
Appendix

A Nesterov’s accelerated gradient descent

Algorithm 3: Nesterov’s accelerated gradient ascent

Input: Smooth concave function h(·), learning rate 1
β , initial points y0 and z0

Output: yk
1 for k = 0, 1, . . . do
2 wk ← (1− τk)yk + τkzk, yk+1 ← PY

(
wk + 1

β∇h(wk)
)

,
zk+1 ← PY (zk + ηk∇h(wk))

Nesterov’s accelerated gradient descent [38] is an optimal method for minimizing smooth convex
functions (or equivalently maximizing smooth concave functions). In order to simplify the exposition
in the sequel, we will consider the algorithm for maximizing concave functions. The pseudocode for
this is presented in Algorithm 3. Fix any point y ∈ Y .

A.1 Smooth concave function

Consider the potential function

Φ(k) := k(k + 1) (h(y)− h(yk)) + 2β · ‖y − zk‖2.
The following lemma (from [2]) is the key result that helps us obtain the convergence rate of
Algorithm 3. Here PY (·) denotes projection onto Y .
Lemma 2. [2] Suppose h(·) is an L-smooth concave function and the parameters of Algorithm 3
are chosen so that β > L, ηk = k+1

2β and τk = 2
k+2 . Then, we have

Φ(k + 1) ≤ Φ(k).

Proof of Lemma 2. Writing

Φ(k + 1)− Φ(k) =(k + 1)(k + 2) (h(wk)− h(yk+1)) (12)
− k(k + 1) (h(wk)− h(yk)) + 2(k + 1) (h(y)− h(wk))
+ 2β

(
‖zk+1 − y‖2 − ‖zk − y‖2

)
, (13)

we bound the three terms appearing in separate lines above. Firstly, for the third term, ‖zk+1 − y‖2 ≤
‖zk + ηk∇h(wk)− y‖2 − ‖zk+1 − zk − ηk∇h(wk)‖2 due to Pythagoras theorem and so

‖zk+1 − y‖2 − ‖zk − y‖2 ≤ 2ηk〈∇h(wk), zk − y〉+ η2
k‖∇h(wk)‖2 − ‖zk+1 − zk − ηk∇h(wk)‖2

≤ 2ηk〈∇h(wk), zk+1 − y〉−‖zk+1 − zk‖2. (14)

For the second term, we have

− k(k + 1) (h(wk)− h(yk)) + 2(k + 1) (h(y)− h(wk))
≤ −k(k + 1)〈∇h(wk), wk − yk〉+ 2(k + 1)〈∇h(wk), y − wk〉 = 2(k + 1)〈∇h(wk), y − zk〉

(15)

Finally, for the first term, we have h(yk+1) − h(wk) ≥ 〈∇h(wk), yk+1 − wk〉 − β
2 ‖yk+1 − wk‖2.

Since yk+1 = argmaxȳ∈Y〈∇h(wk), ȳ−wk〉− β
2 ‖ȳ − wk‖2, we have for v := (1−τk)yk+τkzk+1 ∈

Y ,

h(yk+1)− h(wk) ≥ 〈∇h(wk), yk+1 − wk〉 −
β

2 ‖yk+1 − wk‖2

≥ 〈∇h(wk), v − wk〉 −
β

2 ‖v − wk‖
2 = τk〈∇h(wk), zk+1 − zk〉 −

βτ2
k

2 ‖zk+1 − zk‖2, (16)

where we used wk = (1 − τk)yk + τkzk in the last step. Substituting (16), (15) and (14) in (13)
proves the lemma.

13

B Proofs

B.1 Auxiliary lemma

Lemma 3. If f(x) is a L-weakly convex function and f̃(x) is a σ̃(≥ L)-strongly convex differentiable
function, then f(x) + f̃(x) is (σ̃ − L)-strongly convex.

Proof. Since f is L-weakly convex and f̃ is σ-strongly convex we get that,

f(x′) ≥ f(x) + 〈ux, x′ − x〉 −
L

2 ‖x
′ − x‖2 ,

f̃(x′) ≥ f̃(x) +
〈
∇f̃(x), x′ − x

〉
+ σ̃

2 ‖x
′ − x‖2 ,

=⇒ f(x′) + f̃(x′) ≥ f(x) + f̃(x) +
〈
ux +∇f̃(x), x′ − x

〉
+ σ̃ − L

2 ‖x′ − x‖2 . (17)

where ux ∈ ∂f(x). We finish the proof by noting that ∂(f + f̃) = ∂f + ∇f̃ [27, Corollary
1.12.2.].

B.2 Properties of Moreau envelope

The following lemma provides some useful properties of the Moreau envelope for weakly convex
functions.
Lemma 4. For an L-weakly convex proper l.s.c. function f : X → R ∪ {∞} such that X = Rp and
L < 1/λ, the following hold true,

(a) The minimizer x̂λ(x) = arg minx′∈X f(x′) + 1
2λ‖x − x′‖2 is unique and f(x̂λ(x)) ≤

fλ(x) ≤ f(x). Furthermore, arg minx f(x) = arg minx fλ(x).

(b) fλ is
(1
λ + 1

λ(1−λL)
)
-smooth and thus differentiable, and

(c) minu∈∂f(x̂λ(x)) ‖u‖ ≤ (1/λ)‖x̂λ(x)− x‖ = ‖∇fλ(x)‖.

Proof. We re-write fλ(x) as minimum value of a (1
λ − L)-strong convex function φλ,x, as f is

L-weakly convex (Definition 3) and 1
2λ‖x− x′‖2 is differentiable and 1

λ -strongly convex (Lemma 3),

fλ(x) = min
x′∈X

[
φλ,x(x′) = f(x′) + 1

2λ‖x− x
′‖2
]
. (18)

Then first part of (a) follows trivially by the strong convexity. For the second part notice the following,

min
x
fλ(x) = min

x
min
x′

f(x′) + 1
2λ‖x− x

′‖2

= min
x′

min
x
f(x′) + 1

2λ‖x− x
′‖2

= min
x′

f(x′)

Thus arg minx fλ(x) = arg minx f(x). For (b) we can re-write the Moreau envelope fλ as,

fλ(x) = min
x′

f(x′) + 1
2λ‖x− x

′‖2

= ‖x‖
2

2λ −
1
λ

max
x′

(xTx′ − λf(x′)− ‖x
′‖2
2)

= ‖x‖
2

2λ −
1
λ

(
λf(·) + ‖ · ‖

2

2

)∗
(x) (19)

where (·)∗ is the Fenchel conjugation operator. Since L < 1/λ, using L-weak convexity of f , it is
easy to see that λf(x′) + ‖x′‖2

2 is (1− λL)-strongly convex, therefore its Fenchel conjugate would

14

be 1
(1−λL) -smooth [21, Theorem 6]. This, along with 1

λ -smoothness of first quadratic term implies
that fλ(x) is

(1
λ + 1

λ(1−λL)
)
-smooth, and thus differentiable.

For (c) we again use the reformulation of fλ(x) as minx′∈X φλ,x(x′) (18). Then by first-order
necessary condition for optimality of x̂λ(x), we have that x− x̂λ(x) ∈ λ∂f(x). Further, from proof
of part (a) we have that φλ,x(x′) (1− λL)-strongly-convex in x′ and it is quadratic (and thus convex)
in x. Then we can use Danskin’s theorem [4, Section 6.11] to prove that,∇fλ(x) = (x− x̂λ(x))/λ ∈
∂f(x). Refer [45, Section B.1] for other proofs of the same result.

B.3 Proof of Lemma 1

It is easy to see that g(·, y) is L-weakly convex if it is L-smooth: g(x′, y) ≥ g(x, y) +
〈∇xg(x, y), x′ − x〉 − L

2 ‖x′ − x‖2. Thus we only need to prove the case of L-weakly convex
g(·, y). Since g(·, y) is L-weakly convex we get that,

g(x′, y) ≥ g(x, y) + 〈ux,y, x′ − x〉 −
L

2 ‖x
′ − x‖2

=⇒ g(x′, y) + L

2 ‖x
′‖2 ≥ g(x, y) + L

2 ‖x‖
2 + 〈ux,y + Lx, x′ − x〉

where ux,y ∈ ∂xg(x, y). This means that g̃(x, y) := g(x, y) + L
2 ‖x‖2 is convex, since ∂xg̃(x, y) =

∂xg(x, y) + Lx [27, Corollary 1.12.2.].

Let f̃(x) = maxy∈Y g̃(x, y). Since g̃(x, y) is convex in x and smooth (Definition 1), and Y is
compact set we use Danskin’s theorem [4, Section 6.11] to prove that,

∂f̃(x) = conv{∂xg̃(x, y∗) | y∗ ∈ arg max
y∈Y

g̃(x, y)} ,

=⇒ ∂f(x) + Lx = conv{∂xg(x, y∗) + Lx | y∗ ∈ arg max
y∈Y

g(x, y)} ,

=⇒ ∂f(x) = conv{∂xg(x, y∗) | y∗ ∈ arg max
y∈Y

g(x, y)} . (20)

where the second to last step comes from the facts that ∂f̃ = ∂f + Lx, ∂xg̃(x, y) =
∂xg(x, y) +Lx [27, Corollary 1.12.2.], and arg maxy∈Y g̃(x, y) = arg maxy∈Y g(x, y) + L

2 ‖x‖2 =
arg maxy∈Y g(x, y). Let ux,y ∈ ∂xg(x, y) and y∗ arg maxy∈Y g(x, y)then,

f(x′) ≥ g(x′, y∗)
(a)
≥ g(x, y∗) + 〈ux,y∗ , x′ − x〉 −

L

2 ‖x
′ − x‖2

(b)=⇒ f(x′) ≥ f(x) + 〈vx, x′ − x〉 −
L

2 ‖x
′ − x‖2

where (a) uses L-weak convexity of g(·, y), and (b) uses (20) and vx ∈ ∂f(x).

B.4 Pseudocode for Conceptual DIAG algorithm

The pseudocode for C-DIAG algorithm is presented in Algorithm 4.

B.5 Proof of Theorem 1

A cursory glance of the DIAG (Algorithm 1) reveals that it is a modified version of projected
accelerated gradient ascent (Algorithm 3) on some function of y with a modified step given by
Imp-STEP, which is inspired from the conceptual Mirror-Prox method of [34]. In the following
lemma we analyze the Imp-STEP sub-routine, which is the most non-trivial step of the algorithm.

Lemma 5. If β = 2L2

σ , the sub-routine Imp-STEP(g, L, σ, w, β, εstep) of Algorithm 1, returns a
pair of points (x̂R, yR+1) ∈ X × Y , such that,

g(x̂R, yR+1) ≤ min
x
g(x, yR) + εstep, and, yR = PY

(
w + 1

β
∇yg(x̂R−1, w)

)
(21)

in R = dlog2
(
(5LDY/σ)

√
L/2εstep

)
e iterations with O

(√
L/σ log

(
1/εstep

))
gradient compu-

tations per iterations.

15

Algorithm 4: Conceptual Dual Implicit Accelerated Gradient (C-DIAG) for strongly-
convex–concave programming

Input: g, L, σ, x0, y0, K
Output: x̄K , yK

1 Set β ← 2L2

σ , z0 ← y0
2 for k = 0, 1, . . . ,K − 1 do
3 τk ← 2

(k+2) , ηk ← (k+1)
2β , wk ← (1− τk)yk + τkzk

4 Choose xk+1, yk+1 ensuring:

g(xk+1, yk+1) = min
x
g(x, yk+1), yk+1 = PY

(
wk + 1

β
∇yg(xk+1, wk)

)

5 zk+1 ← PY (zk + ηk∇yg(xk+1, wk)), x̄k+1 ← 2
(k+1)(k+2)

∑k+1
i=1 i · xi

6 return x̄K , yK

A proof for this lemma is provided in Appendix B.5.1. The above lemma guarantees
that the Imp-STEP sub-routine converges fast (linear time), in O(log(1/εstep)) steps with
O(
√
L/σ log2(1/εstep)) number of gradient computations.

In the rest of the proof we will utilize the recently proposed potential-function based proof for
accelerated gradient decent (AGD) [2, Section 5.2]. Analyzing AGD using potential-function has
an advantage over the standard analysis because, even though AGD does not decrease the function
value monotonically the former constructs a potential-function which monotonically decreases over
the iterations. Given the guarantees (Lemma 5) for the Imp-STEP sub-routine we can re-write an
iteration of the DIAG algorithm by the following steps:

τk = 2
(k + 2) , ηk = (k + 1)

2β
wk = (1− τk)yk + τkzk

yk+1 = PY
(
wk + 1

β
∇yhxk+1(wk)

)

zk+1 = PY
(
zk + ηk∇yhxk+1(wk)

)

(22)

(23)

(24)

(25)

where hk+1(y) := g(xk+1, y) such that g(xk+1, yk+1) ≤ minx∈X g(x, yk+1) + εstep. That is at
iteration k, DIAG executes the k-th step of the accelerated gradient ascent for the concave function
hk+1 = g(xk+1, ·) (Algorithm 3). As in (12), for the concave function hk : Y → R and an arbitrary
reference point ỹ ∈ Y , we define the following potential function for iteration j,

Φhk(j) = j(j + 1)(hk(ỹ)− hk(yj)) + 2β‖zj − ỹ‖2 (26)

Since g(x, ·) is L-smooth, it is also 2L2

σ -smooth (σ ≤ L). Then, using Lemma 2 , we see that
for a step-size of 1

β = σ
2L2 , the potential function Φhk(k) decrease at step of k of the algorithm:

16

Φhk+1(k + 1) ≤ Φhk+1(k). Thus,

Φhk+1(k + 1) ≤ Φhk+1(k)
= k(k + 1)(hk+1(ỹ)− hk+1(yk)) + 2β‖zk − ỹ‖2

= k(k + 1)(hk(ỹ)− hk(yk)) + 2β‖zk − ỹ‖2+
k(k + 1)(hk+1(ỹ)− hk(ỹ)) + k(k + 1)(hk(yk)− hk+1(yk))

= Φhk(k) + k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1)(g(xk, yk)− g(xk+1, yk))
(a)
≤ Φhk(k) + k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) + k(k + 1)ε(k)

step (27)

(b)=⇒ ΦhK (K) ≤ Φh0(0) +
K−1∑

k=0
k(k + 1)(g(xk+1, ỹ)− g(xk, ỹ)) +

K−1∑

k=1
k(k + 1)ε(k)

step

≤ Φh0(0) + (K − 1)Kg(xK , ỹ)−
K−1∑

k=1
2k g(xk, ỹ) +

K−1∑

k=1
k(k + 1)ε(k)

step (28)

Where (a) follows from Lemma 5 and g(xk, yk)−g(xk+1, yk) ≤ g(xk, yk)−minx g(x, yk) ≤ ε(k)
step,

(b) is obtained summing (27) over k = {0, . . . ,K − 1}. Rearranging the terms of (28) we get,

Φh0(0) +
K−1∑

k=1
k(k + 1)ε(k)

step ≥
K−1∑

k=1
2k g(xk, ỹ) + ΦhK (K)− (K − 1)Kg(xK , ỹ)

≥
K−1∑

k=1
2k g(xk, ỹ) +K(K + 1)(g(xK , ỹ)− g(xK , yK))+

2β‖zK − ỹ‖2 − (K − 1)Kg(xK , ỹ)

≥
K∑

k=1
2k g(xK , ỹ)−K(K + 1)g(xK , yK)

(a)
≥ K(K + 1)[g(x̄K , ỹ)− g(xK , yK)]
(b)
≥ K(K + 1)[g(x̄K , ỹ)− g(x̃, yK)− ε(K)

step] (29)

where (a) uses the x̄K = 1
K(K+1)

∑K
k=1(2i)xi and convexity of g(·, ỹ), and (b) uses Lemma 6.

Thus we get that,

g(x̄K , ỹ)− g(x̃, yK) ≤ Φh0(0)
K(K + 1) +

K∑

k=1

k(k + 1)
K(K + 1)ε

(k)
step

= 2β‖y0 − ỹ‖2
K(K + 1) +

K∑

k=1

k(k + 1)
K(K + 1)ε

(k)
step (30)

Finally we get the desired general statement by taking minimum and maximum over x̃ and ỹ

respectively. By selecting ε(k)
step = L2D2

Y
σk3(k+1) we get,

max
ỹ∈Y

g(x̄K , ỹ)−min
x̃∈X

g(x̃, yK) ≤ 6L2

σ D
2
Y

K(K + 1) (31)

Further, using Lemma 5 and ε(k)
step = L2D2

Y
σk3(k+1) , we get that the total number of gradient computations

at iteration k is at most O
(√

L
σ log2(k)

)
:

⌈
log2 5k2

√
L

σ

⌉
O
(√L

σ
log
(
k4)) (32)

Note that in updating yk+1 in Eq. (24) and xk+1 in Imp-STEP sub-routine, we were applying the
principle of conceptual Mirror-Prox, where the update needs to satisfy some fixed point equation.
This is critical in proving the above fast convergence rate.

17

B.5.1 Proof of Lemma 5

For brevity, we define the following operations,

x∗(y) = arg min
x∈X

g(x, y) (33)

y+ = PY
(
w + 1

β
∇yg(x∗(y), w)

)
(34)

x∗(y) is unique since g(·, y) is strongly convex. We first prove that, x∗(y) is L
σ -Lipschitz continuous

as follows.

σ‖x∗(y2)− x∗(y1)‖2
(a)
≤ 〈∇xg(x∗(y2), y2)−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(b)
≤ 〈−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(c)
≤ 〈∇xg(x∗(y1), y1)−∇xg(x∗(y1), y2), x∗(y2)− x∗(y1)〉
(d)
≤ L‖y1 − y2‖‖x∗(y2)− x∗(y1)‖ (35)

where (a) uses σ-strong convexity of g(·, y), (b) and (c) use the necessary first order optimality
conditions for x∗(y1) and x∗(y2): 〈∇xg(x∗(y), y), x− x∗(y)〉 ≥ 0, and (d) uses Cauchy-Schwarz
inequality andL-smoothness of g (Definition 1). Next we prove that the operation (·)+ is a contraction
as follows,

‖y+
1 − y+

2 ‖ = ‖PY
(
w + 1

β
∇yg(x∗(y1), w)

)
− PY

(
w + 1

β
∇yg(x∗(y2), w)

)
‖

(a)
≤ 1

β
‖∇yg(x∗(y1), w)−∇yg(x∗(y2), w)‖

(b)
≤ L

β
‖x∗(y1)− x∗(y2)‖

(c)
≤ L

β

L

σ
‖y1 − y2‖

(d)
≤ 2−1‖y1 − y2‖ (36)

where (a) uses Pythagorean theorem and (34), (b) uses L-smoothness of g, (c) uses (35), and (d)
uses β ≥ 2LLσ . Therefore, (·)+ is a contraction by Banach’s fixed point theorem, and thus it has a
unique fixed point ỹ: (ỹ)+ = ỹ, as Y is a compact (and hence complete) metric space. Now we will
prove that the output of Imp-STEP, (x̂R, yR+1) satisfies (21). Notice that if εagd is small then x̂r is
close to x∗(yr):

σ

2 ‖x̂r − x
∗(yr)‖2

(a)
≤ g(x̂r, yr)−min

x
g(x, yr)

(b)=⇒ ‖x̂r − x∗(yr)‖ ≤
√

2εagd
σ

= βεmp
4L (37)

where (a) uses σ-strong convexity and optimality of x∗(yr), and (b) uses (7), and (c) uses εagd =
σβ2εmp/(32L2). Next we see that ‖yr − ỹ‖ decreases to ε exponentially fast.

‖yr − ỹ‖
(a)= ‖PY

(
w + 1

β
∇yg(x̂r−1, w)

)
− (ỹ)+‖

(b)
≤ ‖y+

r−1 − (ỹ)+‖+ ‖PY
(
w + 1

β
∇yg(x∗(yr−1), w)

)
− PY

(
w + 1

β
∇yg(x̂r−1, w)

)
‖

(c)
≤ 2−1‖yr−1 − ỹ‖+ L

β
‖x∗(yr−1)− x̂r−1‖

(d)
≤ 2−1‖yr−1 − ỹ‖+ εmp

4 (38)

(e)
≤ 2−r‖y0 − ỹ‖+ εmp

2 (39)

where (a) uses yr+1 = PY
(
w + 1

β∇yg(x̂r, w)
)

and the fact that ỹ = (ỹ)+ is a fixed point, (b)
uses triangular inequality and (34), (c) uses (36), Pythagorean theorem and L-smoothness of g

18

(Definition 1), (d) uses (37), and (e) just unrolls the recurrence relation in (38) . Next, we prove that
the minimizer at yR+1, x∗(yR+1) is not far from x̂R.

‖x∗(yR+1)− x̂R‖
(a)
≤ ‖x∗(yR+1)− x∗(ỹ)‖+ ‖x∗(ỹ)− x∗(yR)‖+ ‖x∗(yR)− x̂R‖
(b)
≤ L

σ
(‖yR+1 − ỹ‖+ ‖yR − ỹ‖) + βεmp

4L
(c)
≤ L

σ
(εmp + εmp) + βεmp

4L = (2L
σ

+ β

4L)εmp (40)

where (a) uses triangle inequality, and (b) uses (35) and 37, and (c) uses (39) and the fact that
R = dlog2

2DY
εmp
e. Finally, we prove that (xR, yR+1) satisfies (21).

g(x̂R, yR+1)
(a)
≤ g(x∗(yR+1), yR+1) + 〈∇xg(x∗(yR+1), yR+1), x̂R − x∗(yR+1), 〉+ L

2 ‖x
∗(yR+1)− x̂R‖2

(b)
≤ min

x
g(x, yR+1) + 0 +

25LL2ε2
mp

8σ2
(c)= min

x
g(x, yR+1) + εstep (41)

where (a) uses L-smoothness of g(·, y), (b) uses necessary first order optimality condition:

〈∇xg(x∗(y), y), x− x∗(y)〉 = 0 and (40), and (c) uses εmp = 2σ
5L

√
2εstep
L .

Let the number of gradient computations done per iteration of Imp-STEP (a run of accelerated
gradient ascent) be Tr and κ =

√
L/σ. Then, from guarantee on AGD ([2, Eqn. (5.68)]), we get that,

g(x̂r, yr)− g(x∗(yr), yr) ≤
(

1 + 1√
κ− 1

)−Tr(
g(x0, yr)− g(x∗(yr), yr) + σ

2 ‖x0 − x∗(yr)‖2
)

≤ e−Tr/
√
κ 2 (g(x0, yr)− g(x∗(yr), yr))

≤ e−Tr/
√
κ 2 (f(x0)− h(yr))

≤ e−Tr/
√
κ 2 (f(x0)− min

y′∈DY
h(y′)) , (42)

where miny′∈DY h(y′) is well-defined since Y is compact and h is smooth (Lemma 6). This means
that if we want g(x̂r, yr)− g(x∗(yr), yr) ≤ εagd, then required number of steps Tr is at most,

⌈√
L

σ
log 2(f(x0)−miny′∈DY h(y′))

εagd

⌉
=
⌈√

L

σ
log 50L(f(x0)−miny′∈DY h(y′))

σεstep

⌉

= O
(√L

σ
log
(1
εstep

))
(43)

B.6 Smoothness of dual of strongly-convex–concave minimax problem

Lemma 6. For a σ-strongly-convex–concave L-smooth function g(·, ·), h(u) = minx∈X g(x, u) is
an
(
L+ L2

σ

)
-smooth concave function.

Proof. We know that h(y) = minx∈X g(x, y), where g(·, y) is σ-strongly convex, g(x, ·) is con-
cave, g is L-smooth (Definition 1). Since g(·, y) is strongly convex, the minimizer x∗(y) =
arg minx∈X g(x, y) unique. Then by Danskin’s theorem [4, Section 6.11], h is differentiable and
∇h(y) = ∇yg(x∗(y), y). Then h can be show to be smooth as follows,

‖∇h(y1)−∇h(y1)‖ = ‖∇yg(x∗(y1), y1)−∇yg(x∗(y2), y2)‖
≤ ‖∇yg(x∗(y1), y1)−∇yg(x∗(y1), y2)‖+ ‖∇yg(x∗(y1), y2)−∇yg(x∗(y2), y2)‖
(a)
≤ L‖y1 − y2‖+ L‖x∗(y1)− x∗(y2)‖
(b)
≤ L‖y1 − y2‖+ L

L

σ
‖y1 − y2‖ =

(
L+ LL

σ

)
‖y1 − y2‖ (44)

where (a) uses L-smoothness of g and (b) uses (35).

19

B.7 Proof of Theorem 2

We first note that by Lemma 3 and L-weak convexity of g(·, y) and 2L-strong convexity of
L‖x − xk‖2, ĝ(x, y;xk) := g(x, y) + L‖x − xk‖2 is L-strongly-convex. Similarly, f̂(·;xk) :=
maxy∈Y [ĝ(x, y;xk) = g(x, y) + L‖x− xk‖2] is also L-strongly-convex.

We now divide the analysis of each iteration of our algorithm into two cases:

Case 1: f̂(xk+1;xk)≤f(xk)− 3ε̃/4. As every instance of Case 1 ensures f(xk+1) ≤
f̂(xk+1;xk) ≤ f(xk) − 3ε̃/4, we can have only

⌈
4(f(x0)−f∗)

3ε̃

⌉
Case 1 steps before termination.

This claim requires monotonic decrease in f(xk) which holds until f(xk+1) ≥ f(xk), after which
f̂(xk+1;xk) ≥ f(xk), which in-turn imply that Prox-DIAG terminates (see termination condition of
Prox-DIAG).

Case 2: f̂(xk+1;xk)>f(xk)− 3ε̃/4: In this case, we show that xk is already an ε-FOSP and the
algorithm returns xk.

f(xk)− 3ε̃
4 < f̂(xk+1;xk) ≤ min

x
f̂(x;xk) + ε̃

4 =⇒ f(xk) < min
x
f̂(x;xk) + ε̃ (45)

Define x∗k as the point satisfying x∗k = arg minx f̂(x;xk). By L-strong convexity of f̂(·;xk) (9), we
prove that xk is close to x∗k:

f̂(x∗k;xk) + L

2 ‖xk − x∗k‖2 ≤ f̂(xk;xk) = f(xk)
(a)
< f̂(x∗k;xk) + ε̃ =⇒ ‖xk − x∗k‖ <

√
2ε̃
L

(46)

where (a) uses (45). Now consider any x̃ ∈ X , such that 4
√
ε̃/L ≤ ‖x̃− xk‖. Then,

f(x̃) + L‖x̃− xk‖2 = max
y∈Y

g(x̃, y) + L‖x̃− xk‖2 = f̂(x̃;xk)
(a)
≥ f̂(x∗k;xk) + L

2 ‖x̃− x
∗
k‖2

(b)
≥ f(xk)− ε̃+ L

2 (‖x̃− xk‖ − ‖xk − x∗k‖)2
(c)
≥ f(xk) + ε̃, (47)

where (a) uses uses L-strong convexity of f̂(·;xk) at its minimizer x∗k, (b) uses (45), and (b) and (c)
use triangle inequality, (46) and 4

√
ε̃/L ≤ ‖x̃− xk‖.

Now consider the Moreau envelope, f 1
2L

(x) = minx′∈X φ 1
2L ,x

(x′) where φλ,x(x′) = f(x′)+L‖x−
x′‖2. Then, we can see that φ 1

2L ,xk
(x′) achieves its minimum in the ball {x′ ∈ X | ‖x′ − xk‖ ≤

4
√
ε̃/L} by (47) and Lemma 4(a). Then, with Lemma 4(b,c) and ε̃ = ε2

64L , we get that,

‖∇f 1
2L

(xk)‖ ≤ (2L)‖xk − x̂ 1
2L

(xk)‖ = 8
√
Lε̃ = ε, (48)

i.e., xk is an ε-FOSP.

By combining the above two cases, we establish that O
(⌈ 4(f(x0)−f∗)

3ε̃
⌉)

“outer” iterations ensure
convergence to a ε-FOSP. We now compute the first-order complexity of each of these “outer"
iterations. Recall that we use use the DIAG (Algorithm 1) algorithm for L-strongly-convex concave
2L-smooth minimax problem to solve the inner optimization problem. So, if for each iteration of
inner problem, DIAG algorithm takes K steps then, by ε̃ = ε2

64L and Theorem 1,

6(2L)2D2
Y

LK2 ≤ ε̃

4 = ε2

28L
=⇒ O

(
LDY
ε

)
≤ K (49)

Therefore the number of gradient computations required for each iteration of inner problem is
O
(
LDY
ε log2

(
1
ε

))
(Theorem 1), which along with the bound on the number of outer iterations

establishes the Theorem’s upper bound on the number of first-order oracle calls.

C Minimizing finite max-type function with smooth components

As a special case of nonconvex–concave minimax problem, consider minimizing a weakly convex
f(x), with a special structure of finite max-type function:

min
x

[
f (x) = max

1≤i≤m
fi(x)

]
, (P3)

20

where x ∈ Rp, the functional components fi(x)’s could be nonconvex but are L-smooth and G-
Lipschitz. Suppose f itself takes a minimum value f∗ > −∞. For this problem, we propose and
study a proximal (Prox-FDIAG) algorithm (Algorithm 5 presented in Appendix C.1) that is inspired
by Algorithm 2 with the inner problem-solver replaced by Nesterov’s finite convex minimax scheme
[37, Section 2.3.1] instead of Algorithm 1. Using same proof technique as Theorem 2, we get:
Corollary 1 (Convergence rate of Prox-FDIAG). If the functional components fi(x)’s are G-
Lipschitz and L-smooth, and the optimal solution is bounded below, i.e. f(x) ≥ f∗ > −∞, then

after: K =
⌈

44L(f(x0)−f∗)
3ε2

⌉
outer steps, Prox-FDIAG outputs an ε-FOSP. The total first-order

oracle complexity to find ε-FOSP is:
⌈

44L(f(x0)−f∗)
3ε2

⌉
·
⌈

24G
ε (m log3/2m)

⌉
.

See Appendix C.1 for a proof. Current best rate for this problem is achieved by subgradient
methods. As the subgradient of a finite minimax function ∇i∗f(x) is easy to evaluate, where
i∗ ∈ arg maxi fi(x), a rate of O(m/ε4) first-order oracle and function calls is achieved by the
state-of-the-art subgradient method in [11]. We can obtain a similar result using Algorithm 1 but it
requires extension to non-Euclidean settings with the framework of Bregman divergences. This is
fairly standard and will be updated in the next version of the paper.

Algorithm 5: Proximal Finite Dual Implicit Accelerated Gradient (Prox-FDIAG) for finite
nonconvex concave minimax optimization

Input: functional components {fi}mi=1, Lipschitzness G, smoothness L, domain X , target
accuracy ε, initial point x0

Output: xk
1 ε̃← ε2

64L
2 for k = 0, 1, . . . do
3 Using excessive gap technique [35, Problem (7.11)] for strongly convex components, find

xk+1 ∈ X such that,

f̂(xk+1;xk) ≤ min
x
f̂(x;xk) + ε̃/4 (50)

if f(xk)− 3ε̃/4 < f̂(xk+1;xk) then
4 return xk

C.1 Proof of Corollary 1

Let

f̂(x;xk) = max
1≤i≤m

fi(xk) + 〈∇fi(xk), x− xk〉+ L

2 ‖x− xk‖
2 (51)

be a quadratic approximation of the finite max-type function f(x) at xk. Then, f̂(·;xk) is L-strongly
convex, since it is a maximum of convex functions and the quadratic term in (51) is independent of i.

Proof is similar to that of Theorem 2. We divide the analysis of each iteration of our algorithm into
two cases.

Case 1: f̂(xk+1;xk)≤f(xk)− 3ε̃/4. This ensure that at iteration k the objective value decreases
by at least 3ε̃/4 since, f(xk+1) ≤ f̂(xk+1;xk)≤f(xk)− 3ε̃/4. One cannot have more than⌈

4(f(x0)−f∗)
3ε̃

⌉
instances of Case 1, before termination.

Case 2: f̂(xk+1;xk)>f(xk)− 3ε̃/4: We show that xk is an ε-FOSP as follows.

f(xk)− 3ε̃
4 < f̂(xk+1;xk) ≤ min

x
f̂(x;xk) + ε̃

4 =⇒ f(xk) < min
x
f̂(x;xk) + ε̃ (52)

21

Define x∗k as the point satisfying x∗k = arg minx f̂(x;xk). By L-strong convexity of f̂(·, xk) (51),
we prove that xk is close to x∗k:

f̂(x∗k;xk) + L

2 ‖xk − x
∗
k‖2 ≤ f̂(xk;xk) = f(xk)

(a)
< f̂(x∗k;xk) + ε̃

=⇒ ‖xk − x∗k‖ <
√

2ε̃
L

(53)

where (a) uses (52). Now consider any x̃ ∈ X , such that 4
√
ε̃/L ≤ ‖x̃− xk‖. Then,

f(x̃) + L‖x̃− xk‖2 = max
i
fi(x̃) + L‖x̃− xk‖2

(a)
≥ max

i
fi(x̃) + 〈∇fi(xk), x̃− xk〉+ L

2 ‖x̃− xk‖
2

(b)= f̂(x̃;xk)
(c)
≥ f̂(x∗k;xk) + L

2 ‖x̃− x
∗
k‖2

(d)
≥ f(xk)− ε̃+ L

2 (‖x̃− xk‖ − ‖xk − x∗k‖)2

(e)
≥ f(xk)− ε̃+ 2ε̃ = f(xk) + ε̃ (54)

where (a) uses weak convexity of fi, (b) uses (51), (c) uses L-strong convexity of f̂(·;xk) at its
minimizer x∗k, (d) uses (52), and (b) and (e) use triangle inequality, (53) and 4

√
ε̃/L ≤ ‖x̃− xk‖.

Now consider the Moreau envelope, f 1
2L

(x) = minx′∈X φ 1
2L ,x

(x′) where φλ,x(x′) = f(x′)+L‖x−
x′‖2. Then, we can see that φ 1

2L ,xk
(x′) achieves its minimum in the ball {x′ ∈ X | ‖x′ − xk‖ ≤

4
√
ε̃/L} by (54) and Lemma 4(a). Thus, with Lemma 4(b,c), we get that,

‖∇f 1
2L

(xk)‖ ≤ (2L)‖xk − x̂1/2L(xk)‖ = 8
√
Lε̃ = ε (55)

Now we use the excessive gap technique for non-smooth strongly convex functions with max-structure

to solve the inner optimization problem in 4G(m logm)
√

logm
ε̃L computations [35, Problem (7.11)].

Putting these together we see that the total number of inner steps to reach ε-FOSP is,
⌈

4(f(x0)− f∗)
3ε̃

⌉⌈
2G(m logm)

√
logm
Lε̃

⌉
=
⌈

44L(f(x0)− f∗)
3ε2

⌉⌈
25G

ε
(m log3/2m)

⌉
(56)

C.2 Adaptive Prox-FDIAG algorithm

In this section, we provide the Adaptive Prox-FDIAG (Algorithm 6) to find an ε-FOSP of the finite
max-type nonconvex minimax problem P3 with L-smooth components. Adaptive Prox-FDIAG
is a variation of the Prox-FDIAG (Algorithm 5). Adaptive Prox-FDIAG uses Prox-FDIAG as a
sub-routine and successively finds ε′-FOSPs, for geometrically decreasing values of ε′ starting from
ε0 (≥ ε) until ε′ becomes equal to ε. It uses the ε′-FOSP as the starting point to find an ε′/2-FOSP.
In the following corollary, we show that Adaptive Prox-FDIAG has the same the first-order oracle
complexity (up to a O(log(1

ε)) factor) as the Prox-FDIAG.
Corollary 2 (Convergence rate of Adaptive Prox-FDIAG). If the functional components fi(x)’s are
G-Lipschitz and L-smooth, and the optimal solution is bounded below, i.e. f(x) ≥ f∗ > −∞, then

after: K =
⌈

log2
ε0
ε

⌉
outer steps, Adaptive Prox-FDIAG outputs an ε-FOSP. The total first-order

oracle complexity to find ε-FOSP is:
⌈

log2
ε0
ε

⌉⌈
44L(f(x0)−f∗)

3ε2

⌉
·
⌈

24G
ε (m log3/2m)

⌉
.

Proof. Notice that, each iteration of Adaptive Prox-FDIAG for finding an ε′-FOSP, is a run of Prox-

FDIAG (Algorithm 5), which has a maximum first-order oracle complexity of
⌈

44L(f(x0)−f∗)
3ε2

⌉
·

22

⌈
24G
ε (m log3/2m)

⌉
for finding an ε′-FOSP (Corollary 1), as ε ≤ ε′. Further, since ε′ starts at ε0 and

halves after each iteration until ε′ becomes less than or equal to ε, the total number of outer iterations

is K =
⌈

log2
ε0
ε

⌉
.

Therefore, Adaptive Prox-FDIAG has the same first-order oracle complexity as Prox-FDIAG, up
to a O(log(1

ε)) factor. However, we observe that Adaptive Prox-FDIAG converges faster than
Prox-FDIAG in our experiments.

Algorithm 6: Adaptive Proximal Finite Dual Implicit Accelerated Gradient (Adaptive
Prox-FDIAG) for finite nonconvex concave minimax optimization

Input: functional components {fi}mi=1, Lipschitzness G, smoothness L, domain X , target
accuracy ε, initial point x0, initial accuracy ε0

Output: xk
1 ε′ ← max(ε0, ε)
2 for k = 0, 1, . . . do
3 Using Prox-FDIAG (Algorithm 5) initialized at xk, find xk+1 ∈ X such that xk+1 is an

ε′-FOSP (Definition 6) of the function f(x) = max1≤i≤m fi(x)
4 if ε = ε′ then
5 k ← k + 1
6 return xk
7 else
8 ε′ ← max(ε′2 , ε)

D Smoothing technique for strongly-convex–concave minimax problem

In this section we propose and analyze a smoothing technique [36] based indirect algorithm for
solving the L-smooth σ-strongly-convex–concave minimax problem. The basic idea is to solve
a smoothed (perturbed) version of the original function, g̃(x, y) = g(x, y) − ε‖y‖2/2D2

Y , which
would be a strongly-convex–strongly-concave minimax problem. [1] proposes solving a strongly-
convex–strongly-concave problem in linear rate using inexact accelerated gradient descent on its dual,
whose main guarantee is given in the theorem below.

Theorem 3. [1] Inexact accelerated gradient ascent on the dual problem can find an ε-primal dual
pair of an L-smooth σx-strongly-convex–σy-strongly-concave problem: minx maxy g(x, y), with

Õ

(√
L+L2

σx

σy

√
L
σx

)
calls to the first order gradient oracle of g.

Now using this algorithm on the function g̃ can recover the same rate as DIAG method as follows.
Plugging in L = O(L), σx = σ, and σy = ε/D2

Y into the algorithm complexity of Theorem 3 gives
you a complexity of,

Õ

(
LDY√
σε

√
L

σ

)
,

finding an ε-primal dual pair, (x̄, ȳ), of g̃. Since maxy∈Y g(x̄, y) ≤ maxy∈Y g̃(x̄, y) + ε/2 and
g̃(x, ȳ) ≤ g(x, ȳ), we get that,

max
y∈Y

g(x̄, y)−min
x∈X

g(x, ȳ) ≤ max
y∈Y

g̃(x̄, y)−min
x∈X

g̃(x, ȳ) +O (ε) .

Using these two facts, we see that smoothing technique has the same algorithmic complexity,

Õ
(
LDY√
σε

√
L
σ

)
, as that of DIAG. However the drawback for this method over the direct DIAG is that

smoothing technique requires a prefixed tolerance parameter ε.

23

E Experimental details

We consider the following problem.

min
x∈R2

[
f(x) = max

1≤i≤m=9
fi(x)

]
(57)

where fi(x) = q(−1, (X(1)
i
,X

(2)
i

), Ci)
(x) for all 1 ≤ i ≤ 8, where q(a,b,c)(x) = a‖x− b‖22 + c, X(1)

i

and X(2)
i are generated from the interval [−3.0, 3.0] uniformly at random, and Ci is generated from

the interval [1.0, 5.0] uniformly at random. We fix the last component f9(x) = q(0.5, (0,0), 0)(x).
Each fi is smooth with parameter L = 1, which implies that f is L-weakly convex.

We implement three algorithms: Prox-FDIAG (Algorithm 5), Adaptive Prox-FDIAG (Algorithm 6),
and subgradient method [11]. In Prox-FDIAG, we use excessive gap technique [35, Problem (7.11)]
(a primal-dual algorithm) to solve the inner sub-problem. As the stopping criteria f̂(xk+1;xk) ≤
minx f̂(x;xk) + ε̃/4 cannot be directly checked, we instead check a sufficient condition; we stop the
excessive gap technique when the primal-dual gap is less than ε̃/4, which can be checked efficiently.
Adaptive Prox-FDIAG is a variant of Prox-FDIAG, where we adaptively and successively decrease the
tolerance parameter ε′ starting from a large tolerance ε0. It has the same first-order oracle complexity
guarantee as Prox-FDIAG (up to an O(log(1/ε)) factor). However, in Figure 1, we observe that
Adaptive Prox-FDIAG can converge faster in practice. We set the initial tolerance ε0 as 10.0. For a
description of the algorithm we refer to Appendix C.2.

All the algorithms are initialized with the point x0 = (4, 4) and are given a Lipschitzness parameter of
G = 2L ‖x0‖2. We run the algorithms ten times with randomly generated instances of the objective
function f(x). In Figure 1, we plot the norm of gradient of Moreau envelope ‖∇f 1

2L
(xk)‖2 against

the number of iterations k in log-log scale. We compute the gradient of the Moreau envelope at any
point x, by solving the corresponding convex-concave saddle point problem (18) using Mirror-Prox
[34] method with appropriate primal-dual gap based stopping criteria and then using Lemma 4(c). For
Prox-FDIAG (red circles), we show in a scatter plot the gradient norm ‖∇f 1

2L
(xK(ε))‖2 at the final

output of Prox-FDIAG xK(ε) versus the total number of inner iterations (of excessive gap technique)
taken, for ε = 100, 10−1, 10−2, 10−3 over the 10 functions. For Adaptive Prox-FDIAG (black dots)
in a scatter plot, we plot the gradient norm ‖∇f 1

2L
(x′)‖2 at the output x′ of each inner sub-problem

(excessive gap technique) of each inner Prox-FDIAG step versus the total number of inner iterations
(of excessive gap technique) taken to reach that point from the beginning, for ε = 10−7 over the
10 functions. For Prox-FDIAG and Adaptive Prox-FDIAG, using solid red and black (respectively)
lines we also plot the best linear function (in log-scale) which fits the scatter points (using default
parameters of scipy.stats.linregress2). For the subgradient method (blue triangles), we plot
the mean and standard error of gradient norm max0≤k′≤k ‖∇f 1

2L
(xk̂(k′))‖2 over the 10 instances at

iterations k = 100, 101, . . . , 107. The estimate at each iteration is the best one so far in the function
value, i.e. k̂(k) ∈ arg min0≤k′≤kf(xk′). We see that, Prox-FDIAG and Adaptive Prox-FDIAG have
a faster convergence rate than subgradient method. Further, in the same vein as analogous variants in
convex non-smooth optimization, Adaptive Prox-FDIAG is faster than Prox-FDIAG almost always.

Subgradient method has a theoretical convergence rate of O(1√
K

) for a fixed number of iterations K

and a constant step-size γ/
√
K + 1 [11, Corollary 2.2]. However, similar to the case of convex non-

smooth problems, we observe that fixed step-size results in a slow convergence. In our experiments,
we achieve a faster convergence for the subgradient method by using a diminishing, non-summable
but square-summable step-size, γ/

√
k + 1, which varies with the iteration number k. This step-size

has convergence rate of O(log(k)√
k

) [11, Theorem 2.1], but in practice we observe a faster convergence

rate than the constant step-size. After a very simple parameter search, we set γ as 0.1×G× L3/2.
We ran subgradient method for a total of K = 107 number of iterations. Since, subgradient method is
not a descent method, at any iteration k, we keep track of the best point among all the points we have
observed so far, {x0, · · · , xk−1}. Ideally, we should keep track of the point with the minimum norm
for the gradient of the Moreau envelope, ‖∇f 1

2L
(xk)‖2, but since the computation of the gradient of

Moreau envelope is costly, we only keep track of the point with the minimum function value we have
observed so far.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

24

