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1 Negative Curvature Search (NCS) for Two Cases

In this section, we introduce specific implementations of Negative Curvature Search (NCS) for two
different settings, i.e. deterministic objective and stochastic objective.

Deterministic Objective In particular, we have the following lemma.
Lemma 4. Suppose that the Lanczos method is applied to find the largest eigenvalue of L1I −
∇2f(x) starting at a random vector uniformly distributed over the unit sphere. Then, for any
ε > 0 and δ ∈ (0, 1), there is a probability at least 1 − δ that the method outputs a unit vector v

such that λmin(∇2f(x)) ≥ v>∇2f(x)v − ε with at most min
(
d, log(d/δ

2)
√
L1

2
√
2ε

)
Hessian-vector

products. Therefore Tn(f, ε, δ, d) = Õ
(
d√
ε

)
provided that d is large enough, , where Õ suppresses

a logarithmic term in δ, d, 1/ε.

Remark: The above result follows previous convergence analysis of the Lanczos method [1]. Please
refer to [2][Lemma 11] for a proof.

Stochastic Objective For a stochastic objective f(x) = E[f(x; ξ)] depending a random variable ξ.
We can apply Oja’s algorithm [3] that iteratively computes vτ by

vτ =
(I + η∇2f(x; ξτ ))vτ−1
‖(I + η∇2f(x; ξτ ))vτ−1‖

(7)

where η is a proper step size. The following result provides a guarantee of (3) for an algorithm based
on Oja’s algorithm.
Lemma 5. Given δ ∈ (0, 1), there exists an algorithm that generates a solution satisfying (3) with

Tn(ε, δ, d) = O
(
d log2(d/δ)

ε2

)
. In addition, the algorithm can conclude either λmin(∇2f(x)) ≥ −ε

or find a unit vector v such that v>∇2f(x)v ≤ −ε/2. It can be implemented by runing log(1/δ)-

copies Oja’s algorithm (7) with a total T = O
(

log(d/δ)2

ε2

)
iterations and η = Θ(

√
T ), and selecting

one output from Oja’s algorithm based on a boosting technique using an independent T random
∇2f(x; ξ) Hessian matrices.

Remark: The above result was established in [4]. Please also refer to its proof of Lemma 3.3 in [4]
for the boosting technique.

If the objective has a finite-sum structure f(x) = 1
m

∑m
i=1 fi(x), there also exist some stochastic

algorithms that could have lower complexity than the Lanczos method or the method based on the
Oja’s algorithm.
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Algorithm 7 AdaNCDonline(x, α, δ,g(x)):
1: Set ε = max(ε2, ‖g(x)‖α)/2
2: Apply NCS(f,x, ε, δ) to find a unit vector v that satisfies Lemma 7
3: if v>∇2f(x)v ≤ −ε/2 and ε3

24L2
2
> ‖g(x)‖2

4L1
− ε′2

L1
then

4: Compute x+ = x− ε
2L2

zv
5: else
6: Compute x+ = x− 1

L1
g(x)

7: end if
8: Return x+,v

Lemma 6. There exists a randomized algorithmA such that with probability at least 1−δ,A produces
a unit vector v satisfying (3) with a time complexity of Tn(f, ε, δ, d) = Õ(d(m+m3/4

√
1/ε)).

Remark: The randomized algorithms proposed in [5, 6] can serve this purpose.

Proof. We first introduce a proposition, which is the Theorem 2.5 in [7].

Proposition 1. Let M ∈ Rd×d be a symmetric matrix with eigenvalues 1 ≥ λ1 . . . ≥ λd ≥ 0.
Then with probability at least 1 − p, the Algorithm AppxPCA produces a unit vector v such that
v>Mv ≥ (1− δ+)(1− ε)λmax(M). The total running time is Õ

(
T 1
h max{m, m

3/4
√
ε
} log2

(
1

ε2δ+

))
.

Define M = I − H
L1

, then M satisfies the condition in the Proposition 1. Then we know that with
probability at least 1− p, the Algorithm AppxPCA produces a vector v satisfying

v>
(
I − H

L1

)
v ≥ (1− δ+)(1− ε)

(
1− λmin(H)

L1

)
,

which implies that

L1 − v>Hv ≥ (1− δ+ − ε+ δ+ε)(L1 − λmin(H)) ≥ (1− δ+ − ε)(L1 − λmin(H)).

By simple algebra, we have

λmin(H) ≥ v>Hv − (δ+ + ε)(L1 − λmin(H)) ≥ v>Hv − 2L1(δ+ + ε).

By setting ε = δ+ = ε
4L1

, we can finish the proof.

A standard NCD step is to update the solution by x+ = x− ηv with v being a negative curvature
direction, where η is a proper step size (e.g., see [8]). Almost all previous algorithms using NCD ask
for a unit vector v to satisfy (3) with a noise level ε = Θ(ε2) whenever it is invoked.

2 Useful Lemmas for Adaptive Negative Curvature Step for Stochastic
Objective

Lemma 7. When λmin(∇2f(x)) ≤ −ε, the Algorithm 7 provides a guarantee that

f(x)− E[f(x+)] ≥ max

{
ε3

24L2
2

,
‖g(x)‖2

4L1
− ε′2

L1

}
.

Proof. Since f(x) has a L2-Lipschitz continuous Hessian, we have

|f(x1)− f(x) + ηv>∇f(x)− 1

2
η2v>∇2f(x)v| ≤ L2

6
‖ηv‖3.

When η = ε
2L2

z, define x1 = x− ηv, where Pr(z = 1) = Pr(z = −1) = 1
2 , v is a unit vector and

v>∇f(x)v ≤ − ε2 . Note that E(η) = 0 and E(η2) = ε2

4L2
2

, then we have

f(x)− E(f(x1)) ≥ E
(
ηv>∇f(x)− 1

2
η2v>∇2f(x)v − L2

6
‖ηv‖3

)
≥ ε2

8L2
2

· ε
2
− L2

6
· ε

3

8L3
2

=
ε3

24L2
2

.
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Define x2 = x− 1
L1

g(x), where ‖g(x)−∇f(x)‖ ≤ ε′, and then we have

f(x2)− f(x) ≤ (x2 − x)>∇f(x) +
L1

2
‖x2 − x‖2

= − 1

L1
g(x)>∇f(x) +

‖g(x)‖2

2L1

= − 1

L1
g(x)>g(x) +

1

L1
g(x)>(g(x)−∇f(x)) +

‖g(x)‖2

2L1

≤ − 1

2L1
‖g(x)‖2 +

1

4L1
‖g(x)‖2 +

1

L1
‖g(x)−∇f(x)‖2

= − 1

4L1
‖g(x)‖2 +

ε′2

L1
.

Combining two cases (x1 and x2, which correspond to line 4 and line 6 of Algorithm 2 respectively),
here completes the proof.

Lemma 8. For any ε > 0, δ′ ∈ (0, 1), x ∈ Rd, when elements of S are uniformly selected from
{1,. . . , n} with |S| ≥ 16L2

1

ε2 log( 2d
δ′ ), we have

Pr(‖HS(x)−∇2f(x)‖2 ≤ ε) ≥ 1− δ′.

The above lemma can be proved by using matrix concentration inequalities. Please see [9][Lemma 4]
for a proof.
Lemma 9. Assume that E[exp(‖∇f(x; ξ)−∇f(x)‖2/G2)] ≤ exp(1) holds for any x ∈ Rd. For
any ε > 0, δ′ ∈ (0, 1), x ∈ Rd, when |S1| ≥ 4G2(1+3 log(1/δ)

ε2 , we have

Pr(‖g(x)−∇f(x)‖ ≤ ε) ≥ 1− δ′.
where S1 a set of random samples ξ, due to the exponential tail behavior of stochastic gradients.

Remark: Lemma 9 can be proved by using large deviation theorem of vector-valued martingales
(e.g., see [10][Lemma 4]).

3 Proof of Lemma 1

The Proof of Lemma 1 can be derived by combining the result of Lemma 4, 5 and 6.

4 Proof of Lemma 2

Proof. Denote η = 2|v>∇2f(x)v|
L2

sign(v>∇f(x)) with ‖v‖ = 1. Let x+
1 = x − ηv denote the

updated solution if following v and x+
2 = x−∇f(x)/L1 denote the updated solution if following

∇f(x). Since f(x) has a L2-Lipschitz continuous Hessian, we have

|f(x+
1 )− f(x) + ηv>∇f(x)− 1

2
η2v>∇2f(x)v| ≤ L2

6
‖ηv‖3.

By noting that ηv>∇f(x) ≥ 0 and when v>∇2f(x)v ≤ 0, we have

f(x)− f(x+
1 ) ≥ −1

2
η2v>∇2f(x)v − L2

6
‖ηv‖3 =

2(−v>∇2f(v)v)3

3L2
2

, ∆1.

By the smoothness of f(x), we have

f(x+
2 ) ≤ f(x) +∇f(x)>(x+

2 − x) +
L1

2
‖x+

2 − x‖2

= f(x)− 1

L1
‖∇f(x)‖22 +

L1η
2

2
‖∇f(x)‖2

≤ f(x)− 1

2L1
‖∇f(x)‖2

3



As a result, f(x)− f(x+
2 ) ≥ ‖∇f(x)‖

2

2L1
, ∆2.

According to the update rule in AdaNCDdet (Algorithm 1), if ∆1 > ∆2, we have x+ = x+
1 and

f(x) − f(x+) ≥ ∆1 = max(∆1,∆2). If ∆2 ≥ ∆1, then x+ = x+
2 and f(x) − f(x+) ≥ ∆2 =

max(∆1,∆2). In both cases, we have f(x)− f(x+) ≥ max(∆1,∆2).

5 Proof of Lemma 3

Proof. Define η = 2|v>HS(x)v|
L2

z, x1 = x − ηv, where Pr(z = 1) = Pr(z = −1) = 1
2 , v is a

unit vector and v>HS(x)v ≤ 0. Note that E(η) = 0 and E(η2) = 4|v>HS(x)v|2
L2

2
, then by the

L2-Lipschitz continuous Hessian, we have

f(x)− E(f(x1))

≥ E
(
ηv>∇f(x)− 1

2
η2v>∇2f(x)v − L2

6
‖ηv‖3

)
= −2|v>HS(x)v|2

L2
2

(
v>(∇2f(x)−HS(x))v

)
− 2|v>HS(x)v|2

L2
2

v>HS(x)v − L2

6
· 8|v>HS(x)v|3

L3
2

≥ 2|v>HS(x)v|3

3L2
2

− ε2|v>HS(x)v|2

6L2
2

where the last inequality holds because of the inequality (7).

Define x2 = x− 1
L1

g(x), where ‖g(x)−∇f(x)‖ ≤ ε′. By the same argument as in the proof of
Lemma 6, we have

f(x)− f(x2) ≥ ‖g(x)‖2

4L1
− ε′2

L1
.

Combining two cases (x1 and x2, which correspond to line 3 and line 5 of Algorithm 3 respectively),
we have

f(x)− E[f(x+)] ≥ max

{
−2(v>HS(x)v)3

3L2
2

− ε2|v>HS(x)v|2

6L2
2

,
‖g(x)‖2

4L1
− ε′2

L1

}
The result when v>HS(x)v ≤ −ε2/2 directly follows from the above inequality.

6 Proof of Theorem 1

Proof. Define ε2 = εα1 . Let j∗ denote the j such that the algorithm terminates. Then for all j < j∗,
we have ‖∇f(xj)‖ > ε1, or v>j ∇2f(xj)vj ≤ −ε2/2. According to Lemma 4, we have

f(xj)− f(xj+1) ≥ max

(
2|v>j ∇2f(xj)vj |3

3L2
2

,
‖∇f(xj)‖2

2L1

)
Let us consider three cases. Case 1: ‖∇f(xj)‖ > ε1 and v>j ∇2f(xj)vj ≤ −ε2/2, then we have

max

(
ε32

12L2
2

,
ε21

2L1

)
≤ f(xj)− f(xj+1)

Case 2: ‖∇f(xj)‖ ≤ ε1 and v>j ∇2f(xj)vj ≤ −ε2/2, we have

ε32
12L2

2

≤ f(xj)− f(xj+1)

Case 3: ‖∇f(xj)‖ > ε1 and v>j ∇2f(xj)vj > −ε2/2, we have

ε21
2L1

≤ f(xj)− f(xj+1)

4



In any case, we have

min

(
ε21

2L1
,
ε32

12L2
2

)
≤ f(xj)− f(xj+1)

Then with at most j∗ = 1 + max
(

12L2
2

ε32
, 2L1

ε21

)
∆, the algorithm terminates. Note that ε2 = εα1 , we

know that j∗ = 1 + max
(

12L2
2

ε3α1
, 2L1

ε21

)
∆.

Upon termination, we have with probability at least 1− j∗δ′, i.e. with probability at least 1− δ,

λmin(∇2f(xj∗)) ≥ −ε2/2−max(ε2, ‖∇f(xj∗)‖α)/2

= −εα1 /2−max(εα1 , ‖∇f(xj∗)‖α)/2.

Since ‖∇f(xj∗)‖ ≤ ε1, we have

max(εα1 , ‖∇f(xj∗)‖α) = εα1 ,

and hence λmin(∇2f(xj∗)) ≥ −εα1 .
The running time spent on the j-th iteration follows from Lemma 1.

7 Proof of Theorem 2

For the j-th AdaNCDmb step, define the event A = {‖H(xj)−∇2f(xj)‖2 ≤ ε2/6} ∩ {‖g(xj)−
∇f(xj)‖ ≤ ε1/2

√
2} and let Pr(A) = 1− δ′. Since the Algorithm S-AdaNCG calls AdaNCDmb as

a subroutine, then by Lemma 8, when v>j HS2(xj)vj ≤ −ε2/2 with probability at least 1− δ′,

f(xj)−E[f(xj+1)] ≥ max

(
1

4L1
‖g(xj)‖2 −

ε21
8L1

,
−2(v>HS(x)v)3

3L2
2

− ε2|v>HS(x)v|2

6L2
2

)
.

If v>j HS2(xj)vj ≤ −ε2/2, we have

f(xj)− E[f(xj+1)] ≥
|v>j HS(xj)vj |2(−4v>j HS(xj)vj − ε2)

6L2
2

≥
|v>j HS(xj)vj |2ε2

6L2
2

≥ ε32
24L2

2

If ‖g(xj)‖ > ε1, we have

f(xj)− E[f(xj+1)] ≥ ε21
8L1

Following the boosting argument in [11][Theorem 14], with high probability 1 − ζ the algorithm
terminates after O(log(1/ζ) max(1/ε21, 1/ε

3
2)) steps with high probability. Upon termination at

iteration j∗ we have v>j∗H(xj∗)vj∗ ≥ −ε2/2 and ‖g(xj∗)‖ ≤ ε1. Next, we show that upon
termination, we achieve an (2ε1, 2ε2)-second order stationary point with high probability. In particular,
with probability 1− δ′ we have

‖∇f(xj∗)‖ ≤ ‖∇f(xj∗)− g(xj∗)‖+ ‖g(xj∗)‖ ≤ ε1/2
√

2 + ε1 ≤ 2ε1.

and with probability 1− δ′

λmin(H(xj∗)) ≥ v>j∗H(xj∗)vj∗ −max (ε2, ‖g(xj∗)‖α) /2 ≥ −ε2

In addition, with probability 1− δ′, we have

λmin(∇2f(xj∗)) ≥ λmin(H(xj∗))− ε2/12 ≥ −2ε2

As a result, by using union bound, we have with probability 1− 3j∗δ
′ = 1− 3δ, we have

‖∇f(xj∗)‖ ≤ 2ε1, λmin(∇2f(xj∗)) ≥ −2ε2

5



8 Proof of Theorem 3

Before diving into the proofs, we first present the procedure Almost-Convex-AGD (Algorithm 8) and
introduce some propositions which are useful for our further analysis.

Algorithm 8 Almost-Cvx-AGD(f, z1, ε, γ, L1)

1: for j = 1, 2, . . . do
2: if ‖∇f(zj)‖ ≤ ε then
3: Return zj
4: end if
5: Define gj(z) = f(z) + γ‖z− zj‖2
6: set ε′ = ε

√
γ/50(L1 + 2γ)

7: zj+1 = AGD(gj , zj , ε
′, L1, γ)

8: end for

Algorithm 9 AGD(f,y1, ε, L1, σ1)

1: Set κ = L1/σ1, z1 = y1

2: for j = 1, 2, . . . do
3: if ‖∇f(yj)‖ ≤ ε then
4: Return yj
5: end if
6: yj+1 = zj − 1

L1
∇f(zj)

7: zj+1 = (1 +
√
κ−1√
κ+1

)yj+1 −
√
κ−1√
κ+1

yj
8: end for

Proposition 2 (Lemma 3.1 of [8]). Let f : Rd → R be γ-almost convex and L1-smooth, where
0 < γ ≤ L1. Then Almost-Convex-AGD(f, z1, ε, γ, L1) returns a vector z such that ‖∇f(z)‖ ≤ ε
and

f(z1)− f(z) ≥ min

{
γ‖z− z1‖2,

ε√
10‖z− z1‖

}
(8)

in time

O

(
Tg

(√
L1

γ
+

√
γL1

ε2
(f(z1)− f(z))

)
log

(
2 +

L3
1∆

γ2ε2

))
(9)

Proposition 3 (Lemma 4.1 of [8]). Let f be L1-smooth and have L2-Lipschitz continuous Hessian.
Let x0 ∈ Rd be such that ∇2f(x0) � −αI for some α ≥ 0, then f(x) + L1

[
‖x‖ − α

L2

]
+

is

3α-almost convex and 5L1-smooth.

The next result is a corollary of Theorem 1, showing that by running x̂k = AdaNCG(xk, ε
3/2
2 , ε2, δ

′)
we obtain a solution x̂k around which f(x) is locally almost convex, i.e., ∇2f(x̂k) � −ε2I .

Corollary 1. The sub-routine x̂k = AdaNCG(xk, ε
3/2
2 , ε2, δ

′) guarantees that

λmin(∇2f(x̂k)) ≥ −ε2
with at most jk iterations within AdaNCG, where

jk ≤ 1 +
max(12L2

2, 2L1)

ε32
(f(xk)− f(x̂k)) ≤ 1 +

max(12L2
2, 2L1)

ε32
∆, (10)

Furthermore, each iteration j within AdaNCG requires time at most

O

(
Th

√
L1

max(ε2, ‖∇f(xj)‖)1/2
log

(
d

δ′

))

6



Proof of Theorem 3. We try to bound the number of iterations in the Algorithm AdaNCG+, which is
actually the upper bound of the number of calls of both AdaNCG and Almost-Convex-AGD.

Define ρα(x) := L1

[
‖x‖ − α

L2

]
+

. At iteration k when ‖∇f(x̂k)‖ ≤ ε1 is not met, which means

‖∇f(x̂k)‖ > ε1, we have

ε1 < ‖∇f(x̂k)‖ ≤ [‖∇fk−1(x̂k)‖+ ‖∇ρε2(x̂k − x̂k−1)‖] ≤ ε1
2

+ 2L1

[
‖x̂k − x̂k−1‖ −

ε2
L2

]
+

,

where the second inequality holds due to the triangle inequality, and the third inequality holds because
of the guarantee provided by Almost-Convex-AGD at the previous stage. Therefore, we have

ε1
4L1

≤
[
‖x̂k − x̂k−1‖ −

ε2
L2

]
+

= ‖x̂k − x̂k−1‖ −
ε2
L2

(11)

According to the inequality (11), we know that at iteration 1 < k ≤ K, exactly one of the following
three cases is true:

(I) ‖∇f(x̂k)‖ ≤ ε1 and the Algorithm AdaNCG+ terminates

(II) ‖∇f(x̂k)‖ > ε1 (which implies that ‖x̂k − x̂k−1‖ ≥ ε2
L2

according to (11)), and x̂k 6= xk

(III) ‖∇f(x̂k)‖ > ε1 and x̂k = xk

If (II) holds, note that the subroutine AdaNCG needs at least 2 iterations, so according to Theorem 1,
we have

max

(
12L2

2

ε32
,

2L1

ε32

)
(f(xk)− f(x̂k)) ≥ 1.

Combining it with the progressive bound (8) in Proposition 2, we have

f(x̂k−1)− f(x̂k) ≥ f(xk)− f(x̂k) ≥ min

(
ε32

12L2
2

,
ε32

2L1

)
.

If (III) holds, then by Proposition 3 and the second-order guarantee provided by Theorem 1, we can
know that, with probability at least 1− δ′, fk is 3ε2-almost convex and 5L1-smooth. Then applying
Proposition 2 suffices to show that

f(x̂k−1)− f(x̂k) ≥ min

{
3ε2‖x̂k−1 − xk‖2,

ε1

2
√

10
‖x̂k−1 − xk‖

}
≥ min

{
3ε32
L2
2

,
ε1ε2

2
√

10L2

}
.

Combing two cases (II) and (III) together, we get the conclusion that whether in case (II) or case (III),
with probability at least 1− δ′,

f(x̂k−1)− f(x̂k) ≥ min

(
ε32

12L2
2

,
ε32

2L1
,

ε1ε2

2
√

10L2

)
.

In order to get a contradiction that after K iterations the algorithm has not terminated yet, and by the
definition of δ′ and union bound, it follows that, with probability at least 1− δ,

∆ ≥ f(x̂1)− f(x̂K) =

K−1∑
k=1

(f(x̂k)− f(x̂k+1)) ≥ (K − 1) min

(
ε32

12L2
2

,
ε32

2L1
,

ε1ε2

2
√

10L2

)
.

Plugging in K = d1 + ∆
(

max(12L2
2,2L1)

ε32
+ 2
√
10L2

ε1ε2

)
e suffices to get a contradiction. Therefore the

algorithm terminates after at most K outer iterations.

Denote Tg and Th by the time for gradient evaluation and Hessian-vector product evalua-
tion. Define τ = 1 + 1/ε+ 1/δ + d+ L1 + L2 + ∆. We try to bound the number of AdaNCDdet

steps. Denote jk by the total number of times the Algorithm AdaNCG is executed during the

7



iteration k of the method AdaNCG+, and define k∗ as the total number of outer iterations of the
Algorithm AdaNCG+. By telescoping bound (10) and the progressive bound (8) of Proposition 2 in
Almost-Convex-AGD, which guarantees the Almost-Convex-AGD decreases the function values, we
have

k∗∑
k=1

(jk − 1) ≤
k∗∑
k=1

max

(
12L2

2

ε32
,

2L1

ε32

)
(f(xk)− f(x̂k))

≤
k∗∑
k=1

max

(
12L2

2

ε32
,

2L1

ε32

)
(f(x̂k−1)− f(x̂k))

≤ max

(
12L2

2

ε32
,

2L1

ε32

)
∆.

According to the previous result, with probability at least 1− δ, we can have a upper bound of k∗,
which is

k∗ ≤ 2 + ∆

(
12L2

2

ε32
+

2L1

ε32
+

2
√

10L2

ε1ε2

)
. (12)

Hence, we have with probability at least 1− δ,
k∗∑
k=1

jk = k∗ +

k∗∑
k=1

(jk − 1)

≤ 2 + ∆

(
24L2

2

ε32
+

4L1

ε32
+

2
√

10L2

ε1ε2

)
.

(13)

According to Corollary 1, we have the cost of each iteration t within AdaNCG is

O

(
Th

√
L1

max (ε2, ‖∇f(xt)‖)1/2
log

(
d

δ′

))
.

Note that the failure probability satisfies

1

δ′
≤

2 + ∆
(

12L2
2

ε32
+ 2L1

ε32
+ 2
√
10L2

ε1ε2

)
δ

,

so log d
δ′ = O(log τ). Then we employ (13) to bound the worst-case total costs of AdaNCG, which is

O

(
Th

√
L1√
ε2

[
2 + ∆

(
24L2

2

ε32
+

4L1

ε32
+

2
√

10L2

ε1ε2

)]
log τ

)
(14)

Now we analyze the total cost of calling Almost-Convex-AGD. Employing the bound (9) in Proposi-
tion 9, the cost of calling Almost-Convex-AGD in iteration k with almost convexity parameter 3ε2 is
bounded by

O

(
Tg

(√
L1

3ε2
+

4
√

3ε2L1

ε21
[fk(xk)− fk(xk+1)]

)
log τ

)
.

Note that fk(xk)− fk(xk+1) ≤ f(xk)− f(xk+1), so we have
k∗∑
k=1

[fk(xk)− fk(xk+1)] ≤
k∗∑
k=1

[f(xk)− f(xk+1)] ≤ ∆.

According to (12), we can get that the total time complexity of Almost-Convex-AGD is
O (Tg (ξ1 + ξ2) log τ) , (15)

where ξ1 =
√

L1

3ε2

(
2 + ∆

(
24L2

2

ε32
+ 4L1

ε32
+ 2
√
10L2

ε1ε2

))
, ξ2 = 4

√
3ε2L1

ε21
∆. According to (14) and (15),

and note that Tg = Th = O(d), we get that the worst case complexity bound is

Õ

((
1

ε1ε
3/2
2

+
1

ε
7/2
2

)
Th +

ε
1/2
2

ε21
Tg

)
,

where Õ(·) hides a log τ factor. Since Tg = Th = O(d), the proof is complete.
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Algorithm 10 SCSG-Epoch: (x,S, b)
1: Input: x, ε m1, b
2: Set η = c′(m1/b)

−2/3 with c′ ≤ 1/6
3: Compute ∇FS(xj−1)
4: Let x0 = x and generate N ∼ Geom(m1/(m1 + b))
5: for k = 1, 2, . . . , N do
6: Sample samples Sk of size b
7: Compute vk = ∇fSk(xk−1)−∇fSk(x0) +∇fS(x0)
8: xk = xk−1 − ηvk
9: end for

10: Return xN

9 Proof of Theorem 4

The proof of this Theorem follows that of Theorem 3 in [12]. Similarly, we prove the following two
lemmas.
Lemma 10. Suppose |S| ≥ O(1/ε2) and |S2| ≥ Õ(1/γ2). For any point yj with ‖∇f(yj)‖ ≥ ε,
then we can have

E[f(xj+1)− f(xj)] ≤ −Ω(ε4/3).

Proof. Due to the update in AdaNCDmb, it is clear that E[f(xj+1) − f(yj)] ≤ 0. Following the
analysis of Lemma 7 in [12], we have E[f(yj)− f(xj)] ≤ −Ω(ε4/3).

Lemma 11. Suppose |S| ≥ O

(
1

ε
9/2
2 b1/2

)
, |S2| ≥ Õ(1/ε22). For any point yj with ‖∇f(yj)‖ ≤ ε

and v>j HS2(yj)vj ≤ −ε2/2, we can have

E[f(xj+1)− f(xj)] ≤ −Ω̃(ε32).

Proof. In this case, by Lemma 8 we have

E[f(xj+1)− f(yj)] ≤ −
ε32

24L2
2

For SCSG-Epoch [13], we have

0 ≤ E[‖∇f(yj)‖2] ≤ 5L1b
1/3

c′m
1/3
1

E[f(xj)− F (yj)] +
6G2

m1
.

Hence,

E[f(yj)− f(xj)] ≤
6c′G

5L1m
2/3
1 b1/3

Thus,

E[f(xj+1)− f(xj)] ≤ −
c3ε32
12L2

2

+
6c′G

5L1m
2/3
1 b1/3

By setting m1 ≥ (144GL2
2c
′/(5c3L1b

1/3ε32))3/2, we have

E[f(xj+1)− f(xj)] ≤ −
c3ε32
24L2

2

= −Ω̃(ε32)

Combining Lemma 10 and Lemma 11 and following the analysis of Theorem 14 in [11], within
Õ
(

max( b
1/3

ε3/4
, 1
ε32

)
)

outer iterations, there exists at least one yj such that v>j HS2(yj)vj ≥ −ε2/2
and ‖∇f(yj)‖ ≤ ε1 with high probability. As a result, at such a yj AdaNCD-SCSG terminates with
a high probability as long as |S| ≥ Õ(1/ε2) for the stopping criterion to pass. Similar to the proof
of Theorem 2, upon termination, we have |∇f(yj)| ≤ 2ε1 and λmin(∇2f(yj)) ≥ −2ε2, which
completes the proof.
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