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We thank all the reviewers for their constructive comments. We explain the intuition behind DIAG (Algorithm 1) for
strongly-convex-concave minimax problems first, which we will add in the final revision.

Conceptual DIAG: The intuition behind Algorithm 1 stems from a "conceptual” version of DIAG (also specified in
Algorithm 1, Step 4), which is inspired from the conceptual version of Mirror-Prox (MP) (cf. Section 2.2):

(@) wi = (1 — 7)Yk + w2k
(b) Choose xj11,Yk+1 ensuring: Txy1 € argming g(x, yrt1), and yp+1 = Py(wy + %Vyg(a:kﬂ,wk))

(©) zr1 = Py(zk + e Vyg(zrs1, wi))

The main idea is to apply an MP-like update for x on g(-, yx+1) and an AGD step for y on g(xk41,-). In the final
estimate, we use T = (2/K(K + 1)) Zlel(z x;), because MP-like updates give ergodic guarantees, but use yx,
because AGD has final iterate guarantees. The MP-like update is crucial in this algorithm so as to inherit the well-known
fast convergence rate of AGD for smooth-convex optimization.

Implementable DIAG: The above step (b) requires g(+, yx+1) and g(x1, -) which are not a priori available at the k-th
step. But we can implement this step up to etcp error (step 4, Algorithm 1), using Imp-STEP subroutine (Algorithm
1). Just like the fact that conceptual MP can be realized in log(1/<) steps (in fact, just two steps suffice), Imp-STEP

converges in R = log(22~) = O(log(——)) steps, because the following mapping is a contraction for small enough
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stepsize 1/0: - ,

Y =Py(wr + (1/8)Vyg(z™(y"), wr)) , (1)
where z*(y) = arg min,, g(z,y). This follows from (i) the L-smoothness of g, and (ii) the Lipschitzness of *(y) in y
(due to strong convexity of g(-, y)). Further, again by o-strong-convexity of (-, y), 2*(y) = arg min, g(x,y) could be

steps. Thus the overall speed of Imp-STEP is O(y/ £ log?(——)) steps.
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Response to reviewer 1: We agree with and will include, the reviewer’s comment, that the non-smoothness of
f(x) = max, g(x,y), more precisely the non-Lipschitzness of the maximizer of g(x, -) is the reason why naive AGD
is sub-optimal. We will devote more space to explaining the DIAG algorithm and discussing more related works.

1- We will clarify that steps (5) & (6) is the Euclidean version of Mirror-Prox and discuss the extra-gradient method.
2- Criteria in [26] is weaker in the following sense. Consider g(x,y) = (2% — 32)/2 (f(x) = 22/2, h(y) = —y*/2)
with domain R x [0, 1]. To reach (#,9) s.t. & = § < ¢, DIAG requires O(¢~3) steps since V f(#) = Vh(7)) = &, how-
ever, [26] requires O((¢?) %) = O(e™7) steps since Y(z,§) = maxyejo,1] (Vyg(Z,9),y —§) = (—e,—¢) = €.
We will add a precise justification (which was omitted due to the lack of space) in the next revision.

3- We refer the reviewer to the above explanation of DIAG algorithm.

4- Bilinear coupling: a) we focus on non-linear coupling and in general, bilinear results do not apply to our setting, b)
when we specialize our result to standard bilinear coupling setting, our results match the optimal 1/K? rates. Further
assumptions like unbounded domain and full-rank coupling matrix give linear convergence rates [R1] (will be cited),
but this follows directly from the fact that the Fenchel dual of a smooth function is strongly convex (Theorem 6 of [12]).
5- We will include citations to similar saddle point problems and algorithms, including [R4] and [R5]. However,
we again note that none of the suggested (or other) references obtain results similar to ours in the setting that we consider.

Response to reviewer 3: We will include numerical experiments; as a preliminary
experiment we consider the following min-max problem (P3): min,cp2 [ flz) =
maxi<i<m=9 fi (x)] with random quadratic functions (hence weakly-convex). In the
figure right, we plot the norm of gradient of Moreau envelope ||V f 1 (x1)||2 against the
number of first-order gradient oracle calls in log-log scale. We see that, Prox-FDIAG has
a faster convergence rate than subgradient method. We will also include other practical
use-cases such as robust learning, multi-task learning, and adversarial training.

Response to reviewer 4: We will incorporate all suggestions by the reviewer and clarify all ambiguous/missing
explanations in the final version. We discuss important ones below.

-Chen et al.: their result only handles bilinear case (also see response to R1, point 4) and gets a rate of O(1/¢), but can
handle prox-function friendly non-smoothness w.r.t. y. In contrast, we can handle non-linear coupling between z, y and
for bilinear case (with strong convexity w.r.t. z and smoothness w.r.t. y) can obtain O(1/+/€) rate.

-) We assume X = RP? since we use [Theorem 6, 12] in the proof, which requires the domain to be the full vector space.
-) The sub-routine Imp-STEP has a typo: In Step 10, x, should be z,.. That is, given y, we compute 2, such that
9(Zr,yr) < ming g(x,yr) + €aga and then Step 11 updates: y,1 = Py(w + %Vyg(:ﬁr,w)). This gives the new
(Zr, yr+1) pair, and the process is repeated. We refer the reviewer to the explanation of DIAG algorithm at the top.

-) In line 196: We meant that min, max, g(z, y) — max, min, g(x,y) (which we call the minimum primal dual gap)
is unknown for non-convex functions. We will make the statement precise.

-) In line 203: We are citing the result of [8], which uses the same convergence criteria as our paper.



