti(t− 1)

≤ c1,T1(t−1) −
2

(1− α)

√
log(Ct)

c T1(t− 1)
;Ti(t− 1) ≥ u

}

≤ u+

∞∑
t=1

t−1∑
s=1

t−1∑
si=u

I

Ci(si)− 2

(1− α)

√
log(Ct)

c si
≤ C1(s)− 2

(1− α)

√
log(Ct)

c s


≤ u+

∞∑
t=1

t−1∑
s=1

t−1∑
si=u

I

{(
Cα(1) < C1(s)− 2

(1− α)

√
log(Ct)

c s

)

or

Cα(i) > Ci(si) +
2

(1− α)

√
log(Ct)

c si

 occurs

 .

Using Proposition 1, we can bound the probability of occurrence of each of the two events inside the412

indicator on the RHS of the final display above as follows:413

P

(
Cα(1) < C1(s)− 2

(1− α)

√
log(Ct)

c s

)
≤ 1

t4
, and

P

Cα(i) > Ci(si) +
2

(1− α)

√
log(Ct)

c si

 ≤ 1

t4
.

Plugging the bounds on the events above and taking expectations on Ti(n) related inequality above,414

we obtain415

E[Ti(n)] ≤ u+

∞∑
t=1

t−1∑
s=1

t−1∑
si=u

2

t4
≤ u+ 2

∞∑
t=1

1

t2
≤ u+

π2

3
. (29)

The preceding analysis together with the fact that ERn =
∑K
i=1 ∆iE[Ti(n)] leads to the first regret416

bound presented in the theorem.417

For inferring the second bound on the regret, i.e., the bound that does not scale inversely with the418

gaps, observe that419

ERn =
∑
i

∆i E[Ti(n)] =
∑

i:∆i≤λ

∆i E[Ti(n)] +
∑

i:∆i≥λ

∆i E[Ti(n)], for λ > 0

≤ nλ+
∑

i:∆i≥λ

(
16 log(Cn)

(1− α)2∆i
+ ∆i

(
π2

3
+ 1

))
, (Using (29) and

∑
i:∆i≤λ

E[Ti(n)] ≤ n)

≤ nλ+

(
16K log(Cn)

(1− α)2λ

)
+

(
π2

3
+ 1

)∑
i

∆i,

≤ 8

(1− α)

√
Kn log(Cn) +

(
π2

3
+ 1

)∑
i

∆i,

(
Using λ =

8
√
K log(Cn)

(1− α)

)
.

420
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