
A More Discussion on Finding the Negative Curvature

In this section, we present the gradient complexities of the negative curvature finding algorithms used
in Section 4. Note that we use ApproxNC-Stochastic in Algorithm 1 to find the negative curvature
direction, which is usually done by Oja’s algorithm or Neon2online in stochastic nonconvex optimiza-
tion problem (1.1). The following lemma characterizes the Hessian-vector product complexity of
Oja’s algorithm.
Lemma A.1. [4] Let f(x) = E⇠⇠D[F (x; ⇠)], where each component function F (x; ⇠) is twice-
differentiable and L1-smooth. For any given point x 2 Rd, if �min(r2

f(x))  �✏H , then with
probability at least 1� �, Oja’s algorithm returns a unit vector bv satisfying

bv>r2
f(x) bv < �✏H

2
,

with O
�
(L2

1/✏
2
H
) log2(d/�) log(1/�)

�
stochastic Hessian-vector product evaluations.

Next we present the gradient complexity for Neon2online [5] in the stochastic setting.
Lemma A.2. [5] Let f(x) = E⇠⇠D[F (x; ⇠)] where each component function F (x; ⇠) is L1-smooth
and L2-Hessian Lipschitz continuous. For any given point x 2 Rd, with probability at least 1� �,
Neon2online returns bv satisfying one of the following conditions,

• bv = ?, then �min(r2
f(x)) � �✏H .

• bv 6= ?, then bv>r2
f(x) bv  �✏H/2 with kvk2 = 1.

The total number of stochastic gradient evaluations is O
�
(L2

1/✏
2
H
) log2(d/�)

�
.

B Revisit of the SCSG Algorithm

In this section, for the purpose of self-containedness, we introduce the nonconvex stochastically
controlled stochastic gradient (SCSG) algorithm [25] for general smooth nonconvex optimization
problems with finite-sum structure, which is described in Algorithm 3.

Algorithm 3 SCSG (f , x0, T , ⌘, B, b, ✏)
1: initialization: ex0 = x0

2: for k = 1, 2, ...,K
3: uniformly sample a batch Sk ⇢ [n] with |Sk| = B

4: gk  rfSk(exk�1)

5: x(k)
0  exk�1

6: generate Tk ⇠ Geom(B/(B + b))
7: for t = 1, ..., Tk

8: randomly pick eIt�1 ⇢ [n] with |eIt�1| = b

9: ⌫(k)
t�1  rfeIt�1

(x(k)
t�1)�rfeIt�1

(x(k)
0 ) + gk

10: x(k)
t
 x(k)

t�1 � ⌘⌫(k)
t�1

11: end for
12: exk  x(k)

Tk

13: end for
14: output: Sample ex⇤

K
from {exk}Kk=1 uniformly.

The following lemma characterizes the function value gap after one epoch of Algorithm 3, which is a
restatement of Theorem 3.1 in [25].
Lemma B.1. [25] Let each fi be L1-smooth. Set ⌘L1 = �(B/b)�2/3, �  1/3 and B � 8b. Then
at the end of the k-th outer loop of Algorithm 3, it holds that

E[krf(exk)k22] 
5L1

�

⇣
b

B

⌘1/3
E[f(x(k)

0 )� f(exk)] +
61{B < n}

B
V,

where V is the upper bound on the variance of the stochastic gradient.
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Next, we present a general extension of Lemma B.1 to the general stochastic setting in (1.1). In
this case, we have gk = rfSk(exk�1) = 1/B

P
i2Sk
rF (exk�1; ⇠i) and n is relatively large, i.e.,

n � O(1/✏2). Note that by [32] the sub-Gaussian stochastic gradient in Definition 3.7 implies
E[krF (x; ⇠)�rf(x)k]  2�2 and thus we replace V = 2�2 in Corollary B.1. Then we have the
following corollary.
Corollary B.2. Let each stochastic function F (x; ⇠) be L1-smooth and suppose that rF (x; ⇠)
satisfies the gradient sub-Gaussian condition in Definition 3.7. Suppose that n � O(1/✏2) and
n > B. Set parameters b  B/8 and ⌘ = b

2/3
/(3L1B

2/3). Then at the end of the k-th outer loop of
Algorithm 3, it holds that

E[krf(exk)k22] 
15 b1/3L1

B1/3
E[f(ex(k)

0 )� f(exk)] +
12�2

B
.

C Proofs for Negative Curvature Descent

In this section, we first prove the lemma that characterizes the function value decrease in our negative
curvature descent algorithm, i.e., Algorithm 1.

C.1 Proof of Lemma 4.1

Proof. By assumptions, f(x) is L3-Hessian Lipschitz continuous, according to Lemma 1 in [6], for
any x,y 2 Rd, we have

f(y)  f(x) + hrf(x),y � xi+ 1

2
(y � x)>r2

f(x)(y � x)

+
1

6

⌦
r3

f(x), (y � x)⌦3
↵
+

L3

24
ky � xk42.

Denote the input point x of Algorithm 1 as y0. Suppose that bv 6=?. By Lemmas A.1 and A.2, the
ApproxNC-Stochastic algorithm returns a unit vector bv such that

bv>r2
f(y0)bv  �

✏H

2
(C.1)

holds with probability at least 1 � � within eO(L2
1/✏

2
H
) evaluations of stochastic Hessian-vector

product or stochastic gradient. Define u = y0 + ↵bv and w = y0 � ↵bv. Then it holds that
X

y2{u,w}

⇣
hrf(y0),y � y0i+

1

6

⌦
r3

f(y0), (y � y0)
⌦3

↵⌘
= 0.

Furthermore, recall that we have by = x + ⇣↵bv in Algorithm 1 where ⇣ is a Rademacher random
variable and thus we have P(⇣ = 1) = P(by = u) = 1/2 and P(⇣ = �1) = P(by = w) = 1/2, which
immediately implies

E⇣ [f(by)� f(y0)] 
1

2
(by � y0)

>r2
f(y0)(by � y0) +

L3

24
kby � y0k42

 ↵
2

2
bv>r2

f(y0)bv +
L3↵

4

24
kbvk42

 �↵
2

2

✏H

2
+

L3↵
4

24
kbvk42

= �3✏2
H

8L3
(C.2)

holds with probability at least 1� �, where E⇣ denotes the expectation over ⇣, the third inequality
follows from (C.1) and in the last equality we used the fact that ↵ =

p
3✏H/L3. On the other hand,

by L2-smoothness of f (as each stochastic function F (x; ⇠) is L2-Hessian Lipschitz continuous), we
can derive that

E⇣ [f(by)� f(y0)] 
↵
2

2
bv>r2

f(y0)bv +
L3↵

4

24
kbvk42

 ↵
2
L2

2
+

L3↵
4

24
kbvk42

=
3✏H(✏H + 4L2)

8L3
. (C.3)
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Combining (C.2) and (C.3) yields

E[f(by)� f(y0)]  �
3(1� �)✏2

H

8L3
+

3�✏H(✏H + 4L2)

8L3

 �3(1� �)✏2
H

16L3
,

where the second inequality holds if �  ✏H/(3✏H + 8L2). Furthermore, plugging � < 1/3 into the
above inequality we obtain E[f(by)� f(y0)]  �✏2H/(8L3).

D Proofs for Runtime Complexity of Algorithms

In this section, we prove the main theorem for our stochastic local minima finding algorithm.

D.1 Proof of Theorem 5.1

Before we prove theoretical results for the stochastic setting, we lay down the following useful lemma
which states the concentration bound for sub-Gaussian random vectors.
Lemma D.1. [17] Suppose the stochastic gradient rF (x; ⇠) is sub-Gaussian with parameter �.
Let rfS(x) = 1/|S|

P
i2S rF (x; ⇠i) be a subsampled gradient of f . If the sample size |S| =

2�2
/✏

2(1 +
p
log(1/�))2, then with probability 1� �,

krfS(x)�rf(x)k2  ✏

holds for any x 2 Rd.

Proof of Theorem 5.1. We first calculate the outer loop iteration complexity of Algorithm 2. Let
I = {1, 2, . . . ,K} be the index of iteration. We use I1 and I2 to denote the index set of iterates that
are output by the NCD3-Stochastic stage and SCSG stage of Algorithm 2 respectively. It holds that
K = |I| = |I1|+ |I2|. We will calculate |I1| and |I2| in sequence.

Computing |I1|: note that |I1| is the number of iterations that Algorithm 2 calls NCD3-Stochastic
to find the negative curvature. Recall the result in Lemma 4.1, for k 2 I1, one execution of the
NCD3-Stochastic stage can reduce the function value up to

E[f(xk�1)� f(xk)] �
✏
2
H

8L3
. (D.1)

To get the upper bound of |I1|, we also need to consider iterates output by One-epoch SCSG. By
Lemma B.2 it holds that

E[krf(xk)k22] 
C1L1

B1/3
E[f(xk�1)� f(xk)] +

C2�
2

B
, for k 2 I2, (D.2)

where C1 = 15b1/3, C2 = 12 are absolute constants, and we assume b  B/8.
As for k 2 I2, we further decompose I2 as I2 = I1

2 [ I2
2 , where I1

2 = {k 2 I2 | kgkk2 > ✏/2} and
I2
2 = {k 2 I2 | kgkk2  ✏/2}. It is easy to see that I1

2 \ I2
2 = ? and |I2| = |I1

2 |+ |I2
2 |. In addition,

according to the concentration result on gk andrf(xk) in Lemma D.1, if the sample size B satisfies
B = O(�2

/✏
2 log(1/�0)), then for any k 2 I1

2 , krf(xk)k2 > ✏/4 holds with probability at least
1� �0. For any k 2 I2

2 , krf(xk)k2  ✏ holds with probability at least 1� �0. According to (D.2),
we can derive that for any k 2 I1

2 ,

E[f(xk�1)� f(xk)] �
B

1/3

C1L1
E[krf(xk)k22]�

C2�
2

C1L1B
2/3

, for k 2 I1
2 . (D.3)

As for |I2
2 |, because for any k 2 I2

2 , kgkk2  ✏/2, which will lead the algorithm to execute one step
of NCD3-Stochastic stage in the next iteration, i.e., k-th iteration. Thus it immediately implies that
|I2

2 |  |I1|, and according to (D.2), we can also derive that

E[f(xk�1)� f(xk)] � �
C2�

2

C1L1B
2/3

, for k 2 I2
2 . (D.4)
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Summing up (D.1) over k 2 I1, (D.3) over k 2 I1
2 , (D.4) over k 2 I2

2 and combining the results
yields

X

k2I
E[f(xk�1)� f(xk)] �

X

k2I1

✏
2
H

8L3
+

B
1/3

C1L1

X

k2I1
2

E[krf(xk)k22]

�
X

k2I1
2

C2�
2

C1L1B
2/3
�

X

k2I2
2

C2�
2

C1L1B
2/3

,

which immediately implies

|I1|✏2H
8L3

+
B

1/3

C1L1

X

k2I1
2

E[krf(xk)k22]  �f +
X

k2I1
2

C2�
2

C1L1B
2/3

+
X

k2I2
2

C2�
2

C1L1B
2/3

 �f +
|I1

2 |C2�
2

C1L1B
2/3

+
|I1|C2�

2

C1L1B
2/3

,

where the first inequality uses the fact that �f = f(x0)� infx f(x) and the second inequality is due
to |I2

2 |  |I1|. Applying Markov inequality to the left-hand side of the first inequality above we have
that

|I1|✏2H
8L3

+
B

1/3

C1L1

X

k2I1
2

krf(xk)k22  3E

|I1|✏2H
8L3

+
B

1/3

C1L1

X

k2I1
2

krf(xk)k22
�

 3�f +
3|I1

2 |C2�
2

C1L1B
2/3

+
3|I1|C2�

2

C1L1B
2/3

holds with probability at least 1� 1/3 = 2/3. Note that krf(xk)k2 � ✏/4 with probability at least
1� �0. We conclude that by union bound we have that

|I1|✏2H
8L3

+
|I1

2 |B1/3
✏
2

16C1L1
 3�f +

3|I1
2 |C2�

2

C1L1B
2/3

+
3|I1|C2�

2

C1L1B
2/3

holds with probability at least 2/3(1� �0)|I
1
2 |. We can set B such that

3C2�
2

C1L1B
2/3
 ✏

2
H

16L3
,

which implies

B �
✓
48C2L3�

2

C1L1

◆3/2 1

✏3
H

. (D.5)

Combining the above two inequalities yields

|I1|✏2H
16L3

+
|I1

2 |B1/3
✏
2

16C1L1
 3�f +

3|I1
2 |C2�

2

C1L1B
2/3

(D.6)

holds with probability at least 2/3(1� �0)|I
1
2 |. Therefore, it holds with probability at least 2/3(1�

�0)|I
1
2 | that

|I1| 
48L3�f

✏2
H

+
48C2L3�

2

C1L1B
2/3✏2

H

|I1
2 | = O

✓
L3�f

✏2
H

◆
+ eO

✓
L3�

2

L1B
2/3✏2

H

◆
|I1

2 |. (D.7)

As we can see from the above inequality, the upper bound of |I1| is related to the upper bound of
|I1

2 |. We will derive the upper bound on |I1
2 | later.

Computing |I2|: we have shown that |I2
2 |  |I1|. Thus we only need to compute the cardinality

of subset I1
2 ⇢ I2, where kgkk2 > ✏/2 for any k 2 I1

2 . By Lemma D.1 we can derive that with
probability at least 1� �0, it holds that krf(xk)k2 > ✏/4. According to (D.6), we have

|I1
2 |B1/3

✏
2

16C1L1
 |I1|✏2H

16L3
+

|I1
2 |B1/3

✏
2

16C1L1
 3�f +

3|I1
2 |C2�

2

C1L1B
2/3

(D.8)
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holds with probability at least 2/3(1� �0)|I
1
2 |. Further ensure that B satisfies

3C2�
2

C1L1B
2/3
 B

1/3
✏
2

32C1L1
,

which implies

B � 96C2�
2

✏2
. (D.9)

Finally we get the upper bound of |I1
2 |,

|I1
2 | 

96C1L1�f

B1/3✏2
= eO

✓
L1�f

�2/3✏4/3

◆
, (D.10)

where in the equation we use the fact in (D.5) and (D.9), and the condition that B = eO(�2
/✏

2) and
✏H & ✏

2/3, which makes the large batch size B also satisfies the condition in (D.5).

More specifically, the starting point to upper bound |I1
2 | is equation (D.8). We choose sufficient large

B (as suggested in equation (D.9)) to ensure the second term in R.H.S of (D.8) is less than half of the
L.H.S. of (D.8). Therefore, we can get the upper bound of |I1

2 | in (D.10).

We then plug the upper bound of |I1
2 | into (D.7) to obtain the upper bound of I1. Note that

B = eO(�2
/✏

2). Then we have

|I1| 
48L3�f

✏2
H

+
48C2L3�

2

C1L1B
2/3✏2

H

|I1
2 |

= eO
✓
L3�f

✏2
H

◆
+ eO

✓
L3�

2/3
✏
4/3

L1✏
2
H

◆
· eO

✓
L1�f

�2/3✏4/3

◆

= eO
✓
L3�f

✏2
H

◆

holds with probability at least 2/3(1 � �0)|I
1
2 |, where we take B = eO(�2

/✏
2) in the first equality.

Choosing sufficient small �0 such that (1� �0)|I
1
2 | > 1/2, the upper bound of I1 and I1

2 holds with
probability at least 1/3.

Computing Runtime: By Lemma 4.1 we know that each call of the NCD3-Stochastic algorithm
takes eO((L2

1/✏
2
H
)Th) runtime if Oja’s algorithm is used and eO((L2

1/✏
2
H
)Tg) runtime if Neon2online

is used. On the other hand, Corollary B.2 shows that the complexity of one epoch of SCSG algorithm
is eO(�2

/✏
2) which implies that the run time of one epoch of SCSG algorithm is eO((�2

/✏
2)Tg).

Therefore, we can compute the total time complexity of Algorithm 2 with online Oja’s algorithm as
follows

|I1| · eO
✓
L
2
1

✏2
H

Th

◆
+ |I2| · eO

✓
�
2

✏2
Tg

◆

= |I1| · eO
✓
L
2
1

✏2
H

Th

◆
+

�
|I1

2 |+ |I2
2 |
�
· eO

✓
�
2

✏2
Tg

◆

 |I1| · eO
✓
L
2
1

✏2
H

Th

◆
+ (|I1

2 |+ |I1|) · eO
✓
�
2

✏2
Tg

◆
.

Plugging the upper bounds of |I1| and |I1
2 | into the above equation yields the following runtime

complexity of Algorithm 2 with online Oja’s algorithm

eO
✓
L3�f

✏2
H

◆
· eO

✓
L
2
1

✏2
H

Th

◆
+ eO

✓
L1�f

�2/3✏4/3
+

L3�f

✏2
H

◆
· eO

✓
�
2

✏2
Tg

◆

= eO
✓✓

L1�
4/3�f

✏10/3
+

L3�
2�f

✏2✏2
H

◆
Tg +

✓
L
2
1L3�f

✏4
H

◆
Th

◆
,

and the runtime complexity of Algorithm 2 with Neon2online is

eO
✓✓

L1�
4/3�f

✏10/3
+

L3�
2�f

✏2✏2
H

+
L
2
1L3�f

✏4
H

◆
Tg

◆
,

which concludes our proof.
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