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Abstract

We study the implicit regularization imposed by gradient descent for learning
multi-layer homogeneous functions including feed-forward fully connected and
convolutional deep neural networks with linear, ReLU or Leaky ReLU activation.
We rigorously prove that gradient flow (i.e. gradient descent with infinitesimal
step size) effectively enforces the differences between squared norms across dif-
ferent layers to remain invariant without any explicit regularization. This result
implies that if the weights are initially small, gradient flow automatically balances
the magnitudes of all layers. Using a discretization argument, we analyze gradient
descent with positive step size for the non-convex low-rank asymmetric matrix
factorization problem without any regularization. Inspired by our findings for gra-
dient flow, we prove that gradient descent with step sizes ηt “ O

´

t´p
1
2`δq

¯

(0 ă δ ď 1
2 ) automatically balances two low-rank factors and converges to a

bounded global optimum. Furthermore, for rank-1 asymmetric matrix factoriza-
tion we give a finer analysis showing gradient descent with constant step size
converges to the global minimum at a globally linear rate. We believe that the
idea of examining the invariance imposed by first order algorithms in learning
homogeneous models could serve as a fundamental building block for studying
optimization for learning deep models.

1 Introduction

Modern machine learning models often consist of multiple layers. For example, consider a feed-
forward deep neural network that defines a prediction function

x ÞÑ fpx;W p1q, . . . ,W pNqq “W pNqφpW pN´1q ¨ ¨ ¨W p2qφpW p1qxq ¨ ¨ ¨ q,

where W p1q, . . . ,W pNq are weight matrices in N layers, and φ p¨q is a point-wise homogeneous
activation function such as Rectified Linear Unit (ReLU) φpxq “ maxtx, 0u. A simple observa-
tion is that this model is homogeneous: if we multiply a layer by a positive scalar c and divide
another layer by c, the prediction function remains the same, e.g. fpx; cW p1q, . . . , 1cW

pNqq “

fpx;W p1q, . . . ,W pNqq.

A direct consequence of homogeneity is that a solution can produce small function value while be-
ing unbounded, because one can always multiply one layer by a huge number and divide another
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layer by that number. Theoretically, this possible unbalancedness poses significant difficulty in ana-
lyzing first order optimization methods like gradient descent/stochastic gradient descent (GD/SGD),
because when parameters are not a priori constrained to a compact set via either coerciveness5 of
the loss or an explicit constraint, GD and SGD are not even guaranteed to converge [Lee et al., 2016,
Proposition 4.11]. In the context of deep learning, Shamir [2018] determined that the primary barrier
to providing algorithmic results is in that the sequence of parameter iterates is possibly unbounded.

Now we take a closer look at asymmetric matrix factorization, which is a simple two-layer homoge-
neous model. Consider the following formulation for factorizing a low-rank matrix:

min
UPRd1ˆr,V PRd2ˆr

f pU ,V q “
1

2

›

›UV J ´M˚
›

›

2

F
, (1)

where M˚ P Rd1ˆd2 is a matrix we want to factorize. We observe that due to the homogeneity of
f , it is not smooth6 even in the neighborhood of a globally optimum point. To see this, we compute
the gradient of f :

Bf pU ,V q

BU
“
`

UV J ´M˚
˘

V ,
Bf pU ,V q

BV
“
`

UV J ´M˚
˘J

U . (2)

Notice that the gradient of f is not homogeneous anymore. Further, consider a globally optimal
solution pU ,V q such that }U}F is of order ε and }V }F is of order 1{ε (ε being very small). A
small perturbation on U can lead to dramatic change to the gradient of U . This phenomenon can
happen for all homogeneous functions when the layers are unbalanced. The lack of nice geometric
properties of homogeneous functions due to unbalancedness makes first-order optimization methods
difficult to analyze.

A common theoretical workaround is to artificially modify the natural objective function as in (1) in
order to prove convergence. In [Tu et al., 2015, Ge et al., 2017a], a regularization term for balancing
the two layers is added to (1):

min
UPRd1ˆr,V PRd2ˆr

1

2

›

›UV J ´M
›

›

2

F
`

1

8

›

›UJU ´ V JV
›

›

2

F
. (3)

For problem (3), the regularizer removes the homogeneity issue and the optimal solution becomes
unique (up to rotation). Ge et al. [2017a] showed that the modified objective (3) satisfies (i) every
local minimum is a global minimum, (ii) all saddle points are strict7, and (iii) the objective is smooth.
These imply that (noisy) GD finds a global minimum [Ge et al., 2015, Lee et al., 2016, Panageas
and Piliouras, 2016].

On the other hand, empirically, removing the homogeneity is not necessary. We use GD with random
initialization to solve the optimization problem (1). Figure 1a shows that even without regularization
term like in the modified objective (3) GD with random initialization converges to a global minimum
and the convergence rate is also competitive. A more interesting phenomenon is shown in Figure 1b
in which we track the Frobenius norms of U and V in all iterations. The plot shows that the ratio
between norms remains a constant in all iterations. Thus the unbalancedness does not occur at all!
In many practical applications, many models also admit the homogeneous property (like deep neural
networks) and first order methods often converge to a balanced solution. A natural question arises:

Why does GD balance multiple layers and converge in learning homogeneous functions?

In this paper, we take an important step towards answering this question. Our key finding is that
the gradient descent algorithm provides an implicit regularization on the target homogeneous func-
tion. First, we show that on the gradient flow (gradient descent with infinitesimal step size) tra-
jectory induced by any differentiable loss function, for a large class of homogeneous models, in-
cluding fully connected and convolutional neural networks with linear, ReLU and Leaky ReLU
activations, the differences between squared norms across layers remain invariant. Thus, as long
as at the beginning the differences are small, they remain small at all time. Note that small
differences arise in commonly used initialization schemes such as 1?

d
Gaussian initialization or

5A function f is coercive if }x} Ñ 8 implies fpxq Ñ 8.
6A function is said to be smooth if its gradient is β-Lipschitz continuous for some finite β ą 0.
7A saddle point of a function f is strict if the Hessian at that point has a negative eigenvalue.
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(a) Comparison of convergence rates of GD for
objective functions (1) and (3).
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(b) Comparison of quantity }U}2F { }V }
2
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running GD for objective functions (1) and (3).

Figure 1: Experiments on the matrix factorization problem with objective functions (1) and (3). Red
lines correspond to running GD on the objective function (1), and blue lines correspond to running
GD on the objective function (3).

Xavier/Kaiming initialization schemes [Glorot and Bengio, 2010, He et al., 2016]. Our result thus
explains why using ReLU activation is a better choice than sigmoid from the optimization point
view. For linear activation, we prove an even stronger invariance for gradient flow: we show
that W phqpW phqqJ ´ pW ph`1qqJW ph`1q stays invariant over time, where W phq and W ph`1q

are weight matrices in consecutive layers with linear activation in between.

Next, we go beyond gradient flow and consider gradient descent with positive step size. We focus on
the asymmetric matrix factorization problem (1). Our invariance result for linear activation indicates
that UJU ´ V JV stays unchanged for gradient flow. For gradient descent, UJU ´ V JV can
change over iterations. Nevertheless we show that if the step size decreases like ηt “ O

´

t´p
1
2`δq

¯

(0 ă δ ď 1
2 ), UJU ´ V JV will remain small in all iterations. In the set where UJU ´ V JV

is small, the loss is coercive, and gradient descent thus ensures that all the iterates are bounded.
Using these properties, we then show that gradient descent converges to a globally optimal solution.
Furthermore, for rank-1 asymmetric matrix factorization, we give a finer analysis and show that
randomly initialized gradient descent with constant step size converges to the global minimum at a
globally linear rate.

Related work. The homogeneity issue has been previously discussed by Neyshabur et al.
[2015a,b]. The authors proposed a variant of stochastic gradient descent that regularizes paths in
a neural network, which is related to the max-norm. The algorithm outperforms gradient descent
and AdaGrad on several classification tasks.

A line of research focused on analyzing gradient descent dynamics for (convolutional) neural net-
works with one or two unknown layers [Tian, 2017, Brutzkus and Globerson, 2017, Du et al.,
2017a,b, Zhong et al., 2017, Li and Yuan, 2017, Ma et al., 2017, Brutzkus et al., 2017]. For one un-
known layer, there is no homogeneity issue. While for two unknown layers, existing work either re-
quires learning two layers separately [Zhong et al., 2017, Ge et al., 2017b] or uses re-parametrization
like weight normalization to remove the homogeneity issue [Du et al., 2017b]. To our knowledge,
there is no rigorous analysis for optimizing multi-layer homogeneous functions.

For a general (non-convex) optimization problem, it is known that if the objective function satisfies
(i) gradient changes smoothly if the parameters are perturbed, (ii) all saddle points and local maxima
are strict (i.e., there exists a direction with negative curvature), and (iii) all local minima are global
(no spurious local minimum), then gradient descent [Lee et al., 2016, Panageas and Piliouras, 2016]
converges to a global minimum. There have been many studies on the optimization landscapes
of neural networks [Kawaguchi, 2016, Choromanska et al., 2015, Du and Lee, 2018, Hardt and
Ma, 2016, Bartlett et al., 2018, Haeffele and Vidal, 2015, Freeman and Bruna, 2016, Vidal et al.,
2017, Safran and Shamir, 2016, Zhou and Feng, 2017, Nguyen and Hein, 2017a,b, Zhou and Feng,
2017, Safran and Shamir, 2017], showing that the objective functions have properties (ii) and (iii).
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Nevertheless, the objective function is in general not smooth as we discussed before. Our paper
complements these results by showing that the magnitudes of all layers are balanced and in many
cases, this implies smoothness.

Paper organization. The rest of the paper is organized as follows. In Section 2, we present our
main theoretical result on the implicit regularization property of gradient flow for optimizing neu-
ral networks. In Section 3, we analyze the dynamics of randomly initialized gradient descent for
asymmetric matrix factorization problem with unregularized objective function (1). In Section 4,
we empirically verify the theoretical result in Section 2. We conclude and list future directions in
Section 5. Some technical proofs are deferred to the appendix.

Notation. We use bold-faced letters for vectors and matrices. For a vector x, denote by xris its
i-th coordinate. For a matrix A, we use Ari, js to denote its pi, jq-th entry, and use Ari, :s and
Ar:, js to denote its i-th row and j-th column, respectively (both as column vectors). We use }¨}2 or
}¨} to denote the Euclidean norm of a vector, and use }¨}F to denote the Frobenius norm of a matrix.
We use x¨, ¨y to denote the standard Euclidean inner product between two vectors or two matrices.
Let rns “ t1, 2, . . . , nu.

2 The Auto-Balancing Properties in Deep Neural Networks

In this section we study the implicit regularization imposed by gradient descent with infinitesimal
step size (gradient flow) in training deep neural networks. In Section 2.1 we consider fully con-
nected neural networks, and our main result (Theorem 2.1) shows that gradient flow automatically
balances the incoming and outgoing weights at every neuron. This directly implies that the weights
between different layers are balanced (Corollary 2.1). For linear activation, we derive a stronger
auto-balancing property (Theorem 2.2). In Section 2.2 we generalize our result from fully con-
nected neural networks to convolutional neural networks. In Section 2.3 we present the proof of
Theorem 2.1. The proofs of other theorems in this section follow similar ideas and are deferred to
Appendix A.

2.1 Fully Connected Neural Networks

We first formally define a fully connected feed-forward neural network with N (N ě 2) layers. Let
W phq P Rnhˆnh´1 be the weight matrix in the h-th layer, and define w “ pW phqqNh“1 as a shorthand
of the collection of all the weights. Then the function fw : Rd Ñ Rp (d “ n0, p “ nN ) computed
by this network can be defined recursively: f p1qw pxq “W p1qx, f phqw pxq “W phqφh´1pf

ph´1q
w pxqq

(h “ 2, . . . , N ), and fwpxq “ f
pNq
w pxq, where each φh is an activation function that acts coordinate-

wise on vectors.8 We assume that each φh (h P rN´1s) is homogeneous, namely, φhpxq “ φ1hpxq¨x
for all x and all elements of the sub-differential φ1hp¨q when φh is non-differentiable at x. This
property is satisfied by functions like ReLU φpxq “ maxtx, 0u, Leaky ReLU φpxq “ maxtx, αxu
(0 ă α ă 1), and linear function φpxq “ x.

Let ` : Rp ˆ Rp Ñ Rě0 be a differentiable loss function. Given a training dataset tpxi,yiqu
m
i“1 Ă

Rd ˆ Rp, the training loss as a function of the network parameters w is defined as

Lpwq “
1

m

m
ÿ

i“1

` pfwpxiq,yiq . (4)

We consider gradient descent with infinitesimal step size (also known as gradient flow) applied on
Lpwq, which is captured by the differential inclusion:

dW phq

dt
P ´

BLpwq

BW phq
, h “ 1, . . . , N, (5)

where t is a continuous time index, and BLpwq
BW phq is the Clarke sub-differential [Clarke et al., 2008]. If

curves W phq “W phqptq (h P rN s) evolve with time according to (5) they are said to be a solution
of the gradient flow differential inclusion.

8We omit the trainable bias weights in the network for simplicity, but our results can be directly generalized
to allow bias weights.
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Our main result in this section is the following invariance imposed by gradient flow.

Theorem 2.1 (Balanced incoming and outgoing weights at every neuron). For any h P rN ´ 1s and
i P rnhs, we have

d

dt

´

}W phqri, :s}2 ´ }W ph`1qr:, is}2
¯

“ 0. (6)

Note that W phqri, :s is a vector consisting of network weights coming into the i-th neuron in the h-th
hidden layer, and W ph`1qr:, is is the vector of weights going out from the same neuron. Therefore,
Theorem 2.1 shows that gradient flow exactly preserves the difference between the squared `2-norms
of incoming weights and outgoing weights at any neuron.

Taking sum of (6) over i P rnhs, we obtain the following corollary which says gradient flow pre-
serves the difference between the squares of Frobenius norms of weight matrices.

Corollary 2.1 (Balanced weights across layers). For any h P rN ´ 1s, we have

d

dt

´

}W phq}2F ´ }W
ph`1q}2F

¯

“ 0.

Corollary 2.1 explains why in practice, trained multi-layer models usually have similar magnitudes
on all the layers: if we use a small initialization, }W phq}2F ´ }W

ph`1q}2F is very small at the
beginning, and Corollary 2.1 implies this difference remains small at all time. This finding also
partially explains why gradient descent converges. Although the objective function like (4) may not
be smooth over the entire parameter space, given that }W phq}2F ´}W

ph`1q}2F is small for all h, the
objective function may have smoothness. Under this condition, standard theory shows that gradient
descent converges. We believe this finding serves as a key building block for understanding first
order methods for training deep neural networks.

For linear activation, we have the following stronger invariance than Theorem 2.1:

Theorem 2.2 (Stronger balancedness property for linear activation). If for some h P rN ´ 1s we
have φhpxq “ x, then

d

dt

´

W phqpW phqqJ ´ pW ph`1qqJW ph`1q
¯

“ 0.

This result was known for linear networks [Arora et al., 2018], but the proof there relies on the entire
network being linear while Theorem 2.2 only needs two consecutive layers to have no nonlinear
activations in between.

While Theorem 2.1 shows the invariance in a node-wise manner, Theorem 2.2 shows for linear
activation, we can derive a layer-wise invariance. Inspired by this strong invariance, in Section 3 we
prove gradient descent with positive step sizes preserves this invariance approximately for matrix
factorization.

2.2 Convolutional Neural Networks

Now we show that the conservation property in Corollary 2.1 can be generalized to convolutional
neural networks. In fact, we can allow arbitrary sparsity pattern and weight sharing structure within
a layer; convolutional layers are a special case.

Neural networks with sparse connections and shared weights. We use the same notation as in
Section 2.1, with the difference that some weights in a layer can be missing or shared. Formally, the
weight matrix W phq P Rnhˆnh´1 in layer h (h P rN s) can be described by a vector vphq P Rdh and
a function gh : rnhsˆ rnh´1s Ñ rdhsY t0u. Here vphq consists of the actual free parameters in this
layer and dh is the number of free parameters (e.g. if there are k convolutional filters in layer h each
with size r, we have dh “ r ¨ k). The map gh represents the sparsity and weight sharing pattern:

W phqri, js “

"

0, ghpi, jq “ 0,

vphqrks, ghpi, jq “ k ą 0.
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Denote by v “
`

vphq
˘N

h“1
the collection of all the parameters in this network, and we consider

gradient flow to learn the parameters:

dvphq

dt
P ´

BLpvq

Bvphq
, h “ 1, . . . , N.

The following theorem generalizes Corollary 2.1 to neural networks with sparse connections and
shared weights:
Theorem 2.3. For any h P rN ´ 1s, we have

d

dt

´

}vphq}2 ´ }vph`1q}2
¯

“ 0.

Therefore, for a neural network with arbitrary sparsity pattern and weight sharing structure, gradient
flow still balances the magnitudes of all layers.

2.3 Proof of Theorem 2.1

The proofs of all theorems in this section are similar. They are based on the use of the chain rule
(i.e. back-propagation) and the property of homogeneous activations. Below we provide the proof
of Theorem 2.1 and defer the proofs of other theorems to Appendix A.

Proof of Theorem 2.1. First we note that we can without loss of generality assume L is the loss
associated with one data sample px,yq P Rd ˆ Rp, i.e., Lpwq “ `pfwpxq,yq. In fact, for
Lpwq “ 1

m

řm
k“1 Lkpwq where Lkpwq “ ` pfwpxkq,ykq, for any single weight W phqri, js in the

network we can compute d
dt pW

phqri, jsq2 “ 2W phqri, js¨ dW
phq
ri,js

dt “ ´2W phqri, js¨ BLpwq
BW phqri,js

“

´2W phqri, js ¨ 1
m

řm
k“1

BLkpwq
BW phqri,js

, using the sharp chain rule of differential inclusions for tame
functions [Drusvyatskiy et al., 2015, Davis et al., 2018]. Thus, if we can prove the theorem for
every individual loss Lk, we can prove the theorem for L by taking average over k P rms.

Therefore in the rest of proof we assume Lpwq “ `pfwpxq,yq. For convenience, we denote xphq “
f
phq
w pxq (h P rN s), which is the input to the h-th hidden layer of neurons for h P rN ´ 1s and is the

output of the network for h “ N . We also denote xp0q “ x and φ0pxq “ x (@x).

Now we prove (6). Since W ph`1qrk, is (k P rnh`1s) can only affect Lpwq through xph`1qrks , we
have for k P rnh`1s,

BLpwq

BW ph`1qrk, is
“

BLpwq

Bxph`1qrks
¨
Bxph`1qrks

BW ph`1qrk, is
“

BLpwq

Bxph`1qrks
¨ φhpx

phqrisq,

which can be rewritten as
BLpwq

BW ph`1qr:, is
“ φhpx

phqrisq ¨
BLpwq

Bxph`1q
.

It follows that
d

dt
}W ph`1qr:, is}2 “ 2

B

W ph`1qr:, is,
d

dt
W ph`1qr:, is

F

“ ´2

B

W ph`1qr:, is,
BLpwq

BW ph`1qr:, is

F

“ ´2φhpx
phqrisq ¨

B

W ph`1qr:, is,
BLpwq

Bxph`1q

F

.

(7)
On the other hand, W phqri, :s only affects Lpwq through xphqris. Using the chain rule, we get

BLpwq

BW phqri, :s
“
BLpwq

Bxphqris
¨ φh´1px

ph´1qq “

B

BLpwq

Bxph`1q
,W ph`1qr:, is

F

¨ φ1hpx
phqrisq ¨ φh´1px

ph´1qq,

where φ1 is interpreted as a set-valued mapping whenever it is applied at a non-differentiable point.9

9More precisely, the equalities should be an inclusion whenever there is a sub-differential, but as we see in
the next display the ambiguity in the choice of sub-differential does not affect later calculations.
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It follows that10

d

dt
}W phqri, :s}2 “ 2

B

W phqri, :s,
d

dt
W phqri, :s

F

“ ´2

B

W phqri, :s,
BLpwq

BW phqri, :s

F

“ ´ 2

B

BLpwq

Bxph`1q
,W ph`1qr:, is

F

¨ φ1hpx
phqrisq ¨

A

W phqri, :s, φh´1px
ph´1qq

E

“ ´ 2

B

BLpwq

Bxph`1q
,W ph`1qr:, is

F

¨ φ1hpx
phqrisq ¨ xphqris “ ´2

B

BLpwq

Bxph`1q
,W ph`1qr:, is

F

¨ φhpx
phqrisq.

Comparing the above expression to (7), we finish the proof.

3 Gradient Descent Converges to Global Minimum for Asymmetric Matrix
Factorization

In this section we constrain ourselves to the asymmetric matrix factorization problem and analyze the
gradient descent algorithm with random initialization. Our analysis is inspired by the auto-balancing
properties presented in Section 2. We extend these properties from gradient flow to gradient descent
with positive step size.

Formally, we study the following non-convex optimization problem:

min
UPRd1ˆr,V PRd2ˆr

fpU ,V q “
1

2

›

›UV J ´M˚
›

›

2

F
, (8)

where M˚ P Rd1ˆd2 has rank r. Note that we do not have any explicit regularization in (8). The
gradient descent dynamics for (8) have the following form:

Ut`1 “ Ut ´ ηtpUtV
J
t ´M˚qVt, Vt`1 “ Vt ´ ηtpUtV

J
t ´M˚qJUt. (9)

3.1 The General Rank-r Case

First we consider the general case of r ě 1. Our main theorem below says that if we use a random
small initialization pU0,V0q, and set step sizes ηt to be appropriately small, then gradient descent
(9) will converge to a solution close to the global minimum of (8). To our knowledge, this is the first
result showing that gradient descent with random initialization directly solves the un-regularized
asymmetric matrix factorization problem (8).

Theorem 3.1. Let 0 ă ε ă }M˚}F . Suppose we initialize the entries in U0 and V0 i.i.d. from

N p0, ε
polypdq q (d “ maxtd1, d2u), and run (9) with step sizes ηt “

?
ε{r

100pt`1q}M˚}
3{2
F

(t “ 0, 1, . . .).11

Then with high probability over the initialization, limtÑ8pUt,Vtq “ pŪ , V̄ q exists and satisfies
›

›Ū V̄ J ´M˚
›

›

F
ď ε.

Proof sketch of Theorem 3.1. First let’s imagine that we are using infinitesimal step size in GD.
Then according to Theorem 2.2 (viewing problem (8) as learning a two-layer linear network where
the inputs are all the standard unit vectors in Rd2 ), we know that UJU ´ V JV will stay invariant
throughout the algorithm. Hence when U and V are initialized to be small, UJU ´V JV will stay
small forever. Combined with the fact that the objective fpU ,V q is decreasing over time (which
means UV J cannot be too far from M˚), we can show that U and V will always stay bounded.

Now we are using positive step sizes ηt, so we no longer have the invariance of UJU ´ V JV .
Nevertheless, by a careful analysis of the updates, we can still prove that UJ

t Ut ´ V J
t Vt is small,

the objective fpUt,Vtq decreases, and Ut and Vt stay bounded. Formally, we have the following
lemma:

Lemma 3.1. With high probability over the initialization pU0,V0q, for all t we have:

10This holds for any choice of element of the sub-differential, since φ1pxqx “ φpxq holds at x “ 0 for any
choice of sub-differential.

11The dependency of ηt on t can be ηt “ Θ
´

t´p1{2`δq
¯

for any constant δ P p0, 1{2s.
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(i) Balancedness:
›

›UJ
t Ut ´ V J

t Vt
›

›

F
ď ε;

(ii) Decreasing objective: fpUt,Vtq ď fpUt´1,Vt´1q ď ¨ ¨ ¨ ď fpU0,V0q ď 2 }M˚}
2
F ;

(iii) Boundedness: }Ut}
2
F ď 5

?
r }M˚}F , }Vt}

2
F ď 5

?
r }M˚}F .

Now that we know the GD algorithm automatically constrains pUt,Vtq in a bounded region, we
can use the smoothness of f in this region and a standard analysis of GD to show that pUt,Vtq
converges to a stationary point pŪ , V̄ q of f (Lemma B.2). Furthermore, using the results of [Lee
et al., 2016, Panageas and Piliouras, 2016] we know that pŪ , V̄ q is almost surely not a strict saddle
point. Then the following lemma implies that pŪ , V̄ q has to be close to a global optimum since we
know

›

›ŪJŪ ´ V̄ JV̄
›

›

F
ď ε from Lemma 3.1 (i). This would complete the proof of Theorem 3.1.

Lemma 3.2. Suppose pU ,V q is a stationary point of f such that
›

›UJU ´ V JV
›

›

F
ď ε. Then

either
›

›UV J ´M˚
›

›

F
ď ε, or pU ,V q is a strict saddle point of f .

The full proof of Theorem 3.1 and the proofs of Lemmas 3.1 and 3.2 are given in Appendix B.

3.2 The Rank-1 Case

We have shown in Theorem 3.1 that GD with small and diminishing step sizes converges to a global
minimum for matrix factorization. Empirically, it is observed that a constant step size ηt ” η is
enough for GD to converge quickly to global minimum. Therefore, some natural questions are
how to prove convergence of GD with a constant step size, how fast it converges, and how the
discretization affects the invariance we derived in Section 2.

While these questions remain challenging for the general rank-r matrix factorization, we resolve
them for the case of r “ 1. Our main finding is that with constant step size, the norms of two layers
are always within a constant factor of each other (although we may no longer have the stronger
balancedness property as in Lemma 3.1), and we utilize this property to prove the linear convergence
of GD to a global minimum.

When r “ 1, the asymmetric matrix factorization problem and its GD dynamics become

min
uPRd1 ,vPRd2

1

2

›

›uvJ ´M˚
›

›

2

F

and

ut`1 “ ut ´ ηputv
J
t ´M˚qvt, vt`1 “ vt ´ η

`

vtu
J
t ´M˚J

˘

ut.

Here we assume M˚ has rank 1, i.e., it can be factorized as M˚ “ σ1u
˚v˚J where u˚ and v˚ are

unit vectors and σ1 ą 0.

Our main theoretical result is the following.
Theorem 3.2 (Approximate balancedness and linear convergence of GD for rank-1 matrix factor-
ization). Suppose u0 „ N p0, δIq, v0 „ N p0, δIq with δ “ cinit

a

σ1

d (d “ maxtd1, d2u) for some
sufficiently small constant cinit ą 0, and η “ cstep

σ1
for some sufficiently small constant cstep ą 0.

Then with constant probability over the initialization, for all t we have c0 ď
|uJt u˚|

|vJt v˚|
ď C0 for some

universal constants c0, C0 ą 0. Furthermore, for any 0 ă ε ă 1, after t “ O
`

log d
ε

˘

iterations, we
have

›

›utv
J
t ´M˚

›

›

F
ď εσ1.

Theorem 3.2 shows for ut and vt, their strengths in the signal space,
ˇ

ˇuJt u
˚
ˇ

ˇ and
ˇ

ˇvJt v
˚
ˇ

ˇ, are of the
same order. This approximate balancedness helps us prove the linear convergence of GD. We refer
readers to Appendix C for the proof of Theorem 3.2.

4 Empirical Verification

We perform experiments to verify the auto-balancing properties of gradient descent in neural net-
works with ReLU activation. Our results below show that for GD with small step size and small
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Figure 2: Balancedness of a 3-layer neural network.

initialization: (1) the difference between the squared Frobenius norms of any two layers remains
small in all iterations, and (2) the ratio between the squared Frobenius norms of any two layers
becomes close to 1. Notice that our theorems in Section 2 hold for gradient flow (step size Ñ 0)
but in practice we can only choose a (small) positive step size, so we cannot hope the difference
between the squared Frobenius norms to remain exactly the same but can only hope to observe that
the differences remain small.

We consider a 3-layer fully connected network of the form fpxq “ W3φpW2φpW1xqq where
x P R1,000 is the input, W1 P R100ˆ1,000, W2 P R100ˆ100, W3 P R10ˆ100, and φp¨q is ReLU
activation. We use 1,000 data points and the quadratic loss function, and run GD. We first test a bal-
anced initialization: W1ri, js „ Np0, 10

´4

100 q, W2ri, js „ Np0, 10
´4

10 q and W3ri, js „ Np0, 10´4q,
which ensures }W1}

2
F « }W2}

2
F « }W3}

2
F . After 10,000 iterations we have }W1}

2
F “ 42.90,

}W2}
2
F “ 43.76 and }W3}

2
F “ 43.68. Figure 2a shows that in all iterations

ˇ

ˇ}W1}
2
F ´ }W2}

2
F

ˇ

ˇ

and
ˇ

ˇ}W2}
2
F ´ }W3}

2
F

ˇ

ˇ are bounded by 0.14 which is much smaller than the magnitude of each
}Wh}

2
F . Figures 2b shows that the ratios between norms approach 1. We then test an unbalanced

initialization: W1ri, js „ Np0, 10´4q, W2ri, js „ Np0, 10´4q and W3ri, js „ Np0, 10´4q. Af-
ter 10,000 iterations we have }W1}

2
F “ 55.50, }W2}

2
F “ 45.65 and }W3}

2
F “ 45.46. Figure 2c

shows that
ˇ

ˇ}W1}
2
F ´ }W2}

2
F

ˇ

ˇ and
ˇ

ˇ}W2}
2
F ´ }W3}

2
F

ˇ

ˇ are bounded by 9 (and indeed change very
little throughout the process), and Figures 2d shows that the ratios become close to 1 after about
1,000 iterations.

5 Conclusion and Future Work

In this paper we take a step towards characterizing the invariance imposed by first order algorithms.
We show that gradient flow automatically balances the magnitudes of all layers in a deep neural net-
work with homogeneous activations. For the concrete model of asymmetric matrix factorization, we
further use the balancedness property to show that gradient descent converges to global minimum.
We believe our findings on the invariance in deep models could serve as a fundamental building
block for understanding optimization in deep learning. Below we list some future directions.

Other first-order methods. In this paper we focus on the invariance induced by gradient descent.
In practice, different acceleration and adaptive methods are also used. A natural future direction is
how to characterize the invariance properties of these algorithms.

From gradient flow to gradient descent: a generic analysis? As discussed in Section 3, while
strong invariance properties hold for gradient flow, in practice one uses gradient descent with positive
step sizes and the invariance may only hold approximately because positive step sizes discretize the
dynamics. We use specialized techniques for analyzing asymmetric matrix factorization. It would be
very interesting to develop a generic approach to analyze the discretization. Recent findings on the
connection between optimization and ordinary differential equations [Su et al., 2014, Zhang et al.,
2018] might be useful for this purpose.
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Appendix

A Proofs for Section 2

Proof of Theorem 2.2. Same as the proof of Theorem 2.1, we assume without loss of generality that
Lpwq “ `pfwpxq,yq for some px,yq P Rd ˆ Rp. We also denote xphq “ f

phq
w pxq (@h P rN s),

xp0q “ x and φ0pxq “ x.

Now we suppose φhpxq “ x for some h P rN ´ 1s. Denote u “ φh´1px
ph´1qq. Then we have

xph`1q “W ph`1qxphq “W ph`1qW phqu. Using the chain rule, we can directly compute

BLpwq

BW phq
“
BLpwq

Bxphq
uJ “ pW ph`1qqJ

BLpwq

Bxph`1q
uJ,

BLpwq

BW ph`1q
“
BLpwq

Bxph`1q
pxphqqJ “

BLpwq

Bxph`1q
pW phquqJ.

Then we have

d

dt

´

W phqpW phqqJ
¯

“W phq

ˆ

d

dt
W phq

˙J

`

ˆ

d

dt
W phq

˙

pW phqqJ

“W phqu

ˆ

BLpwq

Bxph`1q

˙J

W ph`1q ` pW ph`1qqJ
BLpwq

Bxph`1q
uJpW phqqJ,

d

dt

´

pW ph`1qqJW ph`1q
¯

“ pW ph`1qqJ
ˆ

d

dt
W ph`1q

˙

`

ˆ

d

dt
W ph`1q

˙J

W ph`1q

“ pW ph`1qqJ
BLpwq

Bxph`1q
uJpW phqqJ `W phqu

ˆ

BLpwq

Bxph`1q

˙J

W ph`1q.

Comparing the above two equations we know d
dt

`

W phqpW phqqJ ´ pW ph`1qqJW ph`1q
˘

“ 0.

Proof of Theorem 2.3. Same as the proof of Theorem 2.1, we assume without loss of generality that
Lpvq “ Lpwq “ `pfwpxq,yq for px,yq P Rd ˆ Rp, and denote xphq “ f

phq
w pxq (@h P rN s),

xp0q “ x and φ0pxq “ x.

Using the chain rule, we have

BLpvq

Bvph`1qrls
“

ÿ

pk,iq:gh`1pk,iq“l

BLpvq

Bxph`1qrks
¨ φhpx

phqrisq, l P rdh`1s.

Then we have using the sharp chain rule,

d

dt
}vph`1q}2 “ 2

B

vph`1q,
d

dt
vph`1q

F

“ ´2

B

vph`1q,
BLpvq

Bvph`1q

F

“ ´2
ÿ

l

ÿ

pk,iq:gh`1pk,iq“l

BLpvq

Bxph`1qrks
¨ vph`1qrls ¨ φhpx

phqrisq

“ ´2
ÿ

pk,iq

BLpvq

Bxph`1qrks
¨W ph`1qrk, is ¨ φhpx

phqrisq

“ ´2
ÿ

k

BLpvq

Bxph`1qrks
¨ xph`1qrks

“ ´2

B

BLpvq

Bxph`1q
,xph`1q

F

.

(10)
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Substituting h with h´ 1 in (10) gives d
dt}v

phq}2 “ ´2
A

BLpvq
Bxphq

,xphq
E

, which further implies

d

dt
}vphq}2 “ ´2

B

BLpvq

Bxphq
,xphq

F

“ ´2
ÿ

i

BLpvq

Bxphqris
¨ xphqris

“ ´2
ÿ

i

ÿ

k

BLpvq

Bxph`1qrks
¨W ph`1qrk, is ¨ φ1hpx

phqrisq ¨ xphqris

“ ´2
ÿ

k

BLpvq

Bxph`1qrks

ÿ

i

W ph`1qrk, is ¨ φhpx
phqrisq

“ ´2
ÿ

k

BLpvq

Bxph`1qrks
¨ xph`1qrks

“ ´2

B

BLpvq

Bxph`1q
,xph`1q

F

.

(11)

The proof is finished by combining (10) and (11).

B Proof for Rank-r Matrix Factorization (Theorem 3.1)

In this section we give the full proof of Theorem 3.1.

First we recall the gradient of our objective function fpU ,V q “ 1
2

›

›UV J ´M˚
›

›

2

F
:

BfpU ,V q

BU
“ pUV J ´M˚qV ,

BfpU ,V q

BV
“ pUV J ´M˚qJU .

We also need to calculate the Hessian ∇2fpU ,V q. The Hessian can be viewed as a matrix that

operates on vectorized matrices of dimension pd1 ` d2q ˆ r (i.e., the same shape as
ˆ

U
V

˙

). Then,

for any W P Rpd1`d2qˆr, the Hessian∇2fpW q defines a quadratic form

r∇2fpW qspA,Bq “
ÿ

i,j,k,l

B2fpW q

BW ri, jsBW rk, ls
Ari, jsBrk, ls, @A,B P Rpd1`d2qˆr.

With this notation, we can express the Hessian∇2fpU ,V q as follows:

r∇2fpU ,V qsp∆,∆q “ 2
@

UV J ´M˚,∆U∆J
V

D

`
›

›U∆J
V `∆UV J

›

›

2

F
,

@∆ “

ˆ

∆U

∆V

˙

,∆U P Rd1ˆr, ∆V P Rd2ˆr.

(12)

Now we use the expression of the Hessian to prove that fpU ,V q is locally smooth when both
arguments U and V are bounded.

Lemma B.1 (Smoothness over a bounded set). For any c ą 0, constrained on the set S “

tpU ,V q : U P Rd1ˆr,V P Rd2ˆr, }U}2F ď c }M˚}F , }V }
2
F ď c }M˚}F u, the function f is

pp6c` 2q }M˚}F q-smooth.

Proof. We prove smoothness by giving an upper bound on λmaxp∇2fpU ,V qq for any pU ,V q P S.

For any pU ,V q P S and any ∆ “

ˆ

∆U

∆V

˙

(∆U P Rd1ˆr,∆V P Rd2ˆr), from (12) we have

r∇2fpU ,V qsp∆,∆q

ď 2
›

›UV J ´M˚
›

›

F

›

›∆U∆J
V

›

›

F
`
›

›U∆J
V `∆UV J

›

›

2

F

ď 2
`

}U}F
›

›V J
›

›

F
` }M˚}F

˘

}∆U }F

›

›∆J
V

›

›

F
`
`

}U}F
›

›∆J
V

›

›

F
` }∆U }F

›

›V J
›

›

F

˘2
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ď 2 pc }M˚}F ` }M
˚}F q }∆}

2
F `

´

2
b

c }M˚}F ¨ }∆}F

¯2

“p6c` 2q }M˚}F }∆}
2
F .

This implies λmaxp∇2fpU ,V qq ď p6c` 2q }M˚}F .

B.1 Proof of Lemma 3.1

Recall the following three properties we want to prove in Lemma 3.1, which we call Aptq, Bptq and
Cptq, respectively:

Aptq :
›

›UJ
t Ut ´ V J

t Vt
›

›

F
ď ε,

Bptq : fpUt,Vtq ď fpUt´1,Vt´1q ď ¨ ¨ ¨ ď fpU0,V0q ď 2 }M˚}
2
F ,

Cptq : }Ut}
2
F ď 5

?
r }M˚}F , }Vt}

2
F ď 5

?
r }M˚}F .

We use induction to prove these statements. For t “ 0, we can make the Gaussian variance in the
initialization sufficiently small such that with high probability we have

}U0}
2
F ď ε, }V0}

2
F ď ε,

›

›UJ
0 U0 ´ V J

0 V0

›

›

F
ď
ε

2
.

From now on we assume they are all satisfied. Then Ap0q is already satisfied, Cp0q is satis-
fied because ε ă }M˚}F , and Bp0q can be verified by fpU0,V0q “

1
2

›

›U0V
J
0 ´M˚

›

›

2

F
ď

›

›U0V
J
0

›

›

2

F
` }M˚}

2
F ď }U0}

2
F

›

›V J
0

›

›

2

F
` }M˚}

2
F ď ε2 ` }M˚}

2
F ď 2 }M˚}

2
F .

To prove Aptq, Bptq and Cptq for all t, we prove the following three claims. Since we have Ap0q,
Bp0q and Cp0q, if the following claims are all true, the proof will be completed by induction.

(i) Bp0q, . . . ,Bptq, Cp0q, . . . , Cptq ùñ Apt` 1q;
(ii) Bp0q, . . . ,Bptq, Cptq ùñ Bpt` 1q;

(iii) Aptq,Bptq ùñ Cptq.
Claim B.1. Bp0q, . . . ,Bptq, Cp0q, . . . , Cptq ùñ Apt` 1q.

Proof. Using the update rule (9) we can calculate

UJ
t`1Ut`1 ´ V J

t`1Vt`1

“
`

Ut ´ ηtpUtV
J
t ´M˚qVt

˘J `

Ut ´ ηtpUtV
J
t ´M˚qVt

˘

´
`

Vt ´ ηtpUtV
J
t ´M˚qJUt

˘J `

Vt ´ ηtpUtV
J
t ´M˚qJUt

˘

“UJ
t Ut ´ V J

t Vt ` η
2
t

`

V J
t RJt RtVt ´UJ

t R
J
t RtUt

˘

,

where Rt “ UtV
J
t ´M˚. Then we have
›

›UJ
t`1Ut`1 ´ V J

t`1Vt`1

›

›

F

ď
›

›UJ
t Ut ´ V J

t Vt
›

›

F
` η2t

`
›

›V J
t RJt RtVt

›

›

F
`
›

›UJ
t R

J
t RtUt

›

›

F

˘

ď
›

›UJ
t Ut ´ V J

t Vt
›

›

F
` η2t

´

}Vt}
2
F }Rt}

2
F ` }Ut}

2
F }Rt}

2
F

¯

“
›

›UJ
t Ut ´ V J

t Vt
›

›

F
` 2η2t

´

}Vt}
2
F ` }Ut}

2
F

¯

fpUt,Vtq

ď
›

›UJ
t Ut ´ V J

t Vt
›

›

F
` 2η2t ¨ 10

?
r }M˚}F ¨ 2 }M

˚}
2
F ,

(13)

where the last line is due to Bptq and Cptq.
Since we have Bpt1q and Cpt1q for all t1 ď t, (13) is still true when substituting t with any t1 ď t.
Summing all of them and noting

›

›UJ
0 U0 ´ V J

0 V0

›

›

F
ď ε

2 , we get
›

›UJ
t`1Ut`1 ´ V J

t`1Vt`1

›

›

F

15



ď
›

›UJ
0 U0 ´ V J

0 V0

›

›

F
` 40

?
r }M˚}

3
F

t
ÿ

i“0

η2i

ď
ε

2
` 40

?
r }M˚}

3
F

t
ÿ

i“0

1

pi` 1q2
¨

ε{r

1002 }M˚}
3
F

ď ε.

Therefore we have proved Apt` 1q.

Claim B.2. Bp0q, . . . ,Bptq, Cptq ùñ Bpt` 1q.

Proof. Note that we only need to show fpUt`1,Vt`1q ď fpUt,Vtq. We prove this using the
standard analysis of gradient descent, for which we need the smoothness of the objective function f
(Lemma B.1). We first need to bound }Ut}F , }Vt}F , }Ut`1}F and }Vt`1}F . We know from Cptq
that }Ut}

2
F ď 5

?
r }M˚}F and }Vt}

2
F ď 5

?
r }M˚}F . We can also bound }Ut`1}

2
F and }Vt`1}

2
F

easily from the GD update rule:

}Ut`1}
2
F

“
›

›Ut ´ ηtpUtV
J
t ´M˚qVt

›

›

2

F

ď 2 }Ut}
2
F ` 2η2t

›

›UtV
J
t ´M˚

›

›

2

F
}Vt}

2
F

ď 2 ¨ 5
?
r }M˚}F ` 2η2t ¨ 2fpUt,Vtq ¨ 5

?
r }M˚}F

ď 10
?
r }M˚}F ` 2 ¨

ε{r

1002pt` 1q2 }M˚}
3
F

¨ 4 }M˚}
2
F ¨ 5

?
r }M˚}F (using Bptq)

ď 10
?
r }M˚}F `

ε

100
ď 11

?
r }M˚}F . (using ε ă }M˚}F )

Let β “ p66
?
r ` 2q }M˚}F . From Lemma B.1, f is β-smooth over S “ tpU ,V q : }U}

2
F ď

11
?
r }M˚}F , }V }

2
F ď 11

?
r }M˚}F u. Also note that ηt ă 1

β by our choice. Then using smooth-
ness we have

fpUt`1,Vt`1q

ď fpUt,Vtq `

B

∇fpUt,Vtq,

ˆ

Ut`1

Vt`1

˙

´

ˆ

Ut

Vt

˙F

`
β

2

›

›

›

›

ˆ

Ut`1

Vt`1

˙

´

ˆ

Ut

Vt

˙
›

›

›

›

2

F

“ fpUt,Vtq ´ ηt }∇fpUt,Vtq}
2
F `

β

2
η2t }∇fpUt,Vtq}

2
F

ď fpUt,Vtq ´
ηt
2
}∇fpUt,Vtq}

2
F .

(14)

Therefore we have shown Bpt` 1q.

Claim B.3. Aptq,Bptq ùñ Cptq.

Proof. From Bptq we know 1
2

›

›UtV
J
t ´M˚

›

›

2

F
ď 2 }M˚}

2
F which implies

›

›UtV
J
t

›

›

F
ď

3 }M˚}F . Therefore it suffices to prove
›

›UV J
›

›

F
ď 3 }M˚}F ,

›

›UJU ´ V JV
›

›

F
ď ε ùñ }U}

2
F ď 5

?
r }M˚}F , }V }

2
F ď 5

?
r }M˚}F .

(15)

Now we prove (15). Consider the SVD U “ ΦΣΨJ, where Φ P Rd1ˆd1 and Ψ P Rrˆr are
orthogonal matrices, and Σ P Rd1ˆr is a diagonal matrix. Let σi “ Σri, is (i P rrs) which are all
the singular values of U . Define rV “ V Ψ. Then we have

3 }M˚}F ě
›

›UV J
›

›

F
“

›

›

›
ΦΣΨJΨ rV J

›

›

›

F
“

›

›

›
Σ rV J

›

›

›

F
“

g

f

f

e

r
ÿ

i“1

σ2
i

›

›

›

rV r:, is
›

›

›

2

16



and

ε ě
›

›UJU ´ V JV
›

›

F
“

›

›

›
ΨΣJΦJΦΣΨJ ´Ψ rV J

rV ΨJ
›

›

›

F
“

›

›

›
ΣJΣ´ rV J

rV
›

›

›

F

ě

g

f

f

e

r
ÿ

i“1

ˆ

σ2
i ´

›

›

›

rV r:, is
›

›

›

2
˙2

.

Using the above two inequalities we get
r
ÿ

i“1

σ4
i ď

r
ÿ

i“1

ˆ

σ4
i `

›

›

›

rV r:, is
›

›

›

4
˙

“

r
ÿ

i“1

ˆ

σ2
i ´

›

›

›

rV r:, is
›

›

›

2
˙2

` 2
r
ÿ

i“1

σ2
i

›

›

›

rV r:, is
›

›

›

2

ď ε2 ` 2 p3 }M˚}F q
2
ď 19 }M˚}

2
F .

Then by the Cauchy-Schwarz inequality we have

}U}
2
F “

r
ÿ

i“1

σ2
i ď

g

f

f

er
r
ÿ

i“1

σ4
i ď

b

r ¨ 19 }M˚}
2
F ď 5

?
r }M˚}F .

Similarly, we also have }V }2F ď 5
?
r }M˚}F . Therefore we have proved (15).

B.2 Convergence to a Stationary Point

With the balancedness and boundedness properties in Lemma 3.1, it is then standard to show that
pUt,Vtq converges to a stationary point of f .
Lemma B.2. Under the setting of Theorem 3.1, with high probability limtÑ8pUt,Vtq “ pŪ , V̄ q
exists, and pŪ , V̄ q is a stationary point of f . Furthermore, pŪ , V̄ q satisfies

›

›ŪJŪ ´ V̄ JV̄
›

› ď ε.

Proof. We assume the three properties in Lemma 3.1 hold, which happens with high probability.
Then from (14) we have

fpUt`1,Vt`1q ď fpUt,Vtq ´
ηt
2
}∇fpUt,Vtq}

2
F

“ fpUt,Vtq ´
1

2
}∇fpUt,Vtq}F

›

›

›

›

ˆ

Ut`1

Vt`1

˙

´

ˆ

Ut

Vt

˙
›

›

›

›

F

.
(16)

Under the above descent condition, the result of Absil et al. [2005] says that the iterates either diverge
to infinity or converge to a fixed point. According to Lemma 3.1, {pUt,Vtqu

8
t“1 are all bounded, so

they have to converge to a fixed point pŪ , V̄ q as tÑ8.

Next, from (16) we know that
ř8

t“1
ηt
2 }∇fpUt,Vtq}

2
F ď fpU0,V0q is bounded. Notice that ηt

scales like 1{t. So we must have lim inftÑ8 }∇fpUt,Vtq}F “ 0. Then according to the smooth-
ness of f in a bounded region (Lemma B.1) we conclude∇fpŪ , V̄ q “ 0, i.e., pŪ , V̄ q is a stationary
point.

The second part of the lemma is evident according to Lemma 3.1 (i).

B.3 Proof of Lemma 3.2

The main idea in the proof is similar to Ge et al. [2017a]. We want to find a direction ∆ such that
either r∇2fpU ,V qsp∆,∆q is negative or pU ,V q is close to a global minimum. We show that this
is possible when

›

›UJU ´ V JV
›

›

F
ď ε.

First we define some notation. Take the SVD M˚ “ Φ˚Σ˚Ψ˚J, where Φ˚ P Rd1ˆr and Ψ˚ P

Rd2ˆr have orthonormal columns and Σ˚ P Rrˆr is diagonal. Denote U˚ “ Φ˚pΣ˚q1{2 and
V ˚ “ Ψ˚pΣ˚q1{2. Then we have U˚V ˚J “ M˚ (i.e., pU˚,V ˚q is a global minimum) and
U˚JU˚ “ V ˚JV ˚.

Let M “ UV J, W “

ˆ

U
V

˙

and W ˚ “

ˆ

U˚

V ˚

˙

. Define

R “ argminR1PRrˆr , orthogonal

›

›W ´W ˚R1
›

›

F

17



and
∆ “W ´W ˚R.

We will show that ∆ is the desired direction. Recall (12):

r∇2fpU ,V qsp∆,∆q “ 2
@

M ´M˚,∆U∆J
V

D

`
›

›U∆J
V `∆UV J

›

›

2

F
, (17)

where ∆ “

ˆ

∆U

∆V

˙

,∆U P Rd1ˆr,∆V P Rd2ˆr. We consider the two terms in (17) separately.

For the first term in (17), we have:

Claim B.4.
@

M ´M˚,∆U∆J
V

D

“ ´}M ´M˚}
2
F .

Proof. Since pU ,V q is a stationary point of f , we have the first-order optimality condition:

BfpU ,V q

BU
“ pM ´M˚qV “ 0,

BfpU ,V q

BV
“ pM ´M˚qJU “ 0. (18)

Note that ∆U “ U ´U˚R and ∆V “ V ´ V ˚R. We have
@

M ´M˚,∆U∆J
V

D

“
@

M ´M˚, pU ´U˚RqpV ´ V ˚RqJ
D

“
@

M ´M˚,M ´U˚RV J ´URJV ˚J `M˚
D

“ xM ´M˚,M˚y

“ xM ´M˚,M˚ ´My

“ ´ }M ´M˚}
2
F ,

where we have used the following consequences of (18):

xM ´M˚,My “
@

M ´M˚,UV J
D

“ 0,
@

M ´M˚,U˚RV J
D

“ 0,
@

M ´M˚,URJV ˚J
D

“ 0.

The second term in (17) has the following upper bound:

Claim B.5. }U∆V `∆UV }
2
F ď }M ´M˚}

2
F `

1
2ε

2.

Proof. We make use of the following identities, all of which can be directly verified by plugging in
definitions:

U∆J
V `∆UV J “ ∆U∆J

V `M ´M˚, (19)
›

›∆∆J
›

›

2

F
“ 4

›

›∆U∆J
V

›

›

2

F
`
›

›∆J
U∆U ´∆J

V ∆V

›

›

2

F
, (20)

›

›WWJ ´W ˚W ˚J
›

›

2

F
“ 4 }M ´M˚}

2
F ´ 2

›

›UJU˚ ´ V JV ˚
›

›

2

F

`
›

›UJU ´ V JV
›

›

2

F
`
›

›U˚JU˚ ´ V ˚JV ˚
›

›

2

F
.

(21)

We also need the following inequality, which is [Ge et al., 2017a, Lemma 6]:
›

›∆∆J
›

›

2

F
ď 2

›

›WWJ ´W ˚W ˚J
›

›

2

F
. (22)

Now we can prove the desired bound as follows:

}U∆V `∆UV }
2
F

“
›

›∆U∆J
V `M ´M˚

›

›

2

F
p(19)q

“
›

›∆U∆J
V

›

›

2

F
` 2

@

M ´M˚,∆U∆J
V

D

` }M ´M˚}
2
F

18



“
›

›∆U∆J
V

›

›

2

F
´ }M ´M˚}

2
F pClaim B.4q

ď
1

4

›

›∆∆J
›

›

2

F
´ }M ´M˚}

2
F p(20)q

ď
1

2

›

›WWJ ´W ˚W ˚J
›

›

2

F
´ }M ´M˚}

2
F p(22)q

“ 2 }M ´M˚}
2
F ´

›

›UJU˚ ´ V JV ˚
›

›

2

F
`

1

2

›

›UJU ´ V JV
›

›

2

F

`
1

2

›

›U˚JU˚ ´ V ˚JV ˚
›

›

2

F
´ }M ´M˚}

2
F p(21)q

ď }M ´M˚}
2
F `

1

2
ε2,

where in the last line we have used U˚JU˚ “ V ˚JV ˚ and
›

›UJU ´ V JV
›

› ď ε.

Using Claims B.4 and B.5, we obtain an upper bound on (17):

r∇2fpU ,V qsp∆,∆q ď ´ }M ´M˚}
2
F `

1

2
ε2.

Therefore, we have either
›

›UV J ´M˚
›

›

F
“ }M ´M˚}F ď ε or r∇2fpU ,V qsp∆,∆q ď

´ 1
2ε

2 ă 0. In the latter case, pU ,V q is a strict saddle point of f . This completes the proof of
Lemma 3.2.

B.4 Finishing the Proof of Theorem 3.1

Theorem 3.1 is a direct corollary of Lemma B.2, Lemma 3.2, and the fact that gradient descent does
not converge to a strict saddle point almost surely [Lee et al., 2016, Panageas and Piliouras, 2016].

C Proof for Rank-1 Matrix Factorization (Theorem 3.2)

In this section we prove Theorem 3.2.

Proof of Theorem 3.2. We define the following four key quantities:

αt “ uJt u
˚, αt,K “ }U

˚
Kut}2 , βt “ vJt v

˚, βt,K “ }V
˚
K vt}2 ,

where U˚
K “ I ´ u˚u˚J and V ˚

K “ I ´ v˚v˚J are the projection matrices onto the orthogonal
complement spaces of u˚ and v˚, respectively. Notice that }ut}

2
2 “ α2

t ` α2
t,K and }vt}

2
2 “

β2
t ` β2

t,K. It turns out that we can write down the explicit formulas for the dynamics of these
quantities:

αt`1 “
`

1´ η
`

β2
t ` β

2
t,K

˘˘

αt ` ησ1βt, βt`1 “
`

1´ η
`

α2
t ` α

2
t,K

˘˘

βt ` η1σ1αt,

αt`1,K “
`

1´ η
`

β2
t ` β

2
t,K

˘˘

αt,K, βt`1,K “
`

1´ η
`

α2
t ` α

2
t,K

˘˘

βt,K.
(23)

To facilitate the analysis, we also define:

ht “αtβt ´ σ1,

ξt “α
2
t,K ` β

2
t,K.

Then our goal is to show ξt Ñ 0 and ht Ñ 0 as tÑ8. We calculate the dynamics of ht and ξt:

ht`1 “
`

1´ η
`

α2
t ` β

2
t

˘

` η2
`

αtβtht ` α
2
tβ

2
t,K ` β

2
t α

2
t,K ` α

2
t,Kβ

2
t,K

˘˘

ht ´ ηαtβtξt ` η
2σ1α

2
t,Kβ

2
t,K,

ξt`1 “
`

1´ η
`

β2
t ` β

2
t,K

˘˘2
α2
t,K `

`

1´ η
`

α2
t ` α

2
t,K

˘˘2
β2
t,K.

(24)

According to our initialization scheme, with high probability we have |α0|, |β0| P
“

0.1cinit
a

σ1

d , 10cinit
a

σ1

d

‰

and |α0,K|, |β0,K| ď 10cinit
?
σ1. We assume that these conditions are
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satisfied. We also assume that the signal at the beginning is positive: α0β0 ą 0, which holds with
probability 1{2. Without loss of generality we assume α0, β0 ą 0.12

We divide the dynamics into two stages.

Lemma C.1 (Stage 1: escaping from saddle point p0,0q). Let T1 “ min
 

t P N : α2
t ` β

2
t ě

1
2σ1

(

.
Then for t “ 0, 1, . . . , T1 ´ 1, the followings hold:

(i) Positive signal strengths: αt, βt ą 0;

(ii) Small magnitudes in complement space: ξt ď ξ0 ď 100c2initσ1;

(iii) Growth of magnitude in signal space:
`

1`
cstep
3

˘

pαt ` βtq ď αt`1 ` βt`1 ď

p1` cstepq pαt ` βtq;

(iv) Bounded ratio between two layers: |αt ´ βt| ď 99
101 pαt ` βtq.

Furthermore, we have T1 “ Oplog dq.

In this stage, the strengths in the complement spaces remain small (ξt ď ξ0) and the strength in
the signal space is growing exponentially (αt`1 ` βt`1 ě

`

1`
cstep
3

˘

pαt ` βtq). Furthermore,
|αt ´ βt| ď

99
101 pαt ` βtq implies αt

βt
P r 1

100 , 100s, which means the signal strengths in the two
layers are of the same order.

Then we enter stage 2, which is essentially a local convergence phase. The following lemma char-
acterizes the behaviors of the strengths in the signal and noise spaces in this stage.

Lemma C.2 (Stage 2: convergence to global minimum). Let T1 be as defined in Lemma C.1. Then
there exists a universal constant c1 ą 0 such that the followings hold for all t ě T1:

(a) Non-vanishing signal strengths in both layers: αt, βt ě
?
c1σ1;

(b) Bounded signal strengths: αtβt ď σ1, i.e., ht ď 0;

(c) Shrinking magnitudes in complement spaces: ξt ď p1 ´ c1cstepq
t´T1ξ0 ď p1 ´ c1cstepq

t´T1 ¨

100c2initσ1;

(d) Convergence in signal space: |ht`1| ď p1´ c1cstepq|ht| ` cstepξt.

Note that properties (a) and (b) in Lemma C.2 imply c0 ď αt

βt
ď C0 for all t ě T1, where c0, C0 ą 0

are universal constants. Property (c) implies that for all t ě T1 ` T2 where T2 “ Θplog 1
ε q, we

have ξt “ Opεσ1q. Then property (d) tells us that after another T3 “ Θplog 1
ε q iterations, we can

ensure |ht| “ Opεσ1q for all t ě T1 ` T2 ` T3. These imply
›

›utv
J
t ´M˚

›

›

F
“ Opεσ1q after

t “ T1 ` T2 ` T3 “ Oplog d
ε q iterations, completing the proof of Theorem 3.2.

Now we prove Lemmas C.1 and C.2.

Proof of Lemma C.1. We use induction to prove the following statements for t “ 0, 1, . . . , T1 ´ 1:

Dptq : αt, βt ą 0,

Eptq : ξt ď ξ0 ď 100c2initσ1,

Fptq :
´

1`
cstep

3

¯

pαt ` βtq ď αt`1 ` βt`1 ď p1` cstepq pαt ` βtq,

Gptq : |αt ´ βt| ď
99

101
pαt ` βtq,

Hptq : }ut}
2
` }vt}

2
ď σ1.

12If α0, β0 ă 0, we can simply flip the signs of u˚ and v˚.
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• Base cases.

We know that Dp0q, Ep0q and Gp0q hold from our assumptions on the initialization.

• Dptq, Eptq ùñ Fptq (@t ď T1 ´ 1).

From (23) we have

αt`1 ` βt`1 “ p1` ησ1q pαt ` βtq ´ η
`

α2
t ` α

2
t,K

˘

βt ´ η
`

β2
t ` β

2
t,K

˘

αt

ě
`

1` ησ1 ´ η
`

α2
t ` β

2
t ` ξt

˘˘

pαt ` βtq

ě

´

1` ησ1 ´ η
´σ1

2
` 100c2initσ1

¯¯

pαt ` βtq

ě

´

1`
ησ1
3

¯

pαt ` βtq

“

´

1`
cstep

3

¯

pαt ` βtq,

where in the second inequality we have used the definition of T1, and the last inequality is
true when cinit is sufficiently small.

On the other hand we have

αt`1 ` βt`1 “ p1` ησ1q pαt ` βtq ´ η
`

α2
t ` α

2
t,K

˘

βt ´ η
`

β2
t ` β

2
t,K

˘

αt

ď p1` ησ1q pαt ` βtq

“ p1` cstepq pαt ` βtq .

• Eptq ùñ Hptq (@t ď T1 ´ 1).

We have

}ut}
2
` }vt}

2
“ α2

t ` β
2
t ` ξt ď

1

2
σ1 ` 100c2initσ1 ď σ1.

• Dptq,Hptq ùñ Dpt` 1q (@t ď T1 ´ 1).

From (23) we have

αt`1 “

´

1´ η }vt}
2
¯

αt ` ησ1βt ě p1´ ησ1qαt “ p1´ cstepqαt ą 0.

Similarly we have βt`1 ą 0. Note that cstep is chosen to be sufficiently small.

• Hptq ùñ Ept` 1q (@t ď T1 ´ 1).

Recall from (24):

ξt`1 “

´

1´ η }vt}
2
¯2

α2
t,K `

´

1´ η }ut}
2
¯2

β2
t,K.

Since η }vt}
2
ď ηp}ut}

2
` }vt}

2
q ď ησ1 “ cstep ď 1 and η }ut}

2
ď 1, we have

ξt`1 ď α2
t,K ` β

2
t,K “ ξt.

• Dptq, Eptq,Fptq,Gptq ùñ Gpt` 1q (@t ď T1 ´ 1).

From (23) we have

αt`1 ´ βt`1 “ p1´ ησ1qpαt ´ βtq ´ ηpβ
2
t ` β

2
t,Kqαt ` ηpα

2
t ` α

2
t,Kqβt

“ p1´ ησ1 ` ηαtβtqpαt ´ βtq ´ ηβ
2
t,Kαt ` ηα

2
t,Kβt.

From α2
t ` β

2
t ă

1
2σ1 we know αtβt ă

1
4σ1. Thus

|αt`1 ´ βt`1| ď p1´ ησ1 ` ηαtβtq |αt ´ βt| ` ηβ
2
t,Kαt ` ηα

2
t,Kβt

ď

ˆ

1´
3

4
ησ1

˙

|αt ´ βt| ` ηξtpαt ` βtq
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ď

ˆ

1´
3

4
ησ1

˙

¨
99

101
pαt ` βtq ` η ¨ 100c2initσ1pαt ` βtq

ď

ˆ

1´ ησ1

ˆ

3

4
´ 100c2init ¨

101

99

˙˙

¨
99

101
pαt ` βtq

ď
99

101
pαt ` βtq

ď
99

101
pαt`1 ` βt`1q.

Lastly we upper bound T1. Note that for all t ă T1 we have αt`βt ď
a

2pα2
t ` β

2
t q ă

b

2 ¨ 12σ1 “
?
σ1. From Fptq we know that αt ` βt is increasing exponentially. Therefore, we must have

T1 “ O
´

log
?
σ1

α0`β0

¯

“ O

ˆ

log
?
σ1?
σ1{d

˙

“ Oplog dq.

Proof of Lemma C.2. By the definition of T1 we knowα2
T1
`β2

T1
ě 1

2σ1. In the proof of Lemma C.1,
we have shown αT1

, βT1
ą 0 and |αT1

´ βT1
| ď 99

101 pαT1
` βT1

q. These imply min tαT1 , βT1
u ě

2
?
c1σ1 for some small universal constant c1 ą 0.

We use induction to prove the following statements for all t ě T1:

Iptq : αt ě αT1
¨

t´1
ź

i“T1

´

1´ ηξ0 p1´ c1cstepq
i´T1

¯

, βt ě βT1 ¨

t´1
ź

i“T1

´

1´ ηξ0 p1´ c1cstepq
i´T1

¯

,

J ptq : αt, βt ě
?
c1σ1,

Kptq : αtβt ď σ1, i.e., ht ď 0,

Lptq : ξt ď p1´ c1cstepq
t´T1ξ0 ď p1´ c1cstepq

t´T1 ¨ 100c2initσ1,

Mptq : |ht`1| ď p1´ c1cstepq|ht| ` cstepξt.

• Base cases.

IpT1q is obvious. We know that J pT1q is true by the definition of c1. KpT1q can be shown
as follows:

αT1
βT1

ď
1

4
pαT1

` βT1
q
2

ď
1

4
p1` cstepq

2 pαT1´1 ` βT1´1q
2 (by Lemma C.1 (iii))

ď
1

4
p1` cstepq

2 ¨ 2
`

α2
T1´1 ` β

2
T1´1

˘

ď
1

4
p1` cstepq

2 ¨ 2 ¨
1

2
σ1 (by the definition of T1)

ď σ1. (choosing cstep to be small)

LpT1q reduces to ξT1 ď ξ0, which was shown in the proof of Lemma C.1.

• Iptq ùñ J ptq (@t ě T1).

Notice that we have ηξ0 ď
cstep
σ1

¨ 100c2initσ1 “ 100cstepc
2
init ă

1
2 since cstep and cinit are

sufficiently small. Then we have

αt ě αT1 ¨

t´1
ź

i“T1

´

1´ ηξ0 p1´ c1cstepq
i´T1

¯

ě αT1
¨

8
ź

i“0

´

1´ ηξ0 p1´ c1cstepq
i
¯

ě αT1 ¨

8
ź

i“0

exp
´

´2ηξ0 p1´ c1cstepq
i
¯

(1´ x ě e´2x, @0 ď x ď 1{2)
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“ αT1
¨ exp

ˆ

´
2ηξ0
c1cstep

˙

ě αT1 ¨ exp

ˆ

´
200cstepc

2
init

c1cstep

˙

ě 2
?
c1σ1 ¨ exp

ˆ

´
200c2init
c1

˙

ě
?
c1σ1. (choosing cinit to be small)

Similarly we have βt ě
?
c1σ1.

• Iptq,J ptq,Kptq,Lptq ùñ Ipt` 1q (@t ě T1).

From (23) we have

αt`1 “
`

1´ η
`

β2
t ` β

2
t,K

˘˘

αt ` ησ1βt

“
`

1´ ηβ2
t,K

˘

αt ´ ηhtβt

ě
`

1´ ηβ2
t,K

˘

αt (ht ď 0, βt ą 0)

ě p1´ ηξtqαt

ě
`

1´ ηξ0p1´ c1cstepq
t´T1

˘

αt pLptqq

ě αT1 ¨

t
ź

i“T1

´

1´ ηξ0 p1´ c1cstepq
i´T1

¯

. pIptqq

Similarly we have βt`1 ě βT1
¨
śt
i“T1

´

1´ ηξ0 p1´ c1cstepq
i´T1

¯

.

• J ptq,Kptq,Lptq ùñ Kpt` 1q (@t ě T1).

From (24) we have

ht`1 “
`

1´ η
`

α2
t ` β

2
t

˘

` η2
`

αtβtht ` α
2
tβ

2
t,K ` β

2
t α

2
t,K ` α

2
t,Kβ

2
t,K

˘˘

ht ´ ηαtβtξt ` η
2σ1α

2
t,Kβ

2
t,K

ď
`

1´ η
`

α2
t ` β

2
t

˘˘

ht ` η
2αtβth

2
t ´ ηαtβtξt ` η

2σ1α
2
t,Kβ

2
t,K,

(25)
where we have used ht ď 0. Since αt, βt ě

?
c1σ1 and αtβt ď σ1, we have αt, βt “

Θp
?
σ1q. Furthermore, we can choose cstep and cinit small enough such that ηξ0 ď 4c1

which implies

η2σ1α
2
t,Kβ

2
t,K ď η2σ1 ¨

1

4
ξ2t ď

1

4
ηξt ¨ ησ1ξ0 ď ηξt ¨ c1σ1 ď ηξt ¨ αtβt.

Therefore (25) implies

ht`1 ď p1´ η ¨Opσ1qqht ` η
2αtβth

2
t

“
`

1´ η ¨Opσ1q ` η
2αtβtht

˘

ht

ď
`

1´ η ¨Opσ1q ´ η
2σ2

1

˘

ht p0 ă αtβt ď σ1q

“
`

1´Opcstepq ´ c
2
step

˘

ht

ď 0,

where the last step is true when cstep is sufficiently small.

• J ptq,Kptq,Lptq ùñ Lpt` 1q (@t ě T1).

From αt, βt ě
?
c1σ1 and αtβt ď σ1 we have αt, βt “ Θp

?
σ1q. Also we have ξt ď ξ0.

Thus we can make sure ηpα2
t ` α

2
t,Kq ă 1 and ηpβ2

t ` β
2
t,Kq ă 1. Then from (24) we have

ξt`1 “
`

1´ η
`

β2
t ` β

2
t,K

˘˘2
α2
t,K `

`

1´ η
`

α2
t ` α

2
t,K

˘˘2
β2
t,K

ď
`

1´ ηβ2
t

˘2
α2
t,K `

`

1´ ηα2
t

˘

β2
t,K

ď p1´ ηc1σ1q ξt
“ p1´ c1cstepq ξt.
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• We have shown Iptq,J ptq,Kptq and Lptq for all t ě T1. Now we use them to proveMptq
for all t ě T1:

|ht`1| “
`

1´ η
`

α2
t ` β

2
t

˘

` η2
`

αtβtht ` α
2
tβ

2
t,K ` β

2
t α

2
t,K ` α

2
t,Kβ

2
t,K

˘˘

|ht| ` ηαtβtξt ´ η
2σ1α

2
t,Kβ

2
t,K

ď

ˆ

1´
1

2
η
`

α2
t ` β

2
t

˘

˙

|ht| ` ηαtβtξt

ď

ˆ

1´
1

2
η ¨ 2c1σ1

˙

|ht| ` ησ1ξt

“ p1´ c1cstepq |ht| ` cstepξt.

Here we have used η ď α2
t`β

2
t

2|αtβtht`α2
tβ

2
t,K`β

2
tα

2
t,K`α

2
t,Kβ

2
t,K|

, which is clearly true when cstep
is small enough.

Therefore, we have finished the proof of Lemma C.2.
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