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Abstract

This paper introduces versatile filters to construct efficient convolutional neural
network. Considering the demands of efficient deep learning techniques running
on cost-effective hardware, a number of methods have been developed to learn
compact neural networks. Most of these works aim to slim down filters in different
ways, e.g. investigating small, sparse or binarized filters. In contrast, we treat
filters from an additive perspective. A series of secondary filters can be derived
from a primary filter. These secondary filters all inherit in the primary filter
without occupying more storage, but once been unfolded in computation they could
significantly enhance the capability of the filter by integrating information extracted
from different receptive fields. Besides spatial versatile filters, we additionally
investigate versatile filters from the channel perspective. The new techniques are
general to upgrade filters in existing CNNs. Experimental results on benchmark
datasets and neural networks demonstrate that CNNs constructed with our versatile
filters are able to achieve comparable accuracy as that of original filters, but require
less memory and FLOPs.

1 Introduction

Considerable computer vision applications (e.g. image classification [19], object detection [15],
subspace clustering [27], and image segmentation [13]) have received remarkable progress with
the help of convolutional neural networks (CNNs) in last decade. Table 1 summarizes profiles of
benchmark CNNs on the ILSVRC 2012 dataset [17]. From the pioneering AlexNet [11] to the
recent ResNeXt-50 [25], the storage of networks is slightly saved, but the classification accuracy has
been continuously improved. This performance improvement comes from sophisticatedly designed
calculations introduced in these networks, e.g. residual modules in ResNet [7] and versatile modules
in GoogleNet [20]. These networks are widely used in the scenario of abundant computation and
storage resources, but they cannot easily adapt to mobile platforms, such as smartphones and cameras.
Taking ResNet-50 [7] with 54 convolutional layers as an example, about 97MB memory is required
to store all filters and over 4.0× 109 times of floating number multiplications have to be operated for
an image.

Over the years, different techniques have been proposed to tackle the contradiction between resources
supply of low performance devices and demands of heavy neural networks. One common approach
is to explore and eliminate redundancy in pre-trained CNNs. For example, Han et.al. [6] discarded
subtle weights in convolution filters, Wang et.al. [23] investigated redundancy between weights,
Figurnov et.al. [5] removed redundant connections between input data and filters, Wang et.al. [22]
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Table 1: Properties of benchmark CNN models learned on the ILSVRC 2012 dataset.

Model Weights Memory FLOPs Top1-err Top5-err
AlexNet [11] 6.1× 107 232.5MB 0.7× 109 42.9% 19.8%

VGGNet-16 [19] 13.8× 107 526.4MB 15.4× 109 28.5% 9.9%
GoogleNet [20] 0.7× 107 26.3MB 1.5× 109 34.2% 12.9%
ResNet-50 [7] 2.6× 107 97.2MB 4.1× 109 24.7% 7.8%

ResNeXt-50 [25] 2.5× 107 95.3MB 4.2× 109 22.6% 6.5%

explored compact feature maps for deep neural networks, and Wen et.al. [24] investigated the
sparsity from several aspects. There are also some methods to approximate the original neural
networks by employing more compact structures, e.g. quantization and binarization [1, 14, 3], matrix
decomposition [4], and teacher student learning paradigm [8, 16]. Instead of patching pre-trained
CNNs, some highly efficient network architectures have been designed for applications on mobile
devices. For example, ResNext [25] aggregated a set of transformations with the same topology,
Xception [2] and MobileNet [9] used separable convolutions with 1× 1 filters, and ShuffleNet [26]
encouraged pointwise group convolutions and channel shuffle operations.

Most of these existing works learn efficient CNNs through slimming down filters, e.g. making
great use of smaller filters (e.g. 1 × 1 filters) and developing various (e.g. sparse and low-rank)
approximation of filters. Given such lightweight filters, the network performance is struggling to keep
up, due to limited capacity of 1× 1 filters or approximation error of filters. Rather then subtracting
(i.e. slimming down filters), another thing to consider is adding. We must ask whether the value of a
normal filter has already been maximally explored and can a normal filter take more roles than usual.

In this paper, we propose versatile filters for efficient convolutional neural networks. We produce
a series of smaller secondary filters from a primary filter based on some pre-defined rules. These
secondary filters inherit weights from the primary filter, but they will have different receptive fields
and extract features from the spatial dimension. The neural network is composed of primary filters,
while the strength of the network will be fully disclosed through secondary filters in computation.
Specifically, we develop versatile filters in both spatial and channel dimensions. We provide detailed
feed-forward and back-propagation of the proposed versatile filters. Experiments on benchmarks
demonstrate that, equipping CNNs with our versatile filters can lead to lower memory usages and
FLOPs, but with comparable network accuracy.

2 Approach

In this section, we illustrate the design of versatile filters, which can be applied over any filter with
height and width greater than one. Besides spatial versatile filters, we additionally investigate versatile
filters from the channel perspective.

2.1 Spatial Versatile Filters

Consider the input data x ∈ RH×W×c, where H and W are height and width of the input data
respectively, and c is the channel number, i.e. the number of feature maps generated in the previous
layer. A convolution filter is denoted as f ∈ Rd×d×c, where d× d is the size of the convolution filter.
We focus on square filters, e.g. 5× 5 and 3× 3, which are most widely used in modern CNNs such
as ResNet [7], VGGNet [19], ResNeXt [25], and ShuffleNet [26]. The conventional convolution can
be formulated as

y = f ∗ x, (1)

where ∗ is the convolution operation, y ∈ RH′×W ′
is the output feature map of x, and H ′ and W ′

are its height and width, respectively.

Compared with traditional fully connected neural networks, one of the most important advantages
of CNNs is that the size (d × d) of filters in a convolutional layer can be much smaller than that
(H ×W ) of the input. For example, 7× 7 filters in the first layer of ResNet-50 [7] are used to process
the 224× 224 input. Fixing the output size, the complexity of floating number multiplications of a
filter in the fully-connected layer is O(cHWH ′W ′), while the complexity of a convolution filter is
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(a) Input data (b) Convolution operations

(c) Original features

(d) Spatial versatile features

Figure 1: An illustration of the proposed spatial versatile convolution filter. Given the input data (a),
there are four sub-regions (b) covered by a 5× 5 convolution filter with stride 2, and their convolution
results are stacked into a feature map (c). In contrast, a spatial versatile filter will be applied three
times on each sub-region with different secondary filters, i.e., 5× 5 blue, 3× 3 green, and 1× 1 red
in (b) to generate three feature maps (d).

only O(cd2H ′W ′). In addition, convolution operations extract features from small regions, which is
beneficial for subsequent tasks such as recognition and detection.

Receptive field is an important concept introduced by convolutions. Larger receptive field would
allow neurons to detect changes over a wider area, but result in a less precise perception. On the other
hand, smaller receptive field would enable neurons to detect fine details. It is therefore reasonable
to integrate neurons of larger receptive fields and smaller receptive fields to extract comprehensive
and accurate features. For example, versatile modules [20] introduce parallel paths with different
receptive field sizes by making use of multiple filters with different sizes, e.g. 3 × 3 and 5 × 5
convolutions. Explicitly brining in filters of different sizes is a straightforward approach to process
the input information in different scales, but the significant increase in storage of these filters could
be a new challenge. Most importantly, though filters of different sizes in the same layer have different
receptive fields, their receptive fields would have some overlap, which indicates the prospective
connections between their corresponding filters.

Taking f ∈ Rd×d as a primary filter, we propose to derive a series of secondary filters {f1, f2, · · · , fs}
from f , where s = dd/2e. To maximally explore the potential of primary filter f , each secondary
filters fi is directly inherited from f with a mask Mi,

Mi(p, q, c) =

{
1, if q, p ≥ i | p, q ≤ d+ 1− i,
0, otherwise,

(2)

and fi is calculated as fi = Mi ◦ f , where ◦ is the element-wise multiplication. More specifically, f1
is the filter f itself, f2 discards the outermost circle of parameters in f , and fs is the innermost circle
of parameters in f (i.e., fs is a 1 × 1 filter given an odd d). Example secondary filters for a 5 × 5
filter can be seen in Figure 1 (b).

By concatenating convolution responses from these secondary filters, we get the feature map repre-
sented as

y = [(M1 ◦ f) ∗ x+ b1, ..., (Ms ◦ f) ∗ x+ bs] ,

s.t. s = dd/2e, {Mi}si=1 ∈ {0, 1}d×d×c,
(3)

where b1, ..., bs are bias parameters.

By embedding Fcn. 3 into conventional CNNs, we can obtain convolution responses simultaneously
from s secondary filters of different receptive fields. The number of the output channels of the
proposed versatile filter is s times more than that of the original filter, and feature maps of a
convolutional layer using the proposed versatile filters contain features in different scales at the same
time.

Note that convolution operations (∗) in Fcn. 3 share the same stride and padding parameters for
the following two reasons: 1) dimensionalities of feature maps generated by secondary filters with
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different receptive fields have to be consistent for the subsequent calculation; 2) centers of these
secondary filters are the same, and the s-dimensional feature is thus a multi-scale representation of a
specific pixel at x. The schematic of the proposed versatile filters is shown in Fig. 1, and the detailed
back-propagation procedure of the proposed spatial versatile convolution filters can be found in the
supplementary materials.

Discussion: Besides the proposed method as shown in Fcn. 3, a naïve approach to aggregate features
from multiple secondary filters can be

y =

s∑
i=1

(Mi ◦ f) ∗ x+ b,

s.t. s = dd/2e, {Mi}si=1 ∈ {0, 1}d×d×c,
(4)

which calculates the resulting feature map as a linear combination of features from different receptive
fields. Since the convolution ∗ is exactly an linear operation, the sum of different convolution
responses on the same input can be rewritten as the response of a combined convolution filter
employed on this data, i.e.,

y =

s∑
i=1

(Mi ◦ f) ∗ x+ b = [(
s∑

i=1

Mi) ◦ f ] ∗ x+ b. (5)

Therefore, Fcn. 4 is equivalent to adding a fixed weight mask on conventional convolution filters,
which cannot produce more meaningful calculations and informative features in practice. We will
compare the performance of this naïve approach in experiments.

2.2 Analysis on Spatial Versatile Filters

Compared with original convolution filters, the proposed spatial versatile filters can provide more
feature maps without increasing the number of filters. Therefore, we further analyze the memory
usage and computation cost of neural networks using the proposed spatial versatile filters.

The proposed spatial versatile convolution operation as shown in Fcn. 3 can generate multiple feature
maps using a fixed number of convolution filters. Thus the computational complexity and memory
usage of CNNs for extracting the same amount of features can be reduced significantly as analyzed in
Proposition 1.

Proposition 1. Given a convolutional layer for extracting feature maps y ∈ RH′×W ′×n using the
proposed spatial versatile filters (Fcn. 3), the space complexity of d × d filters with c channels is
O(d2cn/s) and the computational complexity is O(

∑s
i=1(d− 2i+ 2)2cH ′Wn/s).

Proof. For the desired feature map y ∈ RH′×W ′×n, where H ′ and W ′ are height and width of
y, respectively. Commonly, we need n convolution filters {fi}ni=1 of size d × d × c. The space
complexity for storing these filters is O(d2cn), and the computational complexity for generating y is
O(dcH ′W ′n).
In contrast, the proposed spatial versatile convolution operation can extract s = ddi/2e sets of feature
maps simultaneously. Thus, for generating N feature maps, the space complexity for storing the
proposed spatial versatile convolution filters is

O(d2cn/s). (6)

The computational complexity for generating feature maps using the proposed spatial versatile filters
in different scales is various, which affects by the size of convolution filters, i.e., the number of
non-zero elements in each Mi. The number of non-zero elements in Mi is (d− 2i+ 2)2 as shown in
Fcn. 2, thus the computational complexity for the i-th scale isO((d−2i+2)2cH ′W ′n/s). Therefore,
the computational complexity of the entire layer can be calculated as:

O(
s∑

i=1

(d− 2i+ 2)2cH ′W ′n/s), (7)

which is definitely smaller than that O(d2cH ′W ′n) of the traditional convolution operation when
s > 2.
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(a) Original convolution (b) Channel versatile filters

Figure 2: An illustration of the proposed channel versatile filters. The original filter can only generate
only one feature map for the given input data, and the proposed method can provide multiple feature
maps simultaneously according to the channel stride parameters. Each color represents a secondary
filter and its corresponding feature map.

2.3 Channel Versatile Filters

A spatial versatile filter was proposed in Fcn. 3, which generates a series of secondary convolution
filters by adjusting the height and width of a given convolution filter. However, there are still obvious
redundancy in these secondary filters, i.e., the number of channels of each convolution filter is much
larger than its height and width. In addition, given 1× 1 primary filters, Fcn. 3 will be reduced to
Fcn. 1 for conventional convolution operation. Considering the wide use of 1× 1 filters in modern
CNN architectures such as ShuffleNet [26] and ResNeXt [25], etc., we proceed to develop versatile
filters from the channel perspective.

The most important property of convolution filters is that their weights are shared by the input data. A
convolution filter used to have the same depth as the input data, and slide along the width and height
of the input data with some stride parameters. If the depth of the input is 512, a 1× 1× 512 filter has
to take a large number of floating number multiplications to weight different channels and integrate
the information across different input channels. However, this coarse information summarization
over all channels is difficult to highlight characters of individual channels, especially when there are
extremely many channels. Hence, we define secondary filters for original convolution filters with the
help of channel stride, i.e.

y = [f1 ∗ x+ b1, f2 ∗ x+ b2, · · · , fn ∗ x+ bn] ,

s.t. ∀ i, fi ∈ Rd×d×c, n = (c− ĉ)/g + 1.
(8)

where g is the channel stride parameter and ĉ < c is the number of non-zero channels of secondary
filters. fi is the i-th unduplicated copy of primary filter f given the length ĉ and the stride g. Therefore,
a filter will be used n times simultaneously to generate more feature maps by introducing Fcn. 8.
Example secondary filters using the proposed channel stride approach are given in Figure 2. In
addition, the proposes channel versatile filters can also significantly reduce the memory usage and
computational complexity of CNNs, which can be similarly derived as that in Proposition 1.

3 Experiments

In this section, we will implement experiments to validate the effectiveness of the proposed multi-
scale convolution filter on several benchmark image datasets, including MNIST [12], ImageNet
(ILSVRC 2012 [17]), etc. Experimental results will be analyzed to further understand the benefits of
the proposed approach.

3.1 Experiments on MNIST

The MNIST dataset consists of 70, 000 images drawn from ten categories, which is split into 60, 000
training and 10, 000 testing images. Each sample in this dataset is a 28× 28 gray-scale digit (from 0
to 9) image. In addition, the last 10, 000 images in the training set is selected as the validation set for
determining the final model.
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Spatial versatile filters: We first tested the performance of the proposed spatial versatile filter in
Fcn. 3 using a LeNet for classifying the MNIST dataset learned on MatConvNet [21]. The baseline
model has four convolutional layers of size 5 × 5 × 1 × 20, 5 × 5 × 20 × 50, 4 × 4 × 50 × 500,
and 1× 1× 500× 10, respectively, which accounts about 1.6MB (filters are stored in 32-bit floating
values), and the accuracy is 99.20%. Then, several models with different architectures and strategies
were trained, and their results are show in Table 2. Wherein, memory usage of convolution filters and
floating number multiplications (FLOPs) of each model are also provided.

Versatile-Model 1 is the network using the proposed versatile filters (Fcn. 4) with the same architecture
as that of the baseline model. Since it does not change the size of output data, its memory usage and
multiplications are also the same as those of the baseline model. Not surprisingly, there is not any
performance enhancement by exploiting this approach since the network can adjust parameters in
convolution filters according to the weight mask (

∑s
i=1 Mi).

Table 2: The performance of the proposed spatial versatile filters on MNIST.

Model Weights Memory FLOPs Accuracy
Baseline 4.3× 105 1681.6KB 22.93×105 99.20%

Versatile-Model 1 4.3× 105 1681.6KB 22.93×105 99.20%
Versatile-Model 2 2.2× 105 852.0KB 12.00×105 99.15%
Versatile-Model 3 2.2× 105 852.0KB 12.00×105 99.22%

Versatile-Model 2 and Versatile-Model 3 adopted the proposed versatile convolution operation as
shown in Fcn. 3. There are multiple bias term b1, ..., bs in Fcn. 3 for controlling features generated
by different secondary filters from an versatile convolution filter. The difference between Model 2
and Model 3 is that, bias term of convolution filters in Model 3 are shared, i.e., b1 =, ...,= bs, and
gradients of b are also averaged.

The proposed method can generate multiple feature maps using a convolution filter whose size is
larger than 2 × 2 (i.e., s = ddi/2e > 1), which will increase the number of channels in the next
layer and make the convolutional neural network enormous. Therefore, we reduce the number
of convolution filters in each layer to make the amount of feature maps in Versatile-Model 2 and
Versatile-Model 3 similar to that in the original network, as shown in Table 2. For example, numbers
of filters in the first convolutional layer of the base Model 3 are 20 and 7, respectively. However, their
output channels are 20 and 21, respectively, since a spatial versatile filter with size 5× 5 can produce
three channels outputs simultaneously.

It can be found in Table 2, Model 3 obtained a higher result (99.22%) with this strategy, which is
slightly higher than that of the baseline model. The reason is that if differences between bias terms
are extremely large, gradients of secondary convolution filters will be fundamentally different, which
makes the training of entire convolution filters difficult. The performance of Model 3 is slightly
higher than that of the baseline model, but has significantly lower memory usage and FLOPs, which
demonstrates the effectiveness of the proposed versatile convolution filters. In addition, the detailed
structure of Versatile-Model 3 in Table 2 and the corresponding demo code for verifying the proposed
method can be found in our supplementary materials.

Filter Visualization: Convolution filters are used for extracting intrinsic information from natural
images. Thus, these filters often present some specific structures, such as line, blob, etc. However, the
proposed versatile convolution filters adopt a more complex approach to capture useful information
from input images, i.e., a large filter consists of a series of smaller filters and each of them will employ
on the input images to generate feature maps. Therefore, it is necessary to visualize and compare
filters in original CNN and the network using the proposed versatile convolution filters for having an
explicit illustration.

Fig. 3 illustrates convolution filters in the first layer of the Baseline and Model 3 in Table 2, respec-
tively. Since the proposed approach is fundamentally different to the original convolution filters,
filters using Fcn. 3 present more complex structures. Specifically, each 3×3 area in Fig. 3 (b) still can
be seen as an independent convolution filter with complex structure and obvious magnitude change.
In contrast, some 3× 3 areas in Fig. 3 (a) are extremely smooth, which cannot provide distinctive
information.
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(a) Original convolution filters.

(b) Versatile convolution filters.

Figure 3: Visualization of example filters learned on MNIST.

Channel versatile filters: After investigating the effectiveness of the proposed spatial versatile
convolution operation, we shall further test the performance of the proposed channel versatile filters
as described in Fcn. 8, namely versatile v2. Note that, for the first layer and the last layer in neural
networks, we do not apply the channel stride approach, since the input channel of the first layer is
usually very small and the output channel of the last layer is exactly the number of ground-truth
labels.

There are two important parameters in Fcn. 8, i.e., the number of channels ĉ of the convolution filter
f̂ and the stride g. We then established three models using the proposed versatile filter with different
ĉ and g, and trained them on the MNIST dataset as detailed in Table. 3.

Table 3: The performance of the proposed channel versatile filters on MNIST.

Model c− ĉ g Weights Memory FLOPs Accuracy
Baseline - - 4.3× 105 1681.6KB 22.93×105 99.20%

Versatile v2-Model 1 1 1 1.18× 105 460.5KB 12.17×105 99.18%
Versatile v2-Model 2 1 2 1.18× 105 460.5KB 11.17×105 99.15%
Versatile v2-Model 3 2 1 0.79× 105 309.1KB 12.12×105 99.07%

As mentioned above, the channel versatile filters can reduce the number of convolution filters by
a factor of n = (c − ĉ)/g + 1, therefore, when we set ĉ − c = 1 and g = 1, we can reduce about
half convolution filters and maintain the similar amount of feature maps. For example, the size of
the second layer’s convolution filter in Versatile-Model 3 is 5 × 5 × 21 × 17, and the size of the
second layer’s convolution filter in Versatile v2-Model 1 is 5× 5× 21× 9. As a result, the Versatile
v2-Model 1 achieved a 99.18 accuracy, which is slightly lower than that of the baseline model, but its
memory usage and FLOPs have been reduced significantly.

Similarly, when we set ĉ − c = 1 and g = 2 (i.e., Versatile v2-Model 2), the network obtained
similar results to those of Versatile v2-Model 1. Furthermore, when ĉ− c = 2 and g = 1 in Versatile
v2-Model 3, the number of convolution filters will be further reduced. However, since the number of
filters is very small, the representability of this network is also lower. The Versatile v2-Model 3 with
the smallest memory usage and FLOPs obtained a 99.07% classification accuracy. Therefore, we set
ĉ− c = 1 and g = 1 in the following experiments for having a best trade-off.

3.2 Large Scale Visual Recognition Experiments

Experiments in the above chapter show that the proposed spatial versatile filters in Fcn. 3 and the
channel versatile filters are able to replace the traditional convolution operation on the MNIST dataset.
We next employed the proposed method on an extremely large image dataset, namely ImageNet
ILSVRC 2012 dataset [17], which contains over 1.2M training images and 50k validation images.
Three baseline architectures, AlexNet [11], ResNet-50 [7] and ResNeXt-50 [25], were selected for
conducting the following experiments. Note that, all training settings such as weight decay and
learning rate used the default setting to ensure fair comparisons.

AlexNet: AlexNet is one of the most classical deep CNN models for large scale visual recognition,
which has over 230MB parameters and a 80.2% accuracy on the ImageNet dataset with 1000 different
categories. This network has 8 convolutional layers, sizes of convolution filters in the first six layers
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are larger than 1× 1, i.e., 11× 11× 3× 96, 5× 5× 48× 256, 3× 3× 256× 384, 3× 3× 192× 384,
3× 3× 192× 256, and 6× 6× 256× 4096.

Since sizes of convolution filters used in this network are much larger than that in other networks,
resources required by this network can be significantly reduced by exploiting the proposed versatile
convolution operation. For example, the parameter for the first convolutional layer is s1 = d11/2e =
6, thus the number of parameters in this layer with versatile convolution filters is only 11×11×3×16.
In this manner, we established a new network (Versatile-AlexNet in Table 4) and reduced the number
of filters in each convolutional layer according to its versatile parameter s. Specifically, sizes of
convolution filters in its first six convolutional layers are 11 × 11 × 3 × 16, 5 × 5 × 48 × 86,
3× 3× 258× 192, 3× 3× 192× 192, 3× 3× 192× 128, and 6× 6× 256× 1366, respectively.
After training the network on the ImageNet dataset, Versatile-AlexNet using Fcn. 3 obtained a 19.5%
top5-err and a 42.1% top1-err, which are better than those of the baseline model. The memory usage
of filters was reduced by a factor of 1.76×, and the FLOPs in Versatile-AlexNet is 1.95× less than
that in the baseline model.

Furthermore, we applied the channel versatile filters (Fcn. 8) on the Versatile-AlexNet model with
ĉ− c = 1, and g = 1, namely, Versatile v2-AlexNet. In this manner, the number of convolution layer
in each layer will be reduced by a factor of 1

2 . As a result, this network achieved a 20.7% top5-err,
which is slightly higher than that of the baseline model. But, the memory usage of the entire network
is only 73.6MB, which is only about 30% to that of the baseline model.

Table 4: Statistics for versatile filters on the ImageNet 2012 dataset.

Model Weights Memory FLOPs Top1err Top5err
AlexNet [11] 6.1× 107 232.5MB 0.7× 109 42.9% 19.8%

Versatile-AlexNet 3.5× 107 131.8MB 0.4× 109 42.1% 19.5%
Versatile v2-AlexNet 1.9× 107 73.7MB 0.4× 109 44.1% 20.7%

ResNet-50 [7] 2.6× 107 97.2MB 4.1× 109 24.7% 7.8%
Versatile-ResNet-50 1.9× 107 75.6MB 3.2× 109 24.5% 7.6%

Versatile v2-ResNet-50 1.1× 107 41.7MB 3.0× 109 25.5% 8.2%

ResNeXt-50 [25] 2.5× 107 95.3MB 4.2× 109 22.6% 6.5%
Versatile v2-ResNeXt-50 1.3× 107 50.0MB 4.0× 109 23.8% 7.0%

ResNets: To further illustrate the superiority of the proposed scheme, we then employed it on the
ResNet-50 model. Although there are many layers with 1 × 1 filters in this network, it also has a
lot of convolutional layers with large filters, e.g. 3 × 3 and 7 × 7, which accounts for about half
memory usage of the entire network. In addition, ResNets introduce shortcut operations which also
provides considerable versatile features since receptive fields of neurons in different layer are various
as discussed in [18]. Therefore, it is meaningful to investigate the functionality of the versatile
convolution filters on this network.

Similarly, we reset the original convolutional layers with the proposed versatile convolution filters.
For instance, a convolutional layer of size 3× 3× 64× 128 will be converted into a new layer of size
3× 3× 64× 32 using the proposed versatile convolution filters. The performance of the original
ResNet-50 and the network using versatile filters were detailed in Table 4.

As mentioned above, there are still considerable filters in the ResNet whose sizes are larger than 1×1.
Thus, its memory usage and FLOPs were reduced obviously by exploiting the proposed versatile
convolution filters. Versatile-ResNet-50 with the same amount feature maps achieved a 7.6% top-5
accuracy, which is slightly lower than that of the baseline models with only 75.6MB and 3.2× 109

FLOPs.

In addition, Versatile v2-ResNet-50 with the same amount feature maps achieved a 8.2% top-5
accuracy, which is slightly higher than that of the baseline models. Its memory usage is only about
41.7MB, which is only about 1

2 to that of the original network. Therefore, our Versatile v2-ResNet-50,
which is a more portable alternative to the original ResNet-50 model.

Moreover, we attempted to replace original convolution filters by the proposed versatile convolution
filters in ResNeXt-50. This network is an enhanced version of ResNet-50, which divides convolutional
layers into several smaller groups and achieves a higher performance, and avoids larger convolution
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filters. Since more than 90% convolution filters in this network are 1× 1 filters, Fcn. 3 cannot obtain
an obvious enhancement. However, the proposed channel versatile scheme in Fcn. 8 can effectively
reduce the number of massive 1 × 1 convolution filters. Thus, we directly applied the versatile
v2 convolution filters with channel stride approach on it. After applying the proposed versatile
convolution filter on the ResNeXt-50 model, we obtained a 7.0% top-5 classification error rate, which
is slightly higher than its baseline model with only about half memory usage. The detailed statistics
of the Versatile v2-ResNeXt-50 using the proposed versatile filters were also shown in Table 4.

Comparing Versatile v2-ResNet-50 and Versatile v2-ResNeXt-50, we found that the memory usage
of Versatile v2-ResNet-50 is lower than that of the Versatile v2-ResNeXt-50. This is because the
proposed versatile filters can effectively reduce the memory and FLOPs of filters whose sizes are
larger than 1× 1, which provides a more flexible way for designing CNNs with high performance
and portable architectures.

3.3 Comparing with Portable Architectures

Besides sophisticate CNNs such as AlexNet and ResNet-50 with heavy architectures, a variety of
recent works attempt to design neural networks with portable architectures and comparable perfor-
mance. MobileNet [9] utilized separable convolution to reduce memory usage and computational
cost of massive large convolution filters. ShuffleNet [26] further proposed shuffle operation to mixed
features in different groups and achieved higher results.

Table 5: An overall comparison of state-of-the-art portable CNNs on the ILSVRC2012 dataset.

Model Weights Memory FLOPs Top1err
1.0 MobileNet-224 [9] 0.4× 107 16.0MB 0.5× 109 29.4%

ShuffleNet 2× (g = 3) [26] 0.7× 107 20.6MB 0.5× 109 26.3%
Versatile v2- ShuffleNet 2× (g = 3) 0.4× 107 14.0MB 0.5× 109 27.6%

Table 5 summarizes state-of-the-art CNN architectures, including their memory usages, FLOPs, and
recognition results on the ILSVRC 2012 dataset. Obviously, MobileNet has the smallest model size
and FLOPs, but its classification accuracy is lower than those of other networks. ShuffleNet with the
similar FLOPs to that of the MobileNet achieves a higher accuracy, with a slightly higher memory
usage. By exploiting the proposed versatile convolution filters on the ShuffleNet 2× (g = 3), we
reduced more than 30% weights of convolution filters and achieved the smallest model size with a
comparable accuracy, which is a more portable convolutional neural network.

In addition, to investigate the generalization ability of the proposed versatile convolution filter, we
further employed it on the single image super-resolution experiment. We selected the VDSR (Very
Deep CNN for Image Super-resolution [10]) as the baseline model and the Versatile-VDSR with the
same amount of feature maps but less memory usage and FLOPs achieved a higher performance.
Detailed experiments and analysis can be found in the supplementary materials.

4 Conclusions and Discussions

Exploring convolutional neural networks with low memory usage and computational complexity is
very essential so that these models can be used on mobile devices. In fact, the main waste in a general
neural network is that a convolution filter with massive parameters can only produce one feature for a
given data. In order to make full use of convolution filters, this paper proposes versatile convolution
filters from spatial and channel perspectives. Thus, we can use fewer parameters to generate the same
amount of useful features with a lower computational complexity at the same time. Experiments
conducted on benchmark image datasets and models show that the proposed method can not only
reduce the requirement of storage and computational resources, but also enhance performance of
CNNs, which is very effective for establishing portable CNNs with high accuracies. In addition,
the proposed method can be easily implemented using the existing convolution component, we will
further embed it into other applications such as object detection and image segmentation.
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