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Abstract

Structured prediction provides a general framework to deal with supervised prob-
lems where the outputs have semantically rich structure. While classical approaches
consider finite, albeit potentially huge, output spaces, in this paper we discuss how
structured prediction can be extended to a continuous scenario. Specifically, we
study a structured prediction approach to manifold valued regression. We character-
ize a class of problems for which the considered approach is statistically consistent
and study how geometric optimization can be used to compute the corresponding
estimator. Promising experimental results on both simulated and real data complete
our study.

1 Introduction

Regression and classification are probably the most classical machine learning problems and cor-
respond to estimating a function with scalar and binary values, respectively. In practice, it is often
interesting to estimate functions with more structured outputs. When the output space can be assumed
to be a vector space, many ideas from regression can be extended, think for example to multivariate
[21] or functional regression [33]. However, a lack of a natural vector structure is a feature of many
practically interesting problems, such as ranking [18], quantile estimation [27] or graph prediction
[41]. In this latter case, the outputs are typically provided only with some distance or similarity func-
tion that can be used to design appropriate loss function. Knowledge of the loss is sufficient to analyze
an abstract empirical risk minimization approach within the framework of statistical learning theory,
but deriving approaches that are at the same time statistically sound and computationally feasible
is a key challenge. While ad-hoc solutions are available for many specific problems [15, 40, 25, 7],
structured prediction [5] provides a unifying framework where a variety of problems can be tackled
as special cases.

Classically, structured prediction considers problems with finite, albeit potentially huge, output spaces.
In this paper, we study how these ideas can be applied to non-discrete output spaces. In particular, we
consider the case where the output space is a Riemannian manifold, that is the problem of manifold
structured prediction (also called manifold valued regression [50]). While also in this case ad-hoc
methods are available [51], in this paper we adopt and study a structured prediction approach starting
from a framework proposed in [13]. Within this framework, it is possible to derive a statistically
sound, and yet computationally feasible, structured prediction approach as long as the loss function
satisfies suitable structural assumptions [14, 17, 30, 26, 12, 39]. Moreover we can guarantee that the
computed prediction is always an element of the manifold.

Our main technical contribution is a characterization of loss functions for manifold structured
prediction satisfying such a structural assumption. In particular, we consider the case where the
∗Work performed while C.C. was at the University College London.
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Riemannian metric is chosen as a loss function. As a byproduct of these results, we derive a manifold
structured learning algorithm that is universally consistent and corresponding finite sample bounds.
From a computational point of view, the proposed algorithm requires solving a linear system (at
training time) and a minimization problem over the output manifold (at test time). To tackle this
latter problem, we investigate the application of geometric optimization methods, and in particular
Riemannian gradient descent [1]. We consider both numerical simulations and benchmark datasets
reporting promising performances. The rest of the paper is organized as follows. In Section 2, we
define the problem and explain the proposed algorithm. In Section 3 we state and prove the theoretical
results of this work. In Section 4 we explain how to compute the proposed algorithm and we show
the performance of our method on synthetic and real data.

2 Structured Prediction for Manifold Valued Regression

The goal of supervised learning is to find a functional relation between an input space X and an
output space Y given a finite set of observations. Traditionally, the output space is either a linear
space (e.g. Y = RM ) or a discrete set (e.g. Y = {0, 1} in binary classification). In this paper, we
consider the problem of manifold structured prediction [51], in which output data lies on a manifold
M⊂ Rd. In this context, statistical learning corresponds to solving

argmin
f∈X→Y

E(f) with E(f) =

∫
X×Y

4(f(x), y) ρ(x, y) (1)

whereY is a subset of the manifoldM and ρ is an unknown distribution onX×Y . Here,4 : Y×Y →
R is a loss function that measures prediction errors for points estimated on the manifold. The
minimization is meant over the set of all measurable functions from X to Y . The distribution is fixed
but unknown and a learning algorithm seeks an estimator f̂ : X → Y that approximately solves
Eq. (1), given a set of training points (xi, yi)

n
i=1 sampled independently from ρ.

A concrete example of loss function that we will consider in this paper is 4 = d2 the squared
geodesic distance d : Y × Y → R [28]. The geodesic distance is the natural metric on a Riemannian
manifold (it corresponds to the Euclidean distance whenM = Rd) and is a natural loss function in
the context of manifold regression [50, 51, 19, 24, 22].

2.1 Manifold Valued Regression via Structured Prediction

In this paper we consider a structured prediction approach to manifold valued regression following
ideas in [13]. Given a training set (xi, yi)

n
i=1, an estimator for problem Eq. (1) is defined by

f̂(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) (2)

for any x ∈ X . The coefficients α(x) = (α1(x), . . . , αn(x))> ∈ Rn are obtained solving a linear
system for a problem akin to kernel ridge regression (see Section 2.2): given a positive definite kernel
k : X × X → R [4] over X , we have

α(x) = (α1(x), . . . , αn(x))> = (K + nλI)−1Kx (3)

where K ∈ Rn×n is the empirical kernel matrix with Ki,j = k(xi, xj), and Kx ∈ Rn the vector
whose i-th entry corresponds to (Kx)i = k(x, xi). Here, λ ∈ R+ is a regularization parameter and
I ∈ Rn×n denotes identity matrix.

Computing the estimator in Eq. (2) can be divided into two steps. During a training step the score
function α : X → Rn is learned, while during the prediction step, the output f̂(x) ∈ Y is estimated
on a new test point x ∈ X . This last step requires minimizing the linear combination of distances
4(y, yi) between a candidate y ∈ Y and the training outputs (yi)

n
i=1, weighted by the corresponding

scores αi(x). Next, we recall the derivation of the above estimator following [13].

2.2 Derivation of the Proposed Estimator

The derivation of f̂ in Eq. (2) is based on the following key structural assumption on the loss.
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Definition 1 (Structure Encoding Loss Function (SELF)). Let Y be a compact set. A function
4 : Y × Y → R is a Structure Encoding Loss Function if there exist a separable Hilbert spaceH, a
continuous feature map ψ : Y → H and a continuous linear operator V : H → H such that for all
y, y′ ∈ Y

4(y, y′) = 〈ψ(y), V ψ(y′)〉H. (4)

Intuitively, the SELF definition requires a loss function to be “bi-linearizable” over the spaceH. This
is similar, but more general, than requiring the loss to be a kernel since it allows also to consider
distances (which are not positive definite) or even non-symmetric loss functions. As observed in [13],
a wide range of loss functions often used in machine learning are SELF. In Section 3 we study how
the above assumption applies to manifold structured loss functions, including the squared geodesic
distance.

We first recall how the estimator Eq. (2) can be obtained assuming 4 to be SELF. We begin by
rewriting the expected risk in Eq. (1) as

E(f) =

∫
X

〈
ψ(f(x)), V

∫
Y
ψ(y) dρ(y|x)

〉
H
dρ(x) (5)

where we have conditioned ρ(y, x) = ρ(y|x)ρX (x) and used the linearity of the integral and the
inner product. Therefore, any function f∗ : X → Y minimizing the above functional must satisfy the
following condition

f∗(x) = argmin
y∈Y

〈ψ(y), V g∗(x)〉H where g∗(x) =

∫
Y
ψ(y) dρ(y|x) (6)

where we have introduced the function g∗ : X → H that maps each point x ∈ X to the conditional
expectation of ψ(y) given x. However we cannot compute explicitly g∗, but noting that it minimizes
the expected least squares error ∫

‖ψ(y)− g(x)‖2Hdρ(x, y) (7)

suggests that a least squares estimator can be considered. We first illustrate this idea for X = Rd and
H = Rk. In this case we can consider a ridge regression estimator

ĝ(x) = Ŵ>x with Ŵ = argmin
W∈Rd×k

1

n
‖XW − ψ(Y )‖2F + λ‖W‖2F (8)

where X = (x1, . . . , xn)> ∈ Rn×d and ψ(Y ) = (ψ(y1), . . . , ψ(yn))> ∈ Rn×k are the matrices
whose i-th row correspond respectively to the training sample xi ∈ X and the (mapped) training
output ψ(yi) ∈ H. We have denoted ‖ · ‖2F the squared Frobenius norm of a matrix, namely the
sum of all its squared entries. The ridge regression solution can be obtained in closed form as
Ŵ = (X>X + nλI)−1X>ψ(Y ). For any x ∈ X we have

ĝ(x) = ψ(Y )>X(X>X + nλI)−1x = ψ(Y )>α(x) =

n∑
i=1

αi(x)ψ(yi) (9)

where we have introduced the coefficients α(x) = X(X>X + nλI)−1x ∈ Rn. By substituting ĝ to
g∗ in Eq. (6) we have

f̂(x) = argmin
y∈M

〈
ψ(y), V

(
n∑
i=1

αi(x)ψ(yi)

)〉
= argmin

y∈M

n∑
i=1

αi(x)4 (y, yi) (10)

where we have used the linearity of the sum and the inner product to move the coefficients αi outside
of the inner product. Since the loss is SELF, we then obtain 〈ψ(y), V ψ(yi)〉 = 4(y, yi) for any yi in
the training set. This recovers the estimator f̂ introduced in Eq. (2), as desired.

We end noting how the above idea can be extended. First, we can consider X to be a set and
k : X × X → R a positive definite kernel. Then ĝ can be computed by kernel ridge regression (see
e.g. [47]) to obtain the scores α(x) = (K + nλI)−1Kx, see Eq. (3). Second, the above discussion
applies ifH is infinite dimensional. Indeed, thanks to the SELF assumption, f̂ does not depend on
explicit knowledge of the spaceH but only on the loss function.

We next discuss the main results of the paper, showing that a large class of loss functions for manifold
structured prediction are SELF. This will allow us to prove consistency and learning rates for the
manifold structured estimator considered in this work.
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3 Characterization of SELF Function on Manifolds

In this section we provide sufficient conditions for a wide class of functions on manifolds to satisfy
the definition of SELF. A key example will be the case of the squared geodesic distance. To this end
we will make the following assumptions on the manifoldM and the output space Y ⊆M where the
learning problem takes place.
Assumption 1. M is a complete d-dimensional smooth connected Riemannian manifold, without
boundary, with Ricci curvature bounded below and positive injectivity radius.

The assumption above imposes basic regularity conditions on the output manifold. In particular
we require the manifold to be locally diffeomorphic to Rd and that the tangent space ofM at any
p ∈ M varies smoothly with respect to p. This assumption avoids pathological manifolds and is
satisfied for instance by any smooth compact manifold (e.g. the sphere, torus, etc.) [28]. Other
notable examples are the statistical manifold (without boundary) [3] any open bounded sub-manifold
of the cone of positive definite matrices, which is often studied in geometric optimization settings [1].
This assumption will be instrumental to guarantee the existence of a space of functionsH onM rich
enough to contain the squared geodesic distance.
Assumption 2. Y is a compact geodesically convex subset of the manifoldM.

A subset Y of a manifold is geodesically convex if for any two points in Y there exists one and only
one minimizing geodesic curve connecting them. The effect of Asm. 2 is twofold. On one hand it
guarantees a generalized notion of convexity for the space Y on which we will solve the optimization
problem in Eq. (2). On the other hand it avoids the geodesic distance to have singularities on Y
(which is key to our main result below). For a detailed introduction to most definitions and results
reviewed in this section we refer the interested reader to standard references for differential and
Riemannian geometry (see e.g. [28]). We are ready to prove the main result of this work.
Theorem 1 (Smooth Functions are SELF). LetM satisfy Asm. 1 and Y ⊆M satisfy Asm. 2. Then,
any smooth function h : Y × Y → R is SELF on Y .

Sketch of the proof (Thm. 1). The complete proof of Thm. 1 is reported in Appendix A. The proof
hinges around the following key steps:

Step 1 If there exists an RKHSH onM, then any h ∈ H ⊗H is SELF. LetH be a reproducing
kernel Hilbert space (RKHS) [4] of functions onMwith associated bounded kernel k :M×M→ R.
Let H ⊗ H denote the RKHS of functions h : M×M → R with associated kernel k̄ such that
k̄((y, z), (y′, z′)) = k(y, y′)k(z, z′) for any y, y′, z, z′ ∈ M. Let, h : M×M → R be such that
h ∈ H ⊗H. Recall that H ⊗H is isometric to the space of Hilbert-Schmidt operators from H to
itself. Let Vh : H → H be the operator corresponding to h via such isometry. We show that the
SELF definition is satisfied with V = Vh and ψ(y) = k(y, ·) ∈ H for any y ∈M. In particular, we
have ‖V ‖ ≤ ‖V ‖HS = ‖h‖H⊗H, with ‖V ‖HS denoting the Hilbert-Schmidt norm of V .

Step 2: Under Asm. 2, C∞0 (M)⊗C∞0 (M) “contains” C∞(Y ×Y). If Y is compact and geodesi-
cally convex, then it is diffeomorphic to a compact set of Rd. By using this fact, we prove that
any function in C∞(Y × Y), the space of smooth functions on Y × Y , admits an extension in
C∞0 (M×M) the space of smooth functions on M×M vanishing at infinity (this is well de-
fined since M is diffeomorphic to Rd, see Lemma 7 in the supplementary material), and that
C∞0 (M×M) = C∞0 (M)⊗ C∞0 (M), with ⊗ the canonical topological tensor product [54].

Step 3: Under Asm. 1, there exists an RKHS on M containing C∞0 (M). Under Asm. 1, the
Sobolev spaceH = H2

s (M) of square integrable functions with smoothness s is an RKHS for any
s > d/2 (see [23] for a definition of Sobolev spaces on Riemannian manifolds).

The proof proceeds as follows: from Step 1, we see that to guarantee h to be SELF it is sufficient to
prove the existence of an RKHSH such that h ∈ H⊗H. The rest of the proof is therefore devoted to
showing that for smooth functions this is satisfied forH = H2

s (M). Since h is smooth, by Step 2 we
have that under Asm. 2, there exists a h̄ ∈ C∞0 (M)⊗ C∞0 (M) whose restriction h̄|Y×Y to Y × Y
corresponds to h. Now, denote by H2

s (M) the Sobolev space of squared integrable functions onM
with smoothness index s > 0. By construction, (see [23]) for any s > 0, we have C∞0 (M)|Y ⊆
H2
s (M)|Y , namely for any function. In particular, h̄ ∈ C∞0 (M)⊗ C∞0 (M) ⊆ H2

s (M)⊗H2
s (M).

Finally, Step 3 guarantees that under Asm. 1,H = H2
s (M) with s > d/2 is an RKHS, showing that

h ∈ H ⊗H as desired.
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Interestingly, Thm. 1 shows that the SELF estimator proposed in Eq. (2) can tackle any manifold
valued learning problem in the form of Eq. (1) with smooth loss function. In the following we study
the specific case of the squared geodesic distance.
Theorem 2 (d2 is SELF). LetM satisfy Asm. 1 and Y ⊆ M satisfy Asm. 2. Then, the squared
geodesic distance4 = d2 :M×M→ R is smooth on Y . Therefore4 is SELF on Y .

The proof of the result above is reported in the supplementary material. The main technical aspect is
to show that regularity provided by Asm. 2 guarantees the squared geodesic distance to be smooth.
The fact that4 is SELF is then an immediate corollary of Thm. 1.

3.1 Statistical Properties of Manifold Structured Prediction

In this section, we characterize the generalization properties of the manifold structured estimator
Eq. (2) in light of Thm. 1 and Thm. 2.
Theorem 3 (Universal Consistency). LetM satisfy Asm. 1 and Y ⊆ M satisfy Asm. 2. Let X be
a compact set and k : X × X → R be a bounded continuous universal kernel2 For any n ∈ N
and any distribution ρ on X × Y let f̂n : X → Y be the manifold structured estimator in Eq. (2)
for a learning problem with smooth loss function4, with (xi, yi)

n
i=1 training points independently

sampled from ρ and λn = n−1/4. Then

lim
n→∞

E(f̂n) = E(f∗) with probability 1. (11)

The result above follows from Thm. 4 in [13] combined with our result in Thm. 1. It guarantees
that the algorithm considered in this work finds a consistent estimator for the manifold structured
problem, when the loss function is smooth (thus also in the case of the squared geodesic distance).
As it is standard in statistical learning theory, we can impose regularity conditions on the learning
problem, in order to derive also generalization bounds for f̂ . In particular, if we denote by F the
RKHS associated to the kernel k, we will require g∗ to belong to the same spaceH⊗F where the
estimator ĝ introduced in Eq. (9) is learned. In the simplified case discussed in Section 2.2, with
linear kernel on X = Rd and H = Rk finite dimensional, we have F = Rd and this assumption
corresponds to require the existence of a matrix W>∗ ∈ Rk×d = H⊗ F , such that g∗(x) = W>∗ x
for any x ∈ X . In the general case, the space H ⊗ F extends to the notion of reproducing kernel
Hilbert space for vector-valued functions (see e.g. [31, 2]) but the same intuition applies [29, 10, 53].
Theorem 4 (Generalization Bounds). Let M satisfy Asm. 1 and Y ⊆ M satisfy Asm. 2. Let
H = H2

s (M) with s > d/2 and k : X × X → R be a bounded continuous reproducing kernel with
associated RKHS F . For any n ∈ N, let f̂n denote the manifold structured estimator in Eq. (2) for a
learning problem with smooth loss 4 : Y × Y → R and λn = n−1/2. If the conditional mean g∗
belongs toH⊗F , then

E(f̂n)− E(f∗) ≤ c4q τ
2 n−

1
4 (12)

holds with probability not less than 1− 8e−τ for any τ > 0, with c4 = ‖ 4 ‖H⊗H and q a constant
not depending on n, τ or the loss4.

The generalization bound of Thm. 4 is obtained by adapting Thm. 5 of [13] to our results in Thm. 1
as detailed in the supplementary material. To our knowledge these are the first results characterizing
in such generality the generalization properties of an estimator for manifold structured learning with
generic smooth loss function. We conclude with a remark on a key quantity in the bound of Thm. 4.
Remark 1 (The constant c4). We comment on the role played in the learning rate by c4, the norm of
the loss function4 seen an element of the Hilbert spaceH⊗H. Indeed, from the discussion of Thm. 1
we have seen that any smooth function on Y is SELF and belongs to the setH⊗H withH = H2

s (M),
the Sobolev space of squared integrable functions for s > d/2. Following this interpretation, we
see that the bound in Thm. 4 can improve significantly (in terms of the constants) depending on the
regularity of the loss function: smoother loss functions will result in “simpler” learning problems and
vice-versa. In particular, when4 corresponds to the squared geodesic distance, the more “regular”
is the manifoldM, the learning problem will be. A refined quantitative characterization of c4 in
terms of the Ricci curvature and the injective radius of the manifold is left to future work.

2This is standard assumption for universal consistency (see [52]). An example of continuous universal kernel
on X = Rd is the Gaussian k(x, x′) = exp(−‖x− x′‖2/σ), for σ > 0.
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Table 1: Structured loss, gradient of the structured loss and retraction for Pm
++ and Sd−1. Zi ∈ Pm

++ and
zi ∈ Sd−1 are the training set points. I ∈ Rd×d is the identity matrix.

Positive definite matrix manifold (Pm++) Sphere (Sd−1)

F (y)
n∑
i=1

αi‖ log(Y −
1
2ZiY

− 1
2 )‖2F

n∑
i=1

αi arccos (〈zi, y〉)2

∇MF (y) 2
n∑
i=1

αiY
1
2 log(Y

1
2Z−1i Y

1
2 )Y

1
2 4

∑n
i=1 αi(yy

T − I) arccos(〈zi,y〉)√
1−〈zi,y〉

zi

Ry(v) Y
1
2 exp(Y −

1
2 vY −

1
2 )Y

1
2

v
‖v‖

4 Manifold Structured Prediction Algorithm and Experiments

In this section we recall geometric optimization algorithms that can be adopted to perform the
estimation of f̂ on a novel test point x. We then evaluate the performance of the proposed method in
practice, reporting numerical results on simulated and real data.

The algorithm presented in this paper consists in two steps. In the training phase, the matrix C =
(K + λnI)−1 is computed, requiring a computational cost of essentially O(n3) in time and O(n2) in
space (see Eq. (3)). In the inference phase, given a test point x, the coefficients in Eq. (3) are computed,
α(x) := Cv(x), requiring essentially O(n) in time, and then the optimization problem in Eq. (2) is
solved (see next subsection for more details). Note that it is possible to reduce the computational
complexity of the training and evaluation of the coefficients, while retaining the statistical guarantees
of the proposed method. Indeed the computation of the coefficients consists essentially in solving
a kernel ridge regression problem [10] as analyzed in [13], for which methods based on random
projection, as Nyström [48] or random features [42], reduce the complexity up to O(n

√
n) in time

and O(n) in space, while guaranteeing the same statistical properties [43, 45, 9, 11, 44].

4.1 Optimization on Manifolds

We begin discussing the computational aspects related to evaluating the manifold structured estimator.
In particular, we discuss how to address the optimization problem in Eq. (2) in specific settings.
Given a test point x ∈ X , this process consists in solving a minimization over Y , namely

min
y∈Y

F (y) (13)

where F (y) corresponds to the linear combination of4(y, yi) weighted by the scores αi(x) computed
according to Eq. (3). If Y is a linear manifold or a subset ofM = Rd, this problem can be solved by
means of gradient-based minimization algorithms, such as Gradient Descent (GD):

yt+1 = yt − ηt∇F (yt) (14)

for a step size ηt ∈ R. This algorithm can be extended to Riemannian gradient descent (RGD) [58]
on manifolds, as

yt+1 = Expyt(ηt∇MF (yt)) (15)

Where ∇MF is the gradient defined with respect to the Riemannian metric (see [1]) and Expy :
TyM→M denotes the exponential map on y ∈ Y , mapping a vector from the tangent space TyM
to the associated point on the manifold according to the Riemannian metric [28]. For completeness,
the algorithm is recalled in Appendix F. For this family of gradient-based algorithms it is possible to
substitute the exponential map with a retractionRy : TyM→M, which is a first order approximation
to the exponential map. Retractions are often faster to compute and still offer convergence guarantees
[1]. In the following experiments we will use both retractions and exponential maps. We mention that
the step size ηt can be found with a line search over the validation set, for more see [1]. Note that also
stochastic optimization algorithms have been generalized to the Riemannian setting such as R-SGD
[8]. Interestingly, methods such as R-SGD can be advantageous in our setting. Indeed, solving the
inference in Eq. (2) requires solving the minimization of a sum over n elements, it might be favorable
from the computational perspective to adopt a stocastic method that at each iteration minimizes the
functional with respect to a single (or a mini-batch) of randomly sampled elements of the entire sum.
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Table 2: Simulation experiment: average squared loss (First two columns) and4PD (Last two columns) error of
the proposed structured prediction (SP) approach and the KRLS baseline on learning the inverse of a PD matrix
for increasing matrix dimension.

Squared loss 4PD loss
Dim KRLS SP KRLS SP

5 0.72±0.08 0.89±0.08 111±64 0.94±0.06
10 0.81±0.03 0.92±0.05 44±8.3 1.24±0.06
15 0.83±0.03 0.91±0.06 56±10 1.25±0.05
20 0.85±0.02 0.91±0.03 59±12 1.33±0.03
25 0.87±0.01 0.91±0.02 72±9 1.44±0.03
30 0.88±0.01 0.91±0.02 67±7.2 1.55±0.03

Table 1 reports gradients and retraction maps for the geodesic distance of two problems of interest
considered in this work: positive definite manifold and the sphere. See Sections 4.2 and 4.3 for more
details on the related manifolds.

We point out that using optimization algorithms that comply with the geometry of the manifold,
such as RGD, guarantees that the computed value is an element of the manifold. This is in contrast
with algorithms that compute a solution in a linear space that containsM and then need to project
the computed solution ontoM. We next discuss empirical evaluations of the proposed manifold
structured estimator on both synthetic and real datasets.

4.2 Synthetic Experiments: Learning Positive Definite Matrices

We consider the problem of learning a function f : Rd → Y = Pm++, where Pm++ denotes the cone of
positive definite (PD) m×m matrices. Note that Pm++ is a manifold with squared geodesic distance
4PD between any two PD matrices Z, Y ∈ Pm++ defined as

4PD(Z, Y ) = ‖ log(Y −
1
2Z Y −

1
2 )‖2F (16)

where, for any M ∈ Pm++, we have that M
1
2 and log(M) correspond to the matrices with same

eigenvectors of M but with respectively the square root and logarithm of the eigenvalues of M .
In Table 1 we show the computation of the structured loss, the gradient of the structured loss and
the exponential map of the PD matrix manifold. We refer the reader to [32, 6] for a more detailed
introduction on the manifold of positive definite matrices.

For the experiments reported in the following we compared the performance of the manifold struc-
tured estimator minimizing the loss4PD and a Kernel Regularized Least Squares classifier (KRLS)
baseline (see Appendix G), both trained using the Gaussian kernel k(x, x′) = exp(−‖x−x′‖2/2σ2).
The matrices predicted by the KRLS estimator are projected on the PD manifold by setting to a
small positive constant (1e − 12) the negative eigenvalues. For the manifold structured estimator,
the optimization problem at Eq. (2) was performed with the Riemannian Gradient Descent (RGD)
algorithm [1]. We refer to [58] regarding the implementation of the RGD in the case of the geodesic
distance on the PD cone.

Learning the Inverse of a Positive Definite Matrix. We consider the problem of learning the
function f : Pm++ → Pm++ such that f(X) = X−1 for any X ∈ Pm++. Input matrices are generated
as Xi = UΣU> ∈ Pm++ with U a random orthonormal matrix sampled from the Haar distribution
[16] and S ∈ Pm++ a diagonal matrix with entries randomly sampled from the uniform distribution
on [0, 10]. We generated datasets of increasing dimension m from 5 to 50, each with 1000 points
for training, 100 for validation and 100 for testing. The kernel bandwidth σ was chosen and the
regularization parameter λ were selected by cross-validation respectively in the ranges 0.1 to 1000
and 10−6 to 1 (logarithmically spaced).

Table 2 reports the performance of the manifold structured estimator (SP) and the KRLS baseline
with respect to both the4PD loss and the least squares loss (normalized with respect to the number
of dimensions). Note that the KRLS estimator target is to minimize the least squares (Frobenius) loss
and is not designed to capture the geometry of the PD cone. We notice that the proposed approach
significantly outperforms the KRLS baseline with respect to the4PD loss. This is expected: 4PD
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∆ Deg.

KRLS 26.9± 5.4
MR[51] 22± 6
SP (ours) 18.8± 3.9

Figure 1: (Left) Fingerprints reconstruction: Average absolute error (in degrees) for the manifold structured
estimator (SP), the manifold regression (MR) approach in [51] and the KRLS baseline. (Right) Fingerprint
reconstruction of a single image where the structured predictor achieves 15.7 of average error while KRLS 25.3.

penalizes especially matrices with very different eigenvalues and our method cannot predict matrices
with non-positive eigenvalues, as opposed to KRLS which computes a linear solution in Rd2 and
then projects it onto the manifold. However the two methods perform comparably with respect to the
squared loss. This is consistent with the fact that our estimator is aware of the natural structure of the
output space and uses it profitably during learning.

4.3 Fingerprint Reconstruction

We consider the fingerprint reconstruction application in [51] in the context of manifold regression.
Given a partial image of a fingerprint, the goal is to reconstruct the contour lines in output. Each
fingerprint image is interpreted as a separate structured prediction problem where training input points
correspond to the 2D position x ∈ R2 of valid contour lines and the output is the local orientation
of the contour line, interpreted as a point on the circumference S1. The space S1 is a manifold with
squared geodesic distance4S1 between two points z, y ∈ S1 corresponding to

4S1(z, y) = arccos (〈z, y〉)2 (17)

where arccos is the inverse cosine function. In Table 1 we show the computation of the structured loss,
the gradient of the structured loss and the chosen retraction for the sphere manifold. We compared the
performance of the manifold structured estimator proposed in this paper with the manifold regression
approach in [51] on the FVC fingerprint verification challenge dataset3. The dataset consists of 48
fingerprint pictures, each with ∼ 1400 points for training, ∼ 1000 points for validation and the rest
(∼ 25000) for test.

Fig. 1 reports the average absolute error (in degrees) between the true contour orientation and the one
estimated by our structured prediction approach (SP), the manifold regression (MR) in [51] and the
KRLS baseline. Our method outperforms the MR competitor by a significant margin. As expected,
the KRLS baseline is not able to capture the geometry of the output space and has a significantly
larger error of the two other approaches. This is also observed on the qualitative plot in Fig. 1 (Left)
where the predictions of our SP approach and the KRLS baseline are compared with the ground truth
on a single fingerprint. Output orientations are reported for each pixel with a color depending on their
orientation (from 0 to π). While the KRLS predictions are quite inconsistent, it can be noticed that
our estimator is very accurate and even “smoother” than the ground truth.

4.4 Multilabel Classification on the Statistical Manifold

We evaluated our algorithm on multilabel prediction problems. In this context the output is an
m-dimensional histogram, i.e. a discrete probability distribution over m points. We consider as
manifold the space of probability distributions over m points, that is the m-dimensional simplex
∆m endowed with the Fisher information metric [3]. We will consider Y = ∆m

ε where we require
y1, . . . , ym ≥ ε, for ε > 0. In the experiment we considered ε = 1e− 5. The geodesic induced by the

3http://bias.csr.unibo.it/fvc2004
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Table 3: Area under the curve (AUC) on multilabel benchmark datasets [55] for KRLS and SP.

KRLS SP (Ours)

Emotions 0.63 0.73
CAL500 0.92 0.92
Scene 0.62 0.73

Fisher metric is, d(y, y′) = arccos
(∑m

i=1

√
yiy′i

)
[38]. This geodesic comes from applying the map

π : ∆m → Sm−1, π(y) = (
√
y1, . . . ,

√
ym+1) to the points {yi}ni=1 ∈ ∆m. This results in points

that belong to the intersection of the positive quadrant Rm++ and the sphere Sm−1. We can therefore
use the geodetic distance on the Sphere and gradient and retraction map described in Table 1. We
test our approach on some of the benchmark multilabel datasets described in [55] and we compare
the results with the KRLS baseline. We cross-validate λ and σ taking values, respectively, from the
intervals [10−6, 10−1] and [0.1, 10]. We compute the area under curve (AUC) [49] metric to evaluate
the quality of the predictions, results are shown in Table 3.

4.5 Additional Example

We conclude this section with a further relevant example of our proposed approach to the setting of
applications to relational knowledge, which we plan to investigate in future work. In particular, we
consider settings where the output spaceM corresponds to the Hyperbolic space (or Poincaré disk),
which has recently been adopted by the knowledge representation community to learn embeddings
of relational data to encode discrete semantic/hierarchical information [37, 36]. The embedding is
such that symbolic objects (e.g. words, entities, concepts) with high semantic or functional similarity
are mapped into points with small hyperbolic geodesic distance. Typically, learning the embedding
is a time consuming process that requires training from scratch on the whole dataset whenever a
new example is provided. To address this issue, with our manifold regression approach we could
learn f : X →M with x ∈ X the observed entity and f(x) its predicted embedding. This would
allow to transfer the embedding learned using techniques such as those in [37] to new points, without
retraining the entire system from scratch. Interestingly, our theory is applicable to this setting since
M satisfies Asm. 1.

5 Conclusions

In this paper we studied a structured prediction approach for manifold valued learning problems.
In particular we characterized a wide class of loss functions (including the geodesic distance) for
which we proved the considered algorithm to be statistically consistent, additionally providing finite
sample bounds under standard regularity assumptions. Our experiments show promising results on
synthetic and real data using two common manifolds: the positive definite matrices cone and the
sphere. With the latter we considered applications on fingerprint reconstruction and multi-labeling.
The proposed method leads to some open questions. From a statistical point of view it is of interest
how invariants of the manifold explicitly affect the learning rates, see Remark 1. From a more
computational perspective, even if experimentally our algorithm achieves good results we did not
investigate convergence guarantees in terms of optimization.
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Appendix

The appendix of this work is organized in the following sections:

• A SELF property for smooth functions defined on manifolds (Thm. 1).

• B Proof of SELF property for squared geodesic distances (Thm. 2).

• C Generalization bounds for the structured estimator with squared geodesic loss (Thm. 4).

• D Basic definitions and concepts for Riemannian manifolds.

• E Riemannian gradient descent algorithm.

• F A note on KRLS for the experiments in Section 4.2 on PD matrices.

A Proof of Thm. 1

We prove here intermediate results that will be key to prove Thm. 1. We refer to [28] for basic
definitions on manifolds and to [4] for an introduction on reproducing kernel Hilbert spaces (RKHS).

Notation and Definitions. We recall here basic notations and definition that will be used in the
following. Given a smooth manifoldM, for any open subset U ⊆ M we denote by C∞(U) the
set of smooth functions on U and with C∞0 (U) the set of compactly supported smooth functions
on U , namely functions such that the closure of their support is a compact set. For a compact
subset N ⊂ M we denote by C∞0 (N) the set of all functions h : N → R that admit an extension
h̄ ∈ C∞0 (M) such that h̄|N = h and its support is contained in N , namely it vanishes on the border
of N . Finally, for any subset N ofM we denote C∞(N) the set of all functions that admit a smooth
extension in C∞(M).

In the following, a central role will be played by tensor product of topological vector spaces [54]. In
particular, for a Hilbert spaceH, we will denoteH⊗H the closure of the tensor product between
H and itself with respect to the canonical norm such that ‖h ⊗ h′‖H⊗H = ‖h‖H‖h′‖H for any
h, h′ ∈ H. Moreover, to given a compact set N ⊂ Rd, we recall that C∞0 (N)⊗̂πC∞0 (N) denotes the
completion of the topological tensor product between C∞0 (N) and itself with respect to the projective
topology (see [54] Def. 43.2 and 43.5). In the following, for simplicity, we will denote this space
with C∞0 (N) ⊗ C∞0 (N) with some abuse of notation. Finally, for any subset Y ⊆ M and space
F of functions fromM to R we denote by F|Y the space of functions from Y to R that admit an
extension in F . In particular not that C∞(Y) = C∞(M)|Y .

A.1 Auxiliary Results

We are ready to prove the auxiliary results.

Lemma 5. LetM be a topological space, Y ⊆M be a compact subset andH a reproducing kernel
Hilbert space of functions onM with kernel K : M×M → R such that there exists κ > 0 for
which k(y, y) ≤ κ2 for any y ∈ Y . Then, for any h̄ ∈ H ⊗H, its restriction to Y × Y , h = h̄|Y×Y
is SELF.

Proof. Denote Ky = k(y, ·) ∈ H for every y ∈ M. Then the space H ⊗ H is an RKHS with
reproducing kernel K̄ : (M×M)×(M×M)→ R such that K̄((y, z), (y′, z′)) = K(y, y′)K(z, z′)
for any y, y′, z, z′ ∈M (see e.g. [4]). In particular K̄(y,z) = Ky⊗Kz . Let now h̄ :M×M→ R be
a function inH⊗H. In particular, there exist a V ∈ H ⊗H such that 〈V,Ky ⊗Kz〉H⊗H = h̄(y, z)
for any y, z ∈ Y (reproducing property). Note thatH⊗H is isometric to the space of Hilbert-Schmidt
operators fromH to itself, with inner product corresponding to 〈A,B〉H⊗H = 〈A,B〉HS = Tr(A∗B)
for any A,B ∈ H⊗H, with A∗ denoting the conjugate of A∗ ∈ H⊗H. Therefore, for any y, z ∈ Y
we have

h̄|Y×Y(y, z) = h̄(y, z) = 〈V,Ky ⊗Kz〉H⊗H = Tr(V ∗Ky ⊗Kz) = 〈Kz, V
∗Ky〉H . (18)

Since Ky is bounded inH, for y ∈ Y and the operator norm of V is bounded by its Hilbert-Schmidt
norm, namely ‖V ‖ ≤ ‖V ‖HS, we can conclude that h = h̄|Y×Y is indeed SELF.
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Lemma 6. LetM satisfy Asm. 1. Then there exists a reproducing kernel Hilbert space of functions
H onM, with bounded kernel, such that C∞0 (M) ⊆ H.

Proof. Let H2
s (M) denote the Sobolev space onM of squared integrable functions with smoothness

s > 0 (see [23] for the definition of Sobolev spaces on Riemannian manifolds). By construction
(see page 47 of [23]), C∞0 (M) ⊂ H2

s (M) for any s > 0. To prove this Lemma, we will show that
H2
s (M) is an RKHS for any s > d/2. The proof is organized in two steps.

Step 1: H2
s (M) is continuously embedded in C(M). By Asm. 1, we can apply Thm. 3.4 in [23]

(see also Thm. 2.7 [23] for compact manifolds), which guarantees the existence of a constant C > 0
(see last lines of the proofs for its explicit definition) such that

sup
y∈M

|f(y)| ≤ C‖f‖H2
s(M),

for any y ∈M and f ∈ H2
s(M).

Step 2: ConstructingH from H2
s (M). Prop. 2.1 of [23] proves that there exists an inner product,

that we denote by 〈·, ·〉H, whose associated norm is equivalent to ‖ · ‖H2
s (M) and such that the space

H = (H2
s (M), 〈·, ·〉H) is a Hilbert space.

Now, for any y ∈M denote by ey : H → R, the linear functional corresponding to the evaluation,
that is ey(f) = f(y). Now by Step 1, we have that the linear functional ey is uniformly bounded and
so continuous, indeed,

|ey(f)| = |f(y)| ≤ C‖f‖H, ∀f ∈ H.
So by the Riesz representation theorem ey ∈ H and soH is a reproducing kernel Hilbert space, with
kernel k(y, y′) = 〈ey, ey′〉H, (see [4], page 343, for more details). Note finally that the kernel is
bounded since

‖ey‖H = sup
‖f‖H≤1

| 〈ey, f〉H | = sup
‖f‖H≤1

|ey(f)| ≤ C,

and therefore k(y, y′) ≤ ‖ey‖H‖ey′‖H ≤ C2.

In the following, let A ⊆ {f : U → S} and B ⊆ {g : V → S}, with U, V, S topological spaces. We
denote A ∼= B if there exists an invertible map q : U → V , such that B = A ◦ q−1 and A = B ◦ q.
Lemma 7 (see also [34, 35]). Let U be a geodesically convex open subset of a d-dimensional
complete Riemannian manifoldM without border, then there exists a smooth map q : U → Rd with
smooth inverse, such that

C∞(U) ∼= C∞(Rd), and C∞0 (U) ∼= C∞0 (Rd)

moreover for any compact set Y ⊂ U there exists a compact set R ⊂ Rd such that R = q(Y) and
the map s, that is the restriction of q to Y → R, guarantees

C∞(Y) ∼= C∞(R), and C∞0 (Y) ∼= C∞0 (R)

Proof. By Lemma 9, there exists a point p ∈ U such that d(p, ·) admits all directional derivatives
in all points q ∈ U (it is, in fact in C∞(U)). We are therefore in the hypotheses of Thm. 2 in [57],
from which we conclude that there exists a smooth diffeomorphism between U and Rd (with smooth
inverse). Denoting by q the diffeomorphism between U and Rd, for any function f ∈ C∞(U), we
have f ◦ q−1 ∈ C∞(Rd), so C∞(U) ◦ q−1 ⊆ C∞(Rd) and for any function g ∈ C∞(Rd) we have
g ◦ q ∈ C∞(U), so C∞(Rd) ◦ q ⊆ C∞(U). Finally we recall that if A ⊆ B, then A ◦ p ⊆ B ◦ p for
any set A,B and any map p applicable to A,B. Then

C∞(U) = C∞(U) ◦ q−1 ◦ q ⊆ C∞(Rd) ◦ q ⊆ C∞(U)

and so C∞(N) ∼= C∞(Rd). The same reasoning holds C∞0 (U) ∼= C∞0 (Rd).

Analogously, the smooth diffeomorphism q maps compact subsets of U to compact subsets of Rd.
Denote by R ⊂ Rd the compact subset that is q(Y), the image of Y ⊆ U a compact subset of U , then
s is the restriction of q to Y → R. By the same reasoning as above, we have that C∞(Y) ∼= C∞(R)
via s.
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Lemma 8. Let U be a open geodesically convex subset of a complete Riemannian d-dimensional
manifoldM and Y a compact subset of U , then there exists a compact subset N ⊆ U such that Y
belongs to the interior of N and

C∞(Y × Y) ⊆ (C∞0 (N)⊗ C∞0 (N))|Y×Y .

Moreover, C∞(Y) ⊆ C∞0 (N)|Y .

Proof. We first consider the real case U =M = Rd with Euclidean metric. By Cor. 2.19 in [28],
for any open subset V ⊂ Rd we have that any f ∈ C∞(Y) admits an extension f̃ ∈ C∞(Rd) such
that f̃ |Y = f and supp f̃ ⊂ C∞0 (V ). Then, since Y is bounded (compact in a complete space),
there exists a bounded open set V containing Y . Let N = V the closure of V . N is a compact
set as well and contains Y in its interior. In particular, since for any f ∈ C∞(Y) the extension
f̃ has support contained in V ⊂ N , this shows that C∞(Y) ⊆ C∞0 (N). Analogously we have
C∞(Y × Y) ⊆ C∞0 (N ×N).

Now, by Thm. 51.6 (a) in [54], we have that

C∞0 (N)⊗ C∞0 (N) ∼= C∞0 (N ×N). (19)

which concludes the proof in the real setting. The proof generalizes trivially to the case where U is
an open geodesically convex subset of a complete Riemannian manifold thanks to the isomorphisms
between spaces of smooth functions provided by Lemma 7.

A.2 Proof of Thm. 1

For the following results we need to introduce the concept of cut locus. For any y ∈M, denote by
Cut(y) ⊆ M the cut locus of y the closure of the set of points z ∈ M that are connected to y by
more than one minimal geodesic (see [20, 46]). For any y ∈ Y we have y ∈ M \ Cut(y), see e.g.
Lemma 4.4 in [46].

Finally we refine Asm. 2 to avoid pathological cases. Indeed a geodesically convex set can still have
conjugate points on the boundary. To avoid this situation we restate Asm. 2 as follows

Assumption 2’ M̃ is an open geodesically convex subset of the manifoldM and Y is a compact
subset of M̃ .

Proof of Thm. 1. By Asm. 2’, let M̃ be an open geodesically convex subset ofM such that Y ⊂
M̃ ⊆M. Apply Lemma 8 and let N ⊆ M̃ be a compact set such that Y is contained in the interior
of N , namely

C∞(Y) ⊆ C∞0 (N)|Y ⊆ C∞0 (M)|Y ⊆ H|Y . (20)

Then, by applying again Lemma 8 we have

C∞(Y × Y) ⊆ (C∞0 (N)⊗ C∞0 (N))|Y×Y ⊆ (H⊗H)|Y×Y . (21)

Therefore we conclude that for any h ∈ C∞(Y), there exists h̄ :M×M→ R with h̄ ∈ H ⊗H
and h = h̄|Y×Y . Finally we apply Lemma 5 to h̄, which guarantees h to be SELF.

B Proof of Thm. 2

We prove a preliminary result.
Lemma 9. LetM be a Riemannian manifold and N be a geodesically convex subset ofM. Then,

d2|N×N ∈ C∞(N ×N).

Proof. For any y ∈ M, denote Cut(y) ⊆ M the cut locus of y, that is the set of points in z ∈ M
that are connected by more than one minimal geodesic curve with y (see [20, 46]). Let Cut(M) =
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⋃
y∈M({y} × Cut(y)) ⊆M×M. Then, then the squared geodesic distance is such that (see e.g.

[56], page 336)
d2 ∈ C∞(M×M\ Cut(M)).

Now note that by definition of geodesically convex subsetN ⊆M, for any two points inN there exist
one and only one minimizing geodesic curve connecting them. Therefore, N ×N ∩ Cut(M) = ∅
and consequently N ×N ⊆M×M\ Cut(M). We conclude that the restriction of d2 on N ×N
is C∞ as required.

Proof of Thm. 2. By Lemma 9, under Asm. 1 and Asm. 2, the squared geodesic distances is smooth.
The desired result is then obtained by applying Thm. 1.

C Proof of Thm. 4

Proof. The theorem is proved by combining Thm. 1 with Thm. 5 in [13]. To characterize the constant
c4 we need an extra step.

Under Asm. 1 and Asm. 2 and the smoothness of4, we can apply Thm. 1, which characterizes4 as
SELF. According to the proof of Thm. 1 and in particular of Lemma 5, for any y, z ∈ Y we have

4(y, z) = 〈ψ(y), V ψ(z)〉H (22)

where H = H2
s (M) with s > d/2, ψ(y) = Ky(·) where K : M×M → R is the reproducing

kernel associated to H and V : H → H is the operator defined in Eq. (18). In particular, by the
isometry between the tensor spaceH⊗H and the space of Hilbert-Schmidt operators fromH toH,
we have

‖V ‖HS = ‖ 4 ‖H⊗H. (23)

To conclude, since4 is SELF, the following generalization bound in Thm. 5 from [13]

E(f̂)− E(f∗) ≤ ‖V ‖ q τ2 n− 1
4 (24)

holds with probability at least 1 − 8e−τ . Here, ‖V ‖ denotes the operator norm of ‖V ‖ and q is a
constant depending only on Y and the distribution ρ (see end of proof of Lemma 18 for additional
details). Finally, we recall, by the relation between the operator and Hilbert-Schmidt norm, that
‖V ‖ ≤ ‖V ‖HS = ‖ 4 ‖H⊗H = c4.

D Additional Comparison

We have implemented the approach in [50, 51] and tested it on the synthetic data in Section 4.2.
We note that these works were the only ones we found in the literature that address the problem of
manifold-valued regression. We also note in passing that the seminal work of Steinke, Hein and
Schölkopf [50, 51] did focus on proposing and solving an ERM strategy for manifold-valued learning,
but did not study the theoretical properties of the resulting estimator.

The method essentially consists of a Nadaraya-Watson-like estimator combined with an iterative
projection over the output manifold. In our implementation of [51] we used Gaussian kernel and first
order polynomials as interpolating functions (see Sec. 4 in [51] for notation and details). Note that in
general it is not always possible to uniformly sample the centers for the interpolating functions over
the output manifold (as suggested in [51]). Thus, we used the training outputs as centers. To train
the model, the parameters of the first order polynomials have been optimized using a quasi-Newton
method on the empirical risk with geodesic distance and Eells energy regularizer.

4PD err. Krls Ours [29]

n = 10 44 1.24 6.98
n = 20 59 1.33 11.2
n = 30 67 1.55 18.1

time (s) train test

KRLS 0.2 0.01
OURS 0.2 9.8

[29] 1740 0.1
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Figure 2: Pictorial representations of the exponential map.

The table above (Left) extends Table 2 adding the accuracy of [29] on the synthetic experiment. The
table on the right reports the computational times of both our approach and [51] for n = 30 and PD
matrices of dimension d = 30 (hence manifold dimension O(d2)). The long training times for [51]
are due to the high-dimensional non-linear optimization required to learn the weights parametrizing
the interpolating function (which are of order O(d2n), here ∼ 30000). Note that the complexity of
inference scales proportionally (indeed linearly) with the number n of training points and corresponds
to finding the barycenter of n points on the output manifold. Stochastic methods such as Riemannian
SGD (R-SGD) can be adopted to obtain approximate predictions that are still within the statistical
learning bound of Thm. 4, but require less computations. We will: 1) add a remark at the end of Sec
4.1 detailing the impact of adopting a stochastic algorithm in this setting; 2) Add a plot comparing
time vs accuracy of Riemannian GD vs R-SGD on the synthetic experiments for different values of n
and manifold dimension d. 3) Add the performance of R-SGD for the real experiments in Sec. 4.3
(Table 3 and Fig. 1).

We observe that our approach is significantly more accurate than [51]. Admittedly, it may be possible
that better performance could be achieved with [51] by performing a finer cross-validation. However,
in practice, the long computational times required to train this method make it prohibitive to perform
extensive model-selection. For these reasons we did not run [51] on the multi-labeling tasks.

E Differential geometry definitions

A Riemannian manifold (M, g) of dimension n is a topological space M such that every point
y ∈M has a neighbourhood which is homeomorphic to an open set in Euclidean space Rn and g is a
collection of inner product defined in every tangent space TyM of every point y ∈M. Intuitively,
the tangent space TyM is an approximation of a neighbourhood of y ∈M that has a vector space
structure. We will denote the inner product of u, v ∈ TyM as 〈u, v〉y. Thanks the inner product
structure in every tangent space of the manifold we can compute gradients of functions f : M→ R
that we will denote with∇Mf : Fy(M)→ TyM. Where Fy(M) is the set of smooth real-valued
functions defined on a neighbourhood of y.

For any y0, y1 ∈ M and v ∈ TyM there is a unique smooth geodesic curve γ : [0, 1] → M such
that γ(0) = y0, γ(1) = y1 and d

dtγ(0) = v, this curve locally minimizes the path between y0
and y1. Given the geodesic between y0 and y1 with derivative d

dtγ(0) = v, the exponential map
Expy0 : Ty0M→M maps vector v ∈ Ty0M to y1. A retraction Ry : TyM→M, is a first order
approximation of the exponential map. Exponential maps are retractions.

F Riemannian Gradient Descent

In this section we report fully the algorithm Riemannian Gradient Descent.
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Algorithm 1 Riemannian gradient descent
Require: number of iterations T , step size η, initial point y0

1: for t = 0, . . . , T − 1 do

2: vt = ∇M
n∑

i=1
αi(x)4 (yt, yi)

3: yt+1 ← Ryt (ηt vt)

4: end for
5: return yT

G Kernel Regularized Least Squares estimator for Positive definite matrices

We consider the case where we want to use KRLS estimators to predict a positive definite matrix
given a data set {xi, yi}ni=1. The KRLS estimator f : Rd → R is a function defined as f(x) =∑n
i=1 k(x, xi)wi, where k : Rd × Rd → R is a reproducing kernel and w = [w1, . . . , wn] ∈ Rn are

constant weights computed by solving the problem:

min
f∈H

1

n

N∑
i=1

‖ŷi − K̂w‖2 + λ‖w‖2

K̂ ∈ Rn×n is the kernel matrix whose elements are defined as (K)ij = k(xi, xj).

To predict a positive definite matrix y ∈ P++
d , a KRLS estimator is learned for every element of

the flattened matrix vec(y) ∈ Rd2 . Suppose j ∈ {1, . . . , d2} is the index of the j-th component of
vec(y) that we want to predict, then we want to learn the estimator f (j)(x) =

∑n
i=1 k(x, xi)w

(j)
i .

The corresponding problem has labels ŷ(j) = [vec(y1)j , . . . , vec(yd2)j ] and we solve for w(j) =

[w
(j)
1 , . . . , w

(j)
n ]. Indeed we compute d2 estimator to predict vec(f) = [f (1)(x), . . . , f (d

2)] and then
recover y from its vectorized form. Once the matrix is predicted we enforce it to be positive definite
by performing a spectral decomposition and setting the negative eigenvalues to a small positive
constant.
In general, when doing structured predictions with KRLS approach, it is necessary to project the
outcome of the prediction on the desired manifold.
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