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Algorithm 1: Gibbs sampling (MAP via SGD) for iSHM.
Inputs: yi: the observed labels, xi: covariate vectors, Kmax: the upper-bound of the number of hyperplanes,
IPrune: the set of iterations at which the hyperplanes with

∑
i bik = 0 are pruned.

Outputs: the maximum likelihood sample (MAP solution) that includes K active support hyperplanes βk and
their weights rk, where hyperplane k is defined as active if

∑
i bik > 0.

1: Initialize the model parameters with βk = 0, K = Kmax, and rk = 1/Kmax.
2: for iter = 1 : maxIter do
3: if Gibbs sampling then
4: Sample mi; Sample {mik}k;
5: else
6: Retrive a mini batch
7: if iter ∈ IPrune then
8: Sample bik ∼ Bernoulli(pik), pik = 1− e−rk ln(1+e

β′kxi )

9: if yi = 1 and
∑
k bik = 0 then

10: (bi1, . . . , biK) ∼ Multinomial
(
1, pi1∑K

k=1
pik

, . . . , piK∑K
k=1

pik

)
11: end if
12: end if
13: end if
14: for k = 1, . . . ,K do
15: if Gibbs sampling then
16: Sample lik, ωik, βk, bβk, rk, and θik;
17: else
18: SGD update of βk and ln rk
19: end if
20: if iter ∈ IPrune and

∑
i bik = 0 then

21: Prune Expert k and reduce K by one
22: end if
23: end for
24: end for

Algorithm 2: Greedy layer-wise training for PBDN.

1: Denote x(1)
i = xi and AIC(T ) =∞.

2: for Layer t = 1 :∞ do
3: Train an iSHM to predict yi given x(t)

i ;
4: Train an iSHM to predict y∗i = 1− yi given x(t)

i ;
5: Compute P (yi |x(t)

i ), P (y∗i |x
(t)
i ), and AIC(t);

6: if AIC(t) < AIC(t− 1) then
7: Combine two iSHMs to produce x(t+1)

i ;
8: else
9: Use the first (t− 1) iSHM pairs to compute the conditional class probability P (yi |xi);

10: end if
11: end for

A Proofs

Proof of Theorem 1. Since
∑
k′ 6=k rk′ ln(1 + ex

′
iβk′ ) ≥ 0 a.s., if (6) is true, then rk ln(1 + ex

′
iβk) ≤

− ln(1− p0) a.s. for all k ∈ {1, 2, . . .}. Thus if (6) is true, then (7) is true a.s., which means the set
of solutions to (6) is included in the set of solutions to (7).
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Figure 2: Graphical representation of (a) the generative model for iSHM, (b) the asymmetric conditional class
probability function, and (c) a T -hidden-layer PBDN that stacks a pair of iSHMs after another to construct a
feedforward deep network.

B Related multi-hyperplane models

Generalizing the construction of multiclass support vector machines in Crammer and Singer [36], the
idea of combining multiple hyperplanes to define complex classification decision boundaries has been
discussed before [26–30]. In particular, the convex polytope machine (CPM) [30] exploits the idea of
learning a convex polytope to separate one class from the other. From this point of view, the proposed
iSHM is related to the CPM as its decision boundary can be explicitly bounded by a convex polytope
that encloses the data labeled as zeros, as described in Theorem 1 and illustrated in Fig. 1. Distinct
from the CPM that uses a convex polytope as its decision boundary, and provides no probability
estimates for class labels and no principled ways to set its number of equally-weighted hyperplanes,
iSHM makes its decision boundary smoother than the corresponding bounding convex polytope, as
shown in Figs. 1 (c) and (f), by using more complex interactions between hyperplanes than simple
intersection. iSHM also provides probability estimates for its labels, and supports countably infinite
differently-weighted hyperplanes with the gamma process. In addition, to solve its non-convex
objective function, the CPM relies on heuristics to force the learning of each hyperplane as a convex
optimization problem, whereas iSHM can use Bayesian inference, in which each data point assigns a
binary indicator to each hyperplane. Moreover, iSHM pair is used as the building unit to construct
PBDN to quickly boost the modeling power.

C Gibbs sampling update equations

To begin with, we sample the latent count mi and then partitions it into mik for different hyperplanes,
where the value of mi is related to how likely yi = 1 in the posterior, and the ratio mik/mi is related
to how much does expert k contribute to the overall cause of yi = 1. Below we first describe the
Gibbs sampling update equations for mi and mik.

Sample mi. Denote θi· =
∑K
k=1 θik . Since mi = 0 a.s. given yi = 0 and mi ≥ 1 given yi = 1, and

in the prior mi ∼ Pois(θi·), following the inference in Zhou [18], we can sample mi as
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(mi | −) ∼ yiPois+ (θi·) , (11)

where m ∼ Pois+(θ) denotes a draw from the zero-truncated Poisson distribution.

Sample mik. Once the latent counts mik are known, it becomes clear on how much expert k
contributes to the cause of yi = 1. Since letting mi =

∑K
k=1mik, mik ∼ Pois(θik) is equivalent

in distribution to letting (mi1, . . . ,miK) |mi ∼ Mult (mi, θi1/θi·, . . . , θiK/θi·) , mi ∼ Pois (θi·),
similar to Dunson and Herring [37] and Zhou et al. [38], we sample mik as

(mi1, . . . ,miK | −) ∼ Mult (mi, θi1/θi·, . . . , θiK/θi·) . (12)

The key remaining problem is to infer βk. Note that marginalizing out θik from (5) leads to

mik ∼ NB
[
rk, 1/(1 + e−x

′
iβk)

]
, (13)

where m ∼ NB(r, p) represents a negative binomial (NB) distribution with shape r and probability p.
We thus exploit the augmentation techniques developed for the NB distribution in Zhou et al. [39] to
sample rk, and these developed for logistic regression in Polson et al. [40] and further generalized to
NB regression in Zhou et al. [41] and Polson et al. [42] to sample βk. We outline Gibbs sampling in
Algorithm 1, where to save computation, we set Kmax as the upper-bound of the number of experts
and prune the experts assigned with zero counts during MCMC iterations. Note that except for the
sampling of {mik}k, the sampling of all the other parameters of different experts are embarrassingly
parallel.

Gibbs sampling via data augmentation and marginalization proceeds as follows.

Sample βk. Using data augmentation for NB regression, as in Zhou et al. [41] and [42], we
denote ωik as a random variable drawn from the Polya-Gamma (PG) distribution [40] as ωik ∼
PG (mik + θik, 0) , under which we have Eωik

[
exp(−ωik(ψik)2/2)

]
= cosh−(mik+rk)(ψik/2).

Since mik ∼ NB
[
rk, 1/(1 + e−x

′
iβk)

]
, the likelihood of ψik := xiβk can be expressed as

L(ψik) ∝ (eψik)
mik

(1 + eψik)
mik+θik

=
2−(mik+θik) exp(mik−θik2 ψik)

coshmik+θik(ψik/2)

∝ exp

(
mik − θik

2
ψi

)
Eωik

[
exp[−ωik(ψik)2/2]

]
.

Combining the likelihood L(ψik, ωik) ∝ exp
(
mik−θik

2 ψi
)

exp[−ωik(ψik)2/2] and the prior, we
sample auxiliary Polya-Gamma random variables ωik as

(ωik | −) ∼ PG (mik + rk, x
′
iβk) , (14)

conditioning on which we sample βk as

(βk | −) ∼ N (µk,Σk),

Σk =
(

diag(α1k, . . . , αV k) +
∑

i
ωikxix

′
i

)−1
,

µk = Σk

[∑
i

(
mik − rk

2

)
xi

]
. (15)

Note to sample from the Polya-Gamma distribution, we use a fast and accurate approximate sampler
of Zhou [43] that matches the first two moments of the true distribution; we set the truncation level of
that sampler as five.

Sample θik. Using the gamma-Poisson conjugacy, we sample θik as

(θik | −) ∼ Gamma

(
rk +mik,

ex
′
iβk

1 + ex
′
iβk

)
. (16)

Sample αvk. We sample αvk as
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(αvk | −) ∼ Gamma
(
aβ +

1

2
,

1

bβk + 1
2β

2
vk

)
. (17)

Sample bβk. We sample bβk as

(bβk | −) ∼ Gamma
(
e0 + aβ(V + 1),

1

f0 +
∑
v αvk

)
. (18)

Sample c0. We sample c0 as

(c0 | −) ∼ Gamma
(
e0 + γ0,

1

f0 +
∑
k rk

)
. (19)

Sample lik. We sample lik using the Chinese restaurant table (CRT) distribution [39] as

(lik | −) ∼ CRT(mik, rk). (20)

Sample γ0 and rk. Let us denote

p̃k :=
∑

i
ln(1 + ex

′
iβk)

/[
c0 +

∑
i
ln(1 + ex

′
iβk)

]
.

Given l·k =
∑
i lik, we first sample

(l̃k | −) ∼ CRT(l·k, γ0/K). (21)

With these latent counts, we then sample γ0 and rk as

(γ0 | −) ∼ Gamma
(
a0 + l̃·,

1

b0 − 1
K

∑
k ln(1− p̃k)

)
,

(rk | −) ∼ Gamma
(
γ0
K

+ l·k,
1

c0 + ln(1 + ex
′
iβk)

)
. (22)

D Experimental settings and additional results

Following Tipping [31], we consider the following datasets: banana, breast cancer, titanic, waveform,
german, and image. For each of these six datasets, we consider the first ten predefined random
training/testing partitions, and report both the sample mean and standard deviation of the testing
classification errors. Since these datasets, originally provided by Rätsch et al. [44], were no longer
available on the authors’ websites, we use the version provided by Diethe [45]. We also consider two
additional benchmark datasets: ijcnn1 and a9a [27, 30, 46]. Instead of using a fixed training/testing
partition that comes with ijcnn1 and a9a, for a more rigorous comparison, we use the (i, i+ 10, . . .)th
observations as training and the remaining ones as testing, and run five independent random trials
with i ∈ {1, 2, 3, 4, 5}.
We use the L2 regularized logistic regression provided by the LIBLINEAR package [47] to train
a linear classifier, where a bias term is included and the regularization parameter C is five-fold
cross-validated on the training set from (2−10, 2−9, . . . , 215).

For kernel SVM, a Gaussian RBF kernel is used and three-fold cross validation is used to tune
both the regularization parameter C and kernel width on the training set. We use the LIBSVM
package [48], where we three-fold cross-validate both the regularization parameter C and kernel-
width parameter γ on the training set from (2−5, 2−4, . . . , 25), and choose the default settings for all
the other parameters.

For RVM, instead of directly quoting the results from Tipping [31], which only reported the mean
but not standard deviation of the classification errors for each of the first six datasets in Tab. 4, we
use the matlab code1 provided by the author, using a Gaussian RBF kernel whose kernel width is
three-fold cross-validated on the training set from (2−5, 2−4.5, . . . , 25) for both ijcnn1 and a9a and
from (2−10, 2−9.5, . . . , 210) for all the others.

1http://www.miketipping.com/downloads/SB2_Release_200.zip
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We consider adaptive multi-hyperplane machine (AMM) [27], as implemented in the BudgetSVM2

(Version 1.1) software package [49]. We consider the batch version of the algorithm. Important
parameters of the AMM include both the regularization parameter λ and training epochs E. As
also observed in Kantchelian et al. [30], we do not observe the testing errors of AMM to strictly
decrease as E increases. Thus, in addition to cross validating the regularization parameter λ on
the training set from {10−7, 10−6, . . . , 10−2}, as done in Wang et al. [27], for each λ, we try
E ∈ {5, 10, 20, 50, 100} sequentially until the cross-validation error begins to decrease, i.e., under
the same λ, we choose E = 20 if the cross-validation error of E = 50 is greater than that of E = 20.
We use the default settings for all the other parameters.

Table 4: Binary classification datasets used in experiments, where V is the feature dimension.

Dataset banana breast cancer titanic waveform german image ijcnn1 a9a

Train size 400 200 150 400 700 1300 14,169 4,884
Test size 4900 77 2051 4600 300 1010 127,522 43,958
V 2 9 3 21 20 18 22 123

We consider the convex polytope machine (CPM) [30], using the python code3 provided by the
authors. Important parameters of the CPM include the entropy parameter h, regularization factor
C, and number of hyperplanes K for each side of the CPM (2K hyperplanes in total). Similar to
the setting of Kantchelian et al. [30], we first fix h = 0 and select the best regularization factor C
from {10−4, 10−3, . . . , 100} using three-fold cross validation on the training set. For each C, we try
K ∈ {1, 3, 5, 10, 20, 40, 60, 80, 100} sequentially until the cross-validation error begins to decrease.
With both λ and K selected, we then select h from {0, ln(K/10), ln(2K/10), . . . , ln(9K/10)}. For
each trial, we consider 10 million iterations in cross-validation and 32 million iterations in training
with the cross-validated parameters. Note different from Kantchelian et al. [30], which suggests that
the error rate decreases as K increases, we cross-validate K as we have found that the testing errors
of the CPM may increase once it increases over certain limits.

Table 5: Analogous table to Tab. 2 that shows the comparison of the (equivalent) number of support vec-
tors/hyperplanes between various algorithms.

LR SVM RVM AMM CPM DNN DNN DNN PBDN1 PBDN2 PBDN4 AIC AICε AIC AICε
(8-4) (32-16) (128-64) Gibbs Gibbs SGD SGD

banana 1.0 129.2 22.3 9.5 14.2 18.7 202.7 2858.7 7.6 9.4 17.2 10.0 10.0 57.5 45.9
±0.0 ±32.8 ±26.0 ±2.8 ±7.9 ±0.0 ±0.0 ±0.0 ±2.6 ±1.1 ±3.6 ±1.1 ±1.1 ±19.1 ±15.2

breast cancer 1.0 115.1 24.8 13.4 5.2 11.2 83.2 947.2 7.1 9.1 24.4 7.1 7.1 18.2 6.5
±0.0 ±11.2 ±28.3 ±0.8 ±3.7 ±0.0 ±0.0 ±0.0 ±2.8 ±1.5 ±6.0 ±2.8 ±2.8 ±10.3 ±1.0

titanic 1.0 83.4 5.1 14.9 4.8 16.0 160.0 2176.0 4.2 7.0 12.8 4.2 4.2 4.2 4.2
±0.0 ±13.3 ±3.0 ±3.1 ±3.3 ±0.0 ±0.0 ±0.0 ±0.4 ±2.5 ±1.3 ±0.4 ±0.4 ±0.4 ±0.4

waveform 1.0 147.0 21.1 9.5 4.4 9.5 55.3 500.4 5.5 10.6 35.1 12.5 12.3 10.4 7.2
±0.0 ±38.5 ±11.0 ±1.2 ±2.8 ±0.0 ±0.0 ±0.0 ±1.7 ±2.1 ±6.3 ±7.6 ±8.2 ±1.8 ±2.6

german 1.0 423.6 11.0 18.8 2.8 9.5 56.4 518.1 8.2 14.1 40.1 10.2 12.1 46.4 15.6
±0.0 ±55.0 ±3.2 ±1.8 ±1.7 ±0.0 ±0.0 ±0.0 ±2.3 ±4.5 ±7.9 ±6.0 ±7.6 ±10.5 ±1.3

image 1.0 211.6 35.8 10.5 14.6 9.7 58.9 559.2 12.9 16.4 50.4 21.7 24.1 22.4 19.4
±0.0 ±47.5 ±9.2 ±1.1 ±7.5 ±0.0 ±0.0 ±0.0 ±1.2 ±1.5 ±3.1 ±5.9 ±6.6 ±2.9 ±2.2

ijcnn1 1.0 835.2 83.4 8.2 38.0 9.4 54.3 484.2 28.4 33.9 89.5 33.9 67.3 45.0 41.6
±0.0 ±139.5 ±45.2 ±0.8 ±8.4 ±0.0 ±0.0 ±0.0 ±0.9 ±1.4 ±2.6 ±1.4 ±19.5 ±13.2 ±7.3

a9a 1.0 1884.2 26.2 28.0 2.8 8.3 36.1 194.1 24.4 39.1 198.7 24.4 24.4 48.1 26.0
±0.0 ±79.7 ±4.8 ±3.9 ±1.8 ±0.0 ±0.0 ±0.0 ±3.9 ±6.1 ±23.9 ±3.9 ±3.9 ±1.9 ±1.4

Mean of SVM

normalizedK
0.006 1.000 0.113 0.069 0.046 0.073 0.635 8.050 0.042 0.060 0.160 0.057 0.064 0.128 0.088

2http://www.dabi.temple.edu/budgetedsvm/
3https://github.com/alkant/cpm
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Figure 3: The inferred weights of the active experts (support hyperplanes) of iSHM pair of the single-hidden-
layer deep softplus network (PBDN-1), ordered from left to right according to their weights, on six benchmark
datasets, based on the maximum likelihood sample of a single random trial.
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Figure 4: Analogous to Fig. 3 for the most recently added iSHM pair of the two-hidden-layer deep softplus
network (PBDN-2).
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Figure 5: Analogous to Fig. 3 for the most recently added iSHM pair of the three-hidden-layer deep softplus
network (PBDN-3).
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Figure 6: Analogous to Fig. 3 for the most recently added iSHM pair of the four-hidden-layer deep softplus
network (PBDN-4).
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