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Abstract

We analyze the Kozachenko-Leonenko (KL) fixed k-nearest neighbor estimator
for the differential entropy. We obtain the first uniform upper bound on its perfor-
mance for any fixed k£ over Holder balls on a torus without assuming any condi-
tions on how close the density could be from zero. Accompanying a recent mini-
max lower bound over the Holder ball, we show that the KL estimator for any fixed
k is achieving the minimax rates up to logarithmic factors without cognizance of
the smoothness parameter s of the Holder ball for s € (0, 2] and arbitrary dimen-
sion d, rendering it the first estimator that provably satisfies this property.

1 Introduction

Information theoretic measures such as entropy, Kullback-Leibler divergence and mutual informa-
tion quantify the amount of information among random variables. They have many applications in
modern machine learning tasks, such as classification [48], clustering [46, 58, 10, 41] and feature
selection [1, 17]. Information theoretic measures and their variants can also be applied in several
data science domains such as causal inference [18], sociology [49] and computational biology [36].
Estimating information theoretic measures from data is a crucial sub-routine in the aforementioned
applications and has attracted much interest in statistics community. In this paper, we study the prob-
lem of estimating Shannon differential entropy, which is the basis of estimating other information
theoretic measures for continuous random variables.

Suppose we observe n independent identically distributed random vectors X = {Xi,...,X,}
drawn from density function f where X; € R?. We consider the problem of estimating the dif-
ferential entropy

W) =—[f@)nf(z)de, (D
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from the empirical observations X. The fundamental limit of estimating the differential entropy is
given by the minimax risk

inf sup (E(il(X) - h(f))z) 2 , 2)
h feF

where the infimum is taken over all estimators  that is a function of the empirical data X. Here F
denotes a (nonparametric) class of density functions.

The problem of differential entropy estimation has been investigated extensively in the literature.
As discussed in [2], there exist two main approaches, where one is based on kernel density esti-
mators [30], and the other is based on the nearest neighbor methods [56, 53, 52, 11, 3], which is
pioneered by the work of [33].

The problem of differential entropy estimation lies in the general problem of estimating nonpara-
metric functionals. Unlike the parametric counterparts, the problem of estimating nonparametric
functionals is challenging even for smooth functionals. Initial efforts have focused on inference of
linear, quadratic, and cubic functionals in Gaussian white noise and density models and have laid the
foundation for the ensuing research. We do not attempt to survey the extensive literature in this area,
but instead refer to the interested reader to, e.g., [24, 5, 12, 16, 6, 32, 37, 47, 8, 9, 54] and the refer-
ences therein. For non-smooth functionals such as entropy, there is some recent progress [38, 26, 27]
on designing theoretically minimax optimal estimators, while these estimators typically require the
knowledge of the smoothness parameters, and the practical performances of these estimators are not
yet known.

The k-nearest neighbor differential entropy estimator, or Kozachenko-Leonenko (KL) estimator is
computed in the following way. Let R;; be the distance between X; and its k-nearest neighbor
among {X1,..., X;—1, Xi+1,..., X, }. Precisely, R; i, equals the k-th smallest number in the list
{IX: = Xj|l - 4 # i,j € [n]}, here [n] = {1,2,...,n}. Let B(z, p) denote the closed {5 ball
centered at x of radius p and A be the Lebesgue measure on R%. The KL differential entropy
estimator is defined as

k(X)) =Tk — (k) + =57 In (EA(B(X,, Rig))) 3)

where () is the digamma function with 1(1) = —v, v = — [ e "' Intdt = 0.5772156.. . . is the
Euler—Mascheroni constant.

There exists an intuitive explanation behind the construction of the KL differential entropy estimator.
Writing informally, we have

1 n 1 n R
h =E(-1 X))~ — —1 X;) ~ — —1 Xi), 4
(f) = Eg[=n f(X)] n; n f(X3) n; n f(X3) “)
where the first approximation is based on the law of large numbers, and in the second approxima-
tion we have replaced f by a nearest neighbor density estimator f. The nearest neighbor density
estimator f(X;) follows from the “intuition” !that

FEINBX Ri)) =~ - ®

Here the final additive bias correction term In k — (k) follows from a detailed analysis of the bias
of the KL estimator, which will become apparent later.

We focus on the regime where £ is a fixed: in other words, it does not grow as the number of samples
n increases. The fixed k version of the KL estimator is widely applied in practice and enjoys smaller
computational complexity, see [52].

There exists extensive literature on the analysis of the KL differential entropy estimator, which we
refer to [4] for a recent survey. One of the major difficulties in analyzing the KL estimator is that
the nearest neighbor density estimator exhibits a huge bias when the density is small. Indeed, it was
shown in [42] that the bias of the nearest neighbor density estimator in fact does not vanish even

"Precisely, we have fB(X’_ Riw) f(u)du ~ Beta(k,n — k) [4, Chap. 1.2]. A Beta(k,n — k) distributed
X e,

"

random variable has mean



when n — oo and deteriorates as f(z) gets close to zero. In the literature, a large collection of work
assume that the density is uniformly bounded away from zero [23, 29, 57, 30, 53], while others put
various assumptions quantifying on average how close the density is to zero [25, 40, 56, 14, 20, 52,
11]. In this paper, we focus on removing assumptions on how close the density is to zero.

1.1 Main Contribution

Let H3(L; [0, 1]%) be the Holder ball in the unit cube (torus) (formally defined later in Definition 2
in Appendix A) and s € (0, 2] is the Holder smoothness parameter. Then, the worst case risk of
the fixed k-nearest neighbor differential entropy estimator over H5(L; [0, 1]¢) is controlled by the
following theorem.

Theorem 1 Let X = {X1,..., X,,} be i.i.d. samples from density function f. Then, for0 < s < 2,
the fixed k-nearest neighbor KL differential entropy estimator h,, j, in (3) satisfies

1

( sup By (ﬁn,k(X)—h(f)>2>2gC(n_sLlln(n+1)+n5). ©)

FEHG(L;[0,1]4)

where C'is a constant depends only on s, L, k and d.

The KL estimator is in fact nearly minimax up to logarithmic factors, as shown in the following
result from [26].

Theorem 2 [26] Let X = {X1,...,X,} be i.i.d. samples from density function f. Then, there
exists a constant Ly depending on s, d only such that for all L > Lgy, s > 0,

2
s+2d

(ir}f sup E; (iL(X) — h(f))2> >c (n_ﬁ(ln(n +1))” ¥ + nfé) )

b feHy(L;00,1]4)

where c is a constant depends only on s, L and d.

Remark 1 We emphasize that one cannot remove the condition L > Lq in Theorem 2. Indeed, if the
Holder ball has a too small width, then the density itself is bounded away from zero, which makes

the differential entropy a smooth functional, with minimax rates n~ Tt +n~Y2[51, 50, 43].

Theorem 1 and 2 imply that for any fixed £, the KL estimator achieves the minimax rates up to
logarithmic factors without knowing s for all s € (0,2], which implies that it is near minimax
rate-optimal (within logarithmic factors) when the dimension d < 2. We cannot expect the vanilla
version of the KL estimator to adapt to higher order of smoothness since the nearest neighbor density
estimator can be viewed as a variable width kernel density estimator with the box kernel, and it is
well known in the literature (see, e.g., [55, Chapter 1]) that any positive kernel cannot exploit the
smoothness s > 2. We refer to [26] for a more detailed discussion on this difficulty and potential
solutions. The Jackknife idea, such as the one presented in [11, 3] might be useful for adapting to
5> 2.

The significance of our work is multi-folded:

e We obtain the first uniform upper bound on the performance of the fixed k-nearest neigh-
bor KL differential entropy estimator over Holder balls without assuming how close the
density could be from zero. We emphasize that assuming conditions of this type, such as
the density is bounded away from zero, could make the problem significantly easier. For
example, if the density f is assumed to satisfy f(x) > c for some constant ¢ > 0, then the
differential entropy becomes a smooth functional and consequently, the general technique
for estimating smooth nonparametric functionals [51, 50, 43] can be directly applied here

to achieve the minimax rates n~ 7+ + n~1/2. The main technical tools that enabled us

to remove the conditions on how close the density could be from zero are the Besicovitch
covering lemma (Lemma. 4) and the generalized Hardy—Littlewood maximal inequality.

e We show that, for any fixed k, the k-nearest neighbor KL entropy estimator nearly achieves
the minimax rates without knowing the smoothness parameter s. In the functional estima-
tion literature, designing estimators that can be theoretically proved to adapt to unknown



levels of smoothness is usually achieved using the Lepski method [39, 22, 45, 44, 27],
which is not known to be performing well in general in practice. On the other hand, a sim-
ple plug-in approach can achieves the rate of n~%/(5%9) but only when s is known [26].
The KL estimator is well known to exhibit excellent empirical performance, but existing
theory has not yet demonstrated its near-“optimality” when the smoothness parameter s is
not known. Recent works [3, 52, 11] analyzed the performance of the KL estimator under
various assumptions on how close the density could be to zero, with no matching lower
bound up to logarithmic factors in general. Our work makes a step towards closing this gap
and provides a theoretical explanation for the wide usage of the KL estimator in practice.

The rest of the paper is organized as follows. Section 2 is dedicated to the proof of Theorem 1. We
discuss some future directions in Section 3.

1.2 Notations

For positive sequences a~, b.,, we use the notation a, S, b, to denote that there exists a universal
constant C' that only depends on « such that sup.,, Z—: < C,and ay Zq b is equivalent to b, Sq an.

Notation a, =<, by is equivalent to a, Sq by and by S, a,. We write a, < b, if the constant is

~

universal and does not depend on any parameters. Notation a., >> b, means that lim inf,, ’g—” = 00,
Yy
and a., < b, is equivalent to b, > a.,. We write a A b = min{a, b} and a V b = max{a, b}.

2 Proof of Theorem 1

In this section, we will prove that

[N
[N

N 2 s
(E (hn,k<X) - h(f)) ) Ssakn o n(n+1)+n77, ®)

for any f € H5(L;[0,1]¢) and s € (0,2]. The proof consists two parts: (i) the upper bound
of the bias in the form of O, 1, 4x(n~*/+*® In(n + 1)); (ii) the upper bound of the variance is
Os.1.a.x(n™1). Below we show the bias proof and relegate the variance proof to Appendix B.

First, we introduce the following notation

_ pB,t) 1
ft(x) - )\(B(.C(,‘,t)) - thd /u:|u—x|§t f(u)du . (9)

Here p is the probability measure specified by density function f on the torus, ) is the Lebesgue
measure on R%, and Vy = n%/2 /T'(14+-d/2) is the Lebesgue measure of the unit ball in d-dimensional
Euclidean space. Hence f;(x) is the average density of a neighborhood near x. We first state two
main lemmas about f;(x) which will be used later in the proof.

Lemma 1 If f € H5(L;[0,1]%) for some 0 < s < 2, then for any x € [0,1]% and t > 0, we have

dLt®

@)@ <

, (10)

Lemma 2 If f € H3(L;[0,1]¢) for some 0 < s < 2 and f(x) > 0 for all x € [0,1]%, then for any
x and any t > 0, we have

@) Sewa max{ fi@), (filxvat)"T Y (an

Furthermore, f(z) Ss.r.a 1.

~

We relegate the proof of Lemma 1 and Lemma 2 to Appendix C. Now we investigate the bias

of ﬁnk(X) The following argument reduces the bias analysis of fznyk(X) to a function analytic
problem. For notation simplicity, we introduce a new random variable X ~ f independent of



{X1,...,X,} and study A, 41 5({X1,..., X0, X}). Forevery z € R denote Ry(x) by the k-

nearest neighbor distance from z to {X1, X»,..., X, } under distance d(x,y) = min,, czq ||m +
x — y, i.e., the k-nearest neighbor distance on the torus. Then,
Elhns1,6({X1, ..., Xn, X 1] = h(f) (12)
= —¢k) +E[In((n+ DABX, Rr(X))))] + E [In f(X)] (13)
[ [ FOONBX, Ru(X) o )
= 5| (LESE I | i o+ (B B0 - w0 10
= n (X) n((n —
= 8 i L o+ (B R0 = 00) (15)

We first show that the second term E [In ((n + 1)u(B(X, Rr(X))))] — ¥ (k) can be universally
controlled regardless of the smoothness of f. Indeed, the random variable p(B(X, R(X))) ~
Beta(k,n + 1 — k) [4, Chap. 1.2] and it was shown in [4, Theorem 7.2] that there exists a universal
constant C' > 0 such that

C
Bl (n+ Da(BEX, R = v(k)| < (16)
Hence, it suffices to show that for 0 < s < 2,
'E [hlf(X)” Sede n o In(n+1). (17)
Tro(x)(X) e

We split our analysis into two parts. Section 2.1 shows that E {ln h’}(%)g;x)} Ss.Lodk n~ 5+ and

Section 2.2 shows that E {ln %} Ss.Ldok n~ In(n + 1), which completes the proof.
‘k

2.1 Upper bound on E {ln hﬂ%}ggx)}

By the fact that Iny < y — 1 for any y > 0, we have

ka(x)(X)} {ka(X)(X)f(X)}
E [m JreoX) g (18)
J(X) J(X)
-/ (Bl (@) - f@) do. (19)
[0,1]¢N{z: f(x)#0}

Here the expectation is taken with respect to the randomness in Ry (z) = min<;<, meza [|[m +
X; — ||, » € R Define function g(z; f,n) as

stas fon) = s fuz 0 V) < 1}, o)

g(x; f,n) intuitively means the distance R such that the probability mass u(B(z, R)) within R is
1/n. Then for any = € [0, 1]%, we can split E[fg, (»)(z)] — f() into three terms as

Elfp,)(@)] = f(2) = El(fr (@) = f(@))L(R(x) < n~/CHD)] @D
E[(fre( (@) = f@) 10D < Ry(z) < g(a; f,n)] (22)
£

E[(fr,(x)(x) — f(2))L(Rk(x) > g(z; f,n) v~ VETD)](23)
= C1+Cy+Cs. 24

+ +

Now we handle three terms separately. Our goal is to show that for every = € [0,1], C; Ss,1.a
n=s/(s+d) for j € {1, 2, 3}. Then, taking the integral with respect to x leads to the desired bound.

1. Term Cy: whenever Ry (z) < n~1/(+d) by Lemma 1, we have

dLR(x s/(s
(@) — f@) < LY < nmsfiosa, es)
which implies that
C, <E [|ka($) (@)| L(Ri(z) < n~ V)| <, g s/ s+, 26)



2. Term Cy: whenever Ry, (z) satisfies that n=1/(s+9) < R, () < g(z; f,n), by definition of
g(x; f,n), we have Vg Ry, (x)? fr, (»)(z) < L, which implies that

1 1
< —s/(s+d)
nVaRy(x)? = V- (s+d) ~sld T - 27)

It follows from Lemma 2 that in this case

f(x) Ssrpa fru@x(x)V (ka(m)(x)Vde(x)d)S/(S+d) (28)
< =8/ (std) ) p=s/(s+d) — =s/(s+d) (29)
Hence, we have
G = E|(fauw@) = F@)L (07 < Ri(a) < glasfim)) | (G0)
< E (@) + F@)L (07 < Ri(a) < g fom)) | G
Sepa YT, (32)

3. Term C3: we have
0 < E {( Frow (@) + F(@)1 (Rk(x) > g(a; f,n) V n—1/<s+d>)} . (33

For any z such that Ry, () > n~ /(%) we have

fre@ (@) Sera VaRi(®) fry @) (@)n®/ ¢+, (34)

and by Lemma 2,
f(r) Sera ka(x)(x)\/(Vde(x)dek(x)(x))s/(Ser) (3%5)
< fru@ (@) + (VaRi(@) fry (o) () CTD, (36)

Hence,

F@) + o) (@) Sond 2 re(e)(@) + (VaRe(2) fry () (z)) ¥/ T (37)
Send VaRi(@) fry ) (@)n® D 4+ (ViR (2)? fry (o) ()™ 5T
(38)
Sopa VaRe(@) fry (@) (@)n/ +D, (39)

where in the last step we have used the fact that Vg Ry, ()% fg, (z) (x) > n~ " since Ry (z) >
g(z; f,n). Finally, we have

Cs Sorpa nYCTVE[(VaRe(2) fry @) () 1(Ri(x) > g(x; f,n))] (40)
= nY/CHIE [(VaRe () fry () (@)L (VaRe () fry () (2) > 1/n)] (41)

Note that Vg Ry, (2)? fr, (x)(z) ~ Beta(k,n +1— k), and if Y ~ Beta(k,n + 1 — k), we
have

2
B = ni 1> <f(f1+>21<n f)z) S 42)
Notice that E[Y'1 (Y > 1/n)] < nE[Y?]. Hence, we have
Cs  Sepa nYCHOnE [(VaRi(2) fr, @) ()] 43)
SeL,dk nd/(;i:d)n =8/ (s1d), (44)



(X)
2.2 Upper bound on E [ln m}

By splitting the term into two parts, we have

F(X) ] i f(x)
E|lln—————| = E In ———d 45
[ Fri ) (X) _/[o,udm{mf(z#mf(x) [Ri@) (%) x] “
= E /f(x)l IR ())(x)l(ka(w)(x) >n8/(s+d))d4 (46)
+ E / f(z)In 7 m)(x)]l(ka(x)(:c)gn8/(S+d))d4 A7)
= (C4+Cs. (48)

here we denote A = [0,1]? N {x : f(x) # 0} for simplicity of notation. For the term Cy, we have

B f() ka(z( ))2 nfs/(s ) T

= E _ /A T @) L(fry(a) (@) > t)d } (50)
+ E /A(f(fv)ka(x)(I))]l(ka(z)(I)>nS/(Hd))dﬂﬂ] (51)
< /GO [ /A (f(ac)—ka(m)(x)fdx} +E[ /A (f@) ~ Fru(o)(@)) dw] (52)

In the proof of upper bound of E {ln M} , we have shown that E[fr, () () — f(#)] Ss,L.d.k

F(X)
n~=%/(s+d) for any € A. Similarly as in the proof of upper bound of E [m %};gx)] , we have

E [(frp) (@) = f(2))?] Ss,p,a6 n~2/ D for every z € A. Therefore, we have

né/(é+d) —2s/(s+d) +n—5/(a+d) < s/(s+d)' (53)

Cs SsL.dk s,L.dk T

Now we consider C's. We conjecture that Cs Ss 1.a.k 1 —s/(s+d) ip this case, but we were not able
to prove it. Below we prove that Cs <, 1, 4.1 1 —s/(s+d) In(n + 1). Define the function

1
M) = sup 70

(54)

Since fp, () (z) < n~=%/(5+d)  we have M (z) = supso(1/fe(z)) > 1/ fr (@) (x) > ns/(s+d)

Denote In" (y) = max{In(y), 0} for any y > 0, therefore, we have that

(z)

(
5/(s+)
< E{ / f(x)1n+< e )1 M) 2 01| (56)
o/(s+d)
= =)E {hﬁ ( (n + 1)Vy Ry, ()2 ka(m)(l”))] 1M (@) 2 n*Dde - (57)
¥ / F@E [in* (0 + DVaRa() (@)] 1(M () 2 0¥/ D) (58)
= Cs1 + Cso, (59



where the last inequality uses the fact ln+(xy) <InTz +InTyforall z,y > 0. As for C5,, since
VaRi(2) fry (2)(x) ~ Beta(k,n+ 1 — k), and for Y ~ Beta(k,n + 1 — k), we have

o ()] - (o

1

= E _ ( il Y> Jr/nﬂl n((n+ 1) py(x)de  (61)
1

< E _ ( I Y> +1In(n+1) /n}H py (z)dx (62)

< E ( ] Y> +Iln(n+1) (63)

< In(n+1) (64)

where in the last inequality we used the fact that E {ln (m)] =¢Y(n+1)—¢(k)—In(n+1) <0
for any £ > 1. Hence,

Cs1 Sera In(n+1) / f@)L(M(z) > n*/ D) dz. (65)
A
Now we introduce the following lemma, which is proved in Appendix C.

Lemma 3 Let ji1, j1o be two Borel measures that are finite on the bounded Borel sets of R®. Then,
for all t > 0 and any Borel set A C R,

uz(B(w,p))) }) Ca
reA: su — = >t < —pux(Ap). (66)
w({rea: o, (505 pen)
Here Cq > 0 is a constant that depends only on the dimension d and
Ap={z:3yeAly—z| <D} (67)

Applying the second part of Lemma 3 with p0 being the Lebesgue measure and pi; being the measure
specified by f(x) on the torus, we can view the function M (x) as

M(z) H2(B(z, p)) (68)

= Sup .
0<p<1/2 ,U1(B(33n0))

Taking A = [0,1] N {2 : f(z) # 0}, = n*/+D then pa (A1) < 2%, so we know that

1
2

Cs1 Ss,pa In(n+1) / fla ) > n/ ) dy (69)
= h(n+1)-pm (z € 10,117, f(@) # 0, M(w) = n*/ ) (70)
< In(n+1)- Cdn_s/(erd)ug(A%) Sepan CFDIn(n 4 1). (71)

Now we deal with Cs2. Recall that in Lemma 2, we know that f(z) <14 1 for any z, and

~

Ri(z) < 1,s0In"((n + 1)VyRi(2)f(2)) Ss.z.a In(n + 1). Therefore,

Css Sera In(n+1) / f(x z) > ¥/ ))dy (72)

Sera n D In(n 4 1). (73)

Therefore, we have proved that Cs < C51 + Cs2 Ss.1.4 n—s/(s+d) In(n + 1), which completes the

10.9) }

proof of the upper bound on E {ln T oo (X



3 Future directions

It is an tempting question to ask whether one can close the logarithmic gap between Theorem 1 and 2.
We believe that neither the upper bound nor the lower bound are tight. In fact, we conjecture that the
upper bound in Theorem 1 could be improved to n~ 5 +n~/2 due to a more careful analysis of the
bias, since Hardy—Littlewood maximal inequalities apply to arbitrary measurable functions but we
have assumed regularity properties of the underlying density. We conjecture that the minimax lower
bound could be improved to (n1Inn)~ =+ 4+n~1/2, since a kernel density estimator based differential

entropy estimator was constructed in [26] which achieves upper bound (n1n n)_ﬂ +n~2 over
H5(L; [0,1]4) with the knowledge of s.

It would be interesting to extend our analysis to that of the k-nearest neighbor based Kullback—
Leibler divergence estimator [59]. The discrete case has been studied recently [28, 7].

It is also interesting to analyze k-nearest neighbor based mutual information estimators, such as the
KSG estimator [34], and show that they are “near’-optimal and adaptive to both the smoothness
and the dimension of the distributions. There exists some analysis of the KSG estimator [21] but we
suspect the upper bound is not tight. Moreover, a slightly revised version of KSG estimator is proved
to be consistent even if the underlying distribution is not purely continuous nor purely discrete [19],
but the optimality properties are not yet well understood.
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