A Proof of Proposition 2]

We first show the following lemma.

Lemma 1. Let {a;}Y | and {b;} 1 be two sequences of real numbers, where N < oo. Let {p;}}¥

be such that p; > 0 for all i and Z 1 Pm = 1. Then there exist indices j, k € {1,--- , N} (possibly
j=k)andp € [0,1] such that

m=

pa; + (1 - p)ak < Z AmPm,
m=1

and

N
pbi+ (1= p)bk < bmpm.
m=1

Proof. We prove the lemma by induction over N. The result is trivial when N = 1,2. Assume
that the result holds when N = n. In the following we show the case where N = n + 1. Let

1 1
A=S" apmand B =" bop.

Suppose there exists index t € {1,--- ,n + 1} such that a; < A and b; < B, then by choosing
j =k =t, thereis

paj + (1 —play =a; <A and pb; + (1 —p)by, = b, < B.
Suppose there exists index ¢ € {1,---,n + 1} such that a; > A and by > B. Without loss
of generality we can assume ¢t = n + 1 If pp+1 = 1, the result becomes trivial by choosmg
j=k=n + 1. Hence we only consider p,+1 < 1. Let p; = p;/(1 — pp41) fori =1,--- | n,

then Y _, pl, = 1. Applying our assumption to {a;}!_, {b;}/; and {p/}’,, we can ﬁnd
j k" €{l,--- ,n}andp’ € [0,1] such that

Paj+ (1 =paw <Y amph,

and

Pb + 1_ bk/ < mepm

Notice that

n n+1
AmPm
Z a/mpm - TnZ:l 1 _ pn+1 nlz:la’mpm - Aa

and similarly > _, b,,p},, < B. Therefore by choosing j = j’,k = k' and p = p/, we arrive at the
result.

Consequently, we only have to consider the case where for each ¢ € {1,--- ,n + 1}, either a; >
A, by < Bora; < A, by > B. Without loss of generality, let s be the index such that a; > A, b; <
B,vte{l,---,s}tanda; < A,by > B,Vt € {s+1,--- ,n+ 1}. Suppose the result is false, then
forany £ € {1,--- ,s}and h € {s+1,--- ,n+ 1}, the following set of inequalities

pag+ (1 —plap, < A
pbe+ (1 —p)bn < B
has no solution for p. Since ay > A > ap and by < B < by, this can only happen when
A-— by, — B
@ _ On .
ag—ap by —be

Rearranging, the above inequality is equivalent to

bpA —byA+ ayB — apB + apby — agby, < 0. (A1)



Let P’ =% 1 pm. A =" _ ampmand B'=>"" _ b,,p,,. Multiplying both sides of (AT)

by p¢ and p,, and summing over { = 1,--- ;sand h =s+ 1,--- ,n + 1, we have that
s n+1
0 > Y > (bhphpeA — bepepn A + agpepn B — anprpeB + anprbepe — azpébhph)
=1 h=s+1
= (B-B)PA-B(1-PYA+A(1-P)B—(A-AP'B+(A-A)B - A(B-DB)
= 0’
which is a contradiction. Therefore the result holds for N = n + 1. O

To show Proposition [2} for each ¢ we construct éz‘ that satisfies and Notice that, for each
k=1,---, K, there is

E;_, [,u(a(@t),@*)wt e @k] = Y P(6: = 0[0, € O1)Eis [u(a(a),a*)wt e ek}

0€Oy,

= Y P(6 = 0]0: € O4)Ei 1 [u(a(0),0)], (A2)
0€Oy,

and
Ly (U3 Yo |0 € Or) = Z P(6; = 0]0; € Or) L1 (¢;Ya(9)|9t € G)k)

0€0y,

= 3 PO =0/6, € O) L1 (45 Vaiw)), (A3)
0€0y,

where we used the fact that ; is independent of 8* and ).

According to Lemma at stage t, foreach k = 1,- - - | K, there exists two parameters 9]1“”5, 9§ e,
and 7y, ; € [0, 1], such that

P {u(a(@f’t), 9*)} (1= ) By [u(a(@é’t),e*)} <E, , [u(a(Qt), 0%)0; € @k},

(A4)
and

P Tt (3 Yyonn) ) + (0= me) - Lo (3 Yogeee)) < Zmt (¥ Va0 €01) . (AS)
Let éf be a random variable such that
P, (é; = Oty = k) = rre, Pry (é; = 05ty = k) - (A6)

and let 0, be an iid copy of 9~;‘. Since the value of é;‘ only depends on 1, is satisfied. Also we have
that

It,1<1/);(0~t7Ya(§t))) = It71<w§9~t)+It71(w;ya(ét)|9~t>

= I (¢7 Ya(ét) ‘ét)

K
= 3D P(B =060 € ©4) - P(8, € O T (3 Ygre))

k=1i=1,2
= i {Tk,t N P (ZZ’;Y(X(@’;J)) + (L =rpe) - L1 (1//§Ya(9§’f))} 'P(et € O)
k=1

—
IN=

It (¢35 Yago,)|0: € Ok) - P(6; € Op)
L1 (V5 Yago,))

L1 (¥ Ya(on|0:) + Li—1 (¢;60,) = L1 (05 (64, Yao,))) (A7)

=



where @ and follows from that both 6; and 6‘~t are independent of ), conditioned on 7—2,5,1, and
@follows from (A3). Thereforeis satisfied.

To show [(i)]By construction we have that, at each stage t = 1,--- , T,

Dy = risEey [u(a(&’f’t),0*)}+(1—rk}t)-Et,1 [u(a(@lg’t), 9*)} “Ey [M(a(et),e*)}et c 94 <0.

Hence there is

&=

Bt [R(Yo,) = RVa))| = Eia[n(a(8),67) = u(a(6,),0)]

P(00 € O4) - Euoa [1(a00),0°) = n(a(0,),0) | 01 € O

ERINE

(
]P(Gt c @k) D, <0. (A8)

~
Il

1

Therefore we arrive at
Eio1|[R" = R(Ya@))] — Ei1 [R(Vap) = RV,
Euo1 [R(Yage) = R(Vag;)] + Eit [R(Va3,) = R(Yago)]

Ev1 [p(a(67),6%) = n(a(f;),0%)|
< e (A9)

IN

where the final step comes from the fact that 6* and 5; are always in the same partition.

B Proof of Proposition 3|

First, for two random parameters 6 and 6’ we define

Ei—1[R(Ya9)) — R(Ya(e'))]2

T.(0;0) = ,
(8:6) L1 (05 (0", Yagor)))

(A10)

where the subscript ¢ — 1 indicates the corresponding value under base measure H,_1. From the
definition, I';(6; §’) is a random variable measurable with respect to o (H¢—1).

Lemma 2. We have that, for eacht =1,--- T,

T (000 Y)) = Pra (6= ) (6 Yo
i=1
> 23N P (6 =0 )R (5 = 00)
i=1 j=1

{EH [R(Ya(o0)|0F = 67] — By [R(Ya(gi))]}

and
Ea[R(Yy) = ROG,)] = D Pis (9”: - 92’) {Et—l [R(Ya(o))|8F = 0] — By [R(Yagor)] }

almost surely.



Proof. Foreacht = 1,--- , T, there is
I (é;&kv (étv Ya(ét))) = i (é:» ét) + 1 (é:, Ya(gt) |§t)
= It,1 (é:’ya(ét)|ét)

_ ip(ét = ei) I (52*; Yoo = ei)
i=1

_ ip(é;‘ =0) T (07 Yoo
o

= SN r(0r =0)P(0r =) - Dt (Prs (Va0 = 07) [ Prs (Yagor)))

i=1j=1
> 2zm: Xm:n»(é;: =6 )P(; = 07) - {Eu 1 [R(Vago0)I0; = 67] — Ev 1 [R(Yago)] }2,
i=1 j=1

where comes from the fact that 9~;‘ and ét are independent, conditioned on H;_1, and follows
from Pinsker’s inequality and our assumption that sup, ¢y, R(y) — infyey R(y) < 1.

On the other hand, there is also

Eoa[ROYVG) = ROG) = S P (0 = 0')Eoy [R(Vage)I0; = 0] -

i=1

> P18 = 0Bt [R(Yagen)

=1

= Y P (0 = 0){Er 1 [R(Va00)I0; = 0] — By 1 [R(Vagen)] -

i=1
All equalities and inequalities hold almost surely. Thus the proof is complete. [
Lemma 3. Foreacht=1,2,---, thereis

Ty(0;:0;) <

N

a.s.

Proof. Fixt € {1,--- ,T}, and let
qi = ]P>t71(§;k = 01)7 Si = ]Etfl |:9*|§;fk = 91]7 i = ]-7 T, M,
and s =E;_4 [0*] The linearity of expectation gives us
Et,1 [R(Ya(gl)”é: = HJ] = Oé(ei)TSj, ]Etfl [R(Ya(gz))] = a(&i)Ts, VZ,] € {1, tee 7m}.
From Lemma[2] we have

Iy (9;‘; (0, Ya(ét)))

(S ala(@) s~ a@)7s)’
TS S s () 55— (8 )2

2
(Zﬁl qia(0;) " (s — S))
= m m - 5 Q.S.
235 Zj:l 4iq; [04(91') (sj — 5)}
Letu; = \/gi(0") and v; = \/qi(s; — s), then u;, v; € R fori = 1,--- ,m. Consider the matrix
T
Uy
L
U
M = (ujv))i-, = (v1 v o0 Up).

2
~ ~ ~ Ef RY 0* _R Y 1
Ft(6:70t) ' 1[ ( (et)) ( (et))}

IN

S



Notice that M is the product of an m x d matrix and a d X m matrix, hence rank(m) < d. Therefore
we have

_ .~ Trace(M)? k(M
£y (05, 6,) < LraceM)” _ rank(M) a.s.

To2MiE T2

IN

d
27

Notice that
2

E[R(Yawl)) - R(YO/(QQ))] < E[Et71 [R(Ya(el)) - R(Ya(%))] 2:|
= E[f‘t(al; 0s) - It—1(91§ (927Ya(92)))}
(N d
< 3 ~E{It_1(91; (027Ya(92)))}
d ~
= 5 '1(91§(02>Ya(02))|7—[f—1)’ (A1)

where[(f)| comes from Lemma 3] Hence the proof is complete.

C Proof of Proposition 4]

Let {Ax }< | be an 2e-covering of A with respect to the Euclidean norm, i.e.
||a1—a2||2§26, Val,CLQEAk, k=1,--- | K.
Define
O, = Ozil(Ak) ={0e€0:af) e A;}.
Apparently {©, }X_, is a partition of ©. Moreover, for any k € {1,--- , K} and 6, 05 € O}, there is

[u(@(61),82) — p(a(B2),62)| = %’a(al)T92 — a(f) "6

1
< lla(6r) —a@2)]lz - [192]2 <, (A12)
where the last inequality follows from that ||a; — az||2 < 2€ and that © C B4(0, 1).

Let N(S,¢, | - ||) be the e-covering number of set S’ with respect to the || - ||-norm. We only have to
bound N (A, 2¢, || - ||2). From a standard result,

- 1 d
N(A 26 [2) < N (Bal0. 1120 12) < (£ +1)
d
K< <1 —|—1> .
€

From Theorem I} Propositions[3]and @ we have that for all € > 0,

Therefore

D Proof of Theorem 2|

d 1
BayesRegret(T;77°) < \/2 -dlog ( + 1) -T+e-T.
€

Taking € = d/v/2T, we arrive at

T 2T
BayesRegret(T;77%) < d 5 log <1_|_ C) +1
< dVT- 1og<1+”§T>+1
2T
< d,|Tlog (3—1—3\?)



E Proof of Propositions 5, [6|and Theorem [3]

Let W be a random variable with the same distribution as the noise W, for all a € .A. Define function
e fl@) = E[67 (z - W)].

Foreacha € A, let S, = f(Ry) = E[¢~ (R, — W)|R,]. Then we have

E[E[6™" (R, — W)|Rd]|0" = 6]

2 E[E[67 (R, — Wa)|Ra] |0 = 0]

Y E[E[aT0|R] |0 = 6]

= a'é, (A13)

where @ follows from the fact that W and W, have the same distribution, and results from that
conditioned on p* = p,

E[S.|0* = 0]

—~
~

R, = ¢(a’0) + W,.
From Lemma 3] we have that
2
B [Sa(e";) - Sa(é,,)]
Ii-1(075 (045 Soa,))

Notice that the constant is different from that in Lemma [3| since we have S, € [—1,1] for all
a € A, whereas in Lemma [3| there is R, € [—1/2,1/2]. From data-processing inequality, since
Sa@@) = f(Ra((;t)), there should be

1(07; (61, S 5,))) < 1(055 (01, Roa,))-

< 2d.

Also there is

E[Sa(ég) - Sa(é,,)]Q E[f(Ra(§;)> - f<Ra(§,,))]

> [inf ()] ‘E[R,5:) — Ra@ﬂz
(%)
> C((b)iz E[Ra(é;‘) - Ra(ét)]Q’

where[(7)|is the consequence of

—1
inf /() = P E[(67) (z — W)] > inf(6~")/(2) = [ sup ¢>’(y)] .
Therefore there is o
L1(07560:) < 2C(¢)%d
where I is defined in (AT0). This proves Proposition
On the other hand, let {A;}X_, be an ¢/C(¢)-covering of A with respect to the Euclidean norm, i.e.
lar —azll2 <€/C(¢), Vai,az € Ag, k=1,--- | K.

Define
O = O(_l(Ak) ={0cO:af) e A}.

Apparently {(9;.3},5,1 is a partition of ©. Moreover, for any k& € {1,--- , K} and 01, 5 € O, there is

|1 (61),02) — p(a(Ba),05)| = [B(a(61)"02) — p(x(62) T 62)]
= C(¢) - |a(61) 02 — a(6) 65|
< C@) - [la(0r) —a(f)]2- 12l <& (Al4)
where the last inequality follows from that ||a; — as |2 < €/C(¢) and that © C B,4(0, 1).



Similar as in the proof of Proposition @}

€

d
N(A¢/C(@). ] - ) < N (B0 1).¢/C(0). | - 1) < (20(@ . 1) |

Therefore
€

K< <2C<¢> H)d.

Therefore by choosing € = v/2C(¢)d//T in Theorem we arrive at

BayesRegret(T; 715) < J 2C(¢)2%d - dlog (1 —+ V?) T+ \/§C(¢)dﬁ

V2C(¢)dV'T (J log (1 + V?) + 1)

2C(¢)dV'T - \llog (1 + ﬁ) +1

IN

IN

d

IN

2C(¢)d\l Tlog (3 + 3{?) .

F Proof of Theorem 4

For simplicity, we omit the superscript L in ¢ throughout this proof. We first show that, for any
€ € (0,¢(8) — 1/2) there exists a partition {© }/< | such that (3) holds and

K<1(1+ 2 )d. (A15)
T §— ¢~ (e(0) —¢)
Let real-number sequence sg, S1, - - - , S, be defined by

so = ¢ (6(6) —e),

I
>

51

52

o}
ss = ¢ H(6) + 2),

sp-1 = ¢ (0(0) + (L —2)e),
= 1

SL

where we choose L such that ¢(0) + (L — 2)e < (1) < $(d) + (L — 1)e. In addition, let s; = —s;
forj =0,..., L. Notice that since 0 < ¢ < ¢(d) — 1/2, we have sp > 0. For{ =1,--- | L — 1, let

Qr={0€0:s,<a(0)0<sp1},
and let
Q={0€0:s0<a(f)T0<s}
Similarly for  =1,--- , L — 1, we can define
Q) ={0€0:5,,,<ald)0<s},

and
Q,={0e€0:s <al®)o<s}.



From our assumption there is § < |a(6) "] < 1 for all § € ©, hence

(Ue)s(Ua)-e

Foreach/ =1,...,L,let { Ay ;_1/,:1 be an (sy — s¢—1)-covering of A with respect to the Euclidean
norm, i.e. foreachj =1,---, Jy,

lai —azll2 < s¢ — 501, Vai,az € Ayj.

And let { A}, j’il be an (s,_, — s})-covering of A with respect to the Euclidean norm. Correspond-
ingly, let {©y; }'lel be defined by

O ={0€ Qr:a(f) € Ay}
Then {©4,} 72, is a partition of Q, and for cach j = 1,--- , Ji, let 0,0' € O, there is
p(a(0),0) = p(e(6"),0) $(c(6)70) — d(a(6)70)
¢(a(0)0) — ¢(a(0) 0 — (50 — 50-1))
¢(s0) = d(se = (50— s0-1)) = ¢,

~
INS

A
INZ

where ()] comes from that
a(f)70—a(0)"0 < [|a®) — a@)20l0)2 < se— se-1,

and|(k)|follows from the fact that gb(x) — d)(x —(sg— 54,1)) is decreasing in « when x > sy — sy_1.
Let {©; }¢,; be the counterpart of {Oy; }¢,; defined with respect to { A} }¢,;, then {Oy; }7,;U{O); }e
is a valid partition of ©. Notice that

S1—8S0<S2—81<---<S8—S8L-1,

we thence have
L L
Ko< YY)
=1 =1

L
2ZN(A, se—se—1, - [|2)

<
=1
< 2L-N(A,s1 — 0, - [|2)
1 2 ‘
< —(1+ : Al6
= e( 5¢>1(¢(5)6)> o

Hence we have proved (AT3). Let ®(z) = § — ¢~ 1(¢(6) — ), then there is ®(0) = 0 and
@'(0) = zray—g0))- Also notice that

O"(0) = —(¢7)'(6(6) )|

201
BRCOETORE (A1

where we used the fact that ¢(0) > 1/2. Hence for small enough e, there is ®(e) > ®'(0) - e. Notice
that from Theorem T]and Conjecture(I] for all 7" and € > 0 there is

/d
BayesRegret(T;715) < 5 logK-T+e-T

< \/;Z'<—log(e)+dlog (1—}—(1)?6))) ‘T+e-T (A18)




Let e = d/+/2T, for large enough 7" we have

JZ <log(¢?)+dlog <1+ ;@)) -T+d\/§

BayesRegret(T;775) <
d(d+1) 2V2T
< 5 .T.(Jlog<1+¢,(0)d>+l)
< Wdd+1)T- \llog (1—4—;:{3@) +1
6v/2T BePd
< Qdﬁ.dlog <3+ y '(1+e55)2>' (A19)
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