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A Missing Proofs

A.1 Proof of Lemma[3l

Observe that, by the bag of words property, the prefix of length ¢ of a sample from DZ’Q, {>1,1s
distributed like a sample from DZTO‘

By the Hoeffding bound, we know that if Z = Y | Z; is that sum of n iid Z, ..., Z,, satisfying
0 < Z; < 1, then (a) Pr[|Z — E[Z]| > n€] < 2¢72"¢"; and (b) Pr[|Z — E[Z]| > €E[Z]] <
2¢~F1Z1€*/3_ Take a given document d € [m]’ of length i € [¢] and observe that D) **(d) = E [ng/n).
By applying (a), if n > 5% -0 -1lnm,

Pr[|D]*(d) — D;(d)| > €] = Pr Hn DT (d) — nd’ > ng] < 2~ < gp—dlinm _ 9 —4L,
Similarly, using (b), if DZ—’O‘(d) >qgandn > % -¢-1lnm,
Pr(|D] % (d) — D;(d)| > £D] % (d)] < 2e 967 /3 < 9 3tInm — 9y =3,

The number of documents of length at most [¢] is upper bounded by

By union bounding across all the documents of length smaller than or equal ¢, we get the stated claim.

A.2  Proof of Theorem [

First we prove the following technical Lemma, that will later be used in the proof of Theorem 4]
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Lemma 1. Let A = Mo, K, T) = DT ()"
2 ww

Then it holds that 0 < X\ < 1.

Proof. We now show that 0 < \ < 1. The lower bound is trivial; we prove the upper bound. Fix a
word w, and let x,, be the vector of its probabilities in the K topics, so that S{ (w) = K~ - |z,

and 8] (ww) = K~ - |z,|3. By applying Theorem we can rewrite DQT’a(ww) as

1 Ka 1 «
DTJX :787 ST 2_ - w2 e w2~
Then,
2
(8T (w)* _ K2 |z |2 :(Hl).w:(ag)_l
D] “(w,w)  grarr (Twld +elwwf?) K) |wwl3 + elzwli K l:E +a

The vector z,, has K dimension. Thus, by the Cauchy-Schwartz inequality, we have that |z, |3 <
K - |73, and

T2
MS (a_i_l).zl:l. O
Dy (w, w) K wa’\Q +a

We now move on to the proof of Theorem El By Theorem [2| we have that %T(w) = D] (w)
for each w € [m] and S (ww') = (Ka + 1) - DI (ww') — Ka - S (w) - ST (w'). Let D; =
Max ge ) D/*(d) — Dy(d)| and S; = maxge(m)i |S; (d) — Si(d)|. Observe that, since S; = Dy
and ST = D], it holds that S} = D; <

€
IKa+4"

We now proceed to bound S,, in terms of D5 and S;. First, we observe that, in general, if it holds
0<z; <1l,and 0 < ¢; <1, foreach j € [n], then

[(z1 4+ €1) - (22 + €2) — z122| < 3 - max(|ey], |e2]).

Thus,

$10) - 81 (w') — ST (w) - ST () =

<3. =
<3 S1<4Ka

We now compute Ss:

ST (ww') — S;(ww’)‘ - ‘(Koz 1) (:D; (ww') — :/52(ww’)) ~ Ka (s{f (w)ST (w') — §1(w)§1(w’)) ]

< (Ka+1) ‘Dg(ww') — Dy(ww')

+ Ka |ST ()ST () - 8 ()8 (w)

£ 3¢
K 1) ————+ Ka-—— =
<Eat ) e TR IR. T
and the proof of the first claim is complete.
. (87 (w))*
We now proceed to the second claim. Let A := A(w, o, K, T) = DT ()" By Lemma(l} we know
2 ww

that 0 < A < 1. By Theorem we have that



Recall that 87 (w) = D] **(w) and S; (w) = D; (w), so that Sy (w) = (1 + ¢')ST (w). Moreover,
Sy(ww) = (Ka + 1)Dy(ww) — Ko - (S;(w))2. We provide an upper bound for S (ww):

Sy(ww) < (1+¢) - (Ka+1)- D *(ww) — (1 - &)? - Ka- (8] (w))’
<(1+¢) - (Ka+1)- D] (ww) — (1 -2¢) - Ka- (8] (w))?
= (14¢&)- (Ka+1)-DI"*(ww) — (1 —2¢') - Ka - X D] *(ww)
= DI (ww) - (Ka(l = \) + 14 &' (Ka(1 +2)) + 1))
< DI (ww) - (Ka(l—X\) + 1+ ¢ BKa+1))
< DI (ww) - (Ka(l —\) +1+¢)
< DI *(ww) - (Ka(l = A) +14£- (Ka(l —\)+1))

= (148 DI (ww) - (Ka(l —X) +1)
= (1+¢) -8 (ww).

The other direction is analogous:

So(ww) > (1 =€) - (Ka+1)-DJ (ww) — (1+&)* - Ka- (8] (w))?
>(1-&) (Ka+1)-D] *(ww) — (1+28 + (£)) - Ko+ (S] (w))?
>(1-¢) (Ka+1) D] *(ww) — (1+43¢) - Ka- (8] (w))?
=(1-¢)- (Ka+1) -D"**(ww) — (1+3¢) - Ka - X- D *(ww)
= D] *(ww) - (Ka(l—A)+1— & (Ka(l+3X) +1))
> D] (ww) - (Ka(l — ) +1— ¢ (4Ka +1))
> D] (ww) - (Ka(l —X\) +1—¢)
> DI (ww) - (Ka(l —A) +1—¢- (Ka(l—X)+1))
=(1-¢) D] *(ww) - (Ka(l—X) +1)
= (1-¢)- 8] (ww).

A.3 Proof of Lemma

Let i* € [n] be an integer such that |v(i*)| = |v|oo. We begin with the lower bound on |v|,:
[olp =D lo(d) P =1l =1 =€ Jolf.

We now move on to the upper bound on |v|,. If n = 1, the upper bound is trivial, since all the
p-norms of any given 1-dimensional vector are identical. We then assume n > 2. Then,

it =" [o@)P =" (jo()] - |U(')|p_1) <> (jo@)] - [of2 )
= vl -t =1 —eP " Julf
A.4 Proof of Theorem [6]

‘We have

s KT ww) (-9 e (-9 (1-e)*(1 -0
YK (ST - (11e) w0+ T (1+e2

where the last inequality follows from Lemma 5] The other direction is analogous:

K-SJ(ww) (1+8 _ |ewf3- (148 _ (1—e)(1+¢
K- (ST(w)-(1—¢)° |w[i1=6> 7 (1-¢?

Pw <



A.5 Proof of Lemmal7]
The first claim follows directly from the lower bound on p,, of Theorem [6]

As for the second claim, suppose that p,, > (1 +§)2 By Theorem@ we have that % > pw.
Thus,

(1-e)d+8  1-¢ 1-¢\’ 1-¢\’
T g = ez () = esi- (i)

Now, 175 > 8 +g =1 — 2¢, and, by the union bound, (1 — 2¢)3 > 1 — 6¢. Hence, €,, < 6¢.

A.6 Proof of Theorem

By rearranging the terms in the reduction of Theorem 2] we have
Dg(wlwg) _ 1 (Ka + Sg-(wﬂUQ) )
D] (w1) - D (wy) Ka+1 ST (wy) - ST (wy)

If wy and wo are co-dominated, that is, the case where they have their largest probability on the same
topic, we have:

KSQT(wlw2) = (Twy, Tuwy) 2> H |Zaw; oo = H (1 = €w,)|Tw, 1) = H ((1 - 671)i)KS,17—(wi))7

1€{1,2} 1€{1,2} 1€{1,2}

implying
(1 - f) . DQT(U)1W2)
(1482 D] (w1) D] (w2) = Ka+1
On the other hand, if w; and wy are not co-dominated, we have
K - 8] (wyws) < (K- ST (w1)(1 — €wy)) (K - Sf(w2)ew2) + (K~81T(w1)ewl) (K'SlT(wg)(l — €w,))
+ (K - ST (w1)€w, ) (K-SlT(wg)ewZ,)
< (K- 817—(’11)1)) (K- 817-(71)2)) “(Ewy + €wy + €wy€uy ),

(Ka+ K(1 —¢€)(1—e€9)).

7(wy,wy) >

implying
(1+¢) _ Dl(wws) _ 1 (
(1-82? D] (wy) D] (wz) ~ Ka+1

T(w1>w2) < Ka+K(€w1 + €w, +6w16w2))'

A.7 Proof of Corollary 9]

It is enough to show that the minimum 7 (w1, ws) on pairs of words wy, wo that are co-dominated is
larger than the maximum 7(w?}, w}) on pairs of words w1, w) that are not co-dominated. Hence, by
Theorem [§] it is sufficient to show that

(1-¢) Ka+K(1—e¢)? L (1+9 Ka+ K (2¢ + €2) 1—6\° a+2+¢
(1+¢)? Ka+1 (1-¢)? Ka+1 1+¢ a+(1—e)?
For the LHS;WC ha2ve % > E1+£§ =1-2¢ and (1 —2¢)® > 1 — 6. The RHS is equivalent
to1l — % =1- ﬁ <1-— ’+1. Then, it suffices for £ to satisfy 1 — 6§ >
—4e 11-—4e
1-1 ot = $<jjarr

A.8 Proof of Theorem [10]

We analyze each step of Algorithm [T}

1. Consider the set W = {w eV |Di(w)> %} of words of empirical frequency at least

55=. By definition every anchor word has probability at least £-; by Lemma 3| ‘b) if n >

[% . %lnm—‘,every anchor word w satisfies Dy (w) > (1—8)D] *(w) > (1— 0) & > e,

so every actual anchor words belong to V.



. Applying Lemma [3(b) with ¢ = (%)2 and £ = m, we can obtain D; (w) and

Dy (ww) withina (1 + m) multiplicative error for all words w € W.

. Theorem H|(b) immediately implies that the reduction of of Theorem [2] provides an estimate
So(ww) within a (1 + §) multiplicative error from SJ (ww), for any w € W.

. We now apply Lemma [/ to obtain the set A of quasi-anchor words (that is, of words w
whose vector of probabilities x,, has large ¢;-weight, at least p/2, and such that at least
l—€y,>1—-66>1-— % > % of their weight belongs to a single topic.)

. Let E be the maximal subset of (%) such that Dy(wiws) = (1 £ €)DJ (wyws) for

each {wy, w2} € E. We prove that each co-dominated pair {w,w’} is part of E.
Observe that for any co-dominated pair {w,w’}, the reduction of Theorem [2| implies

7, 1—e)? 2 2
that DI *(ww') > 72587 (ww') > GSH ST (w)ST (w') > (1) gy An-
other application of Lemma b) with ¢ = (%)2 K(Kpiz;l) and ¢ = § ensures that

Dy(w,w') = (1 +6)DJ **(ww'). Hence, all co-dominated pairs belong to E.
. At this point the algorithm has obtained K pairwise non-codominated quasi-anchor words

say wi, ..., wg. For each i € [K], the ith vector will be defined to be equal to ;(w) +
%, for each w in the vocabulary. Recall that each w; is such that |z, |cc > (1 —
1(Ws i
66)|7w, |1; let j be the topic such that ., (j) = |Zw, |oo. Then, % =z, (j) £ O(9).
1(w;

Thus, we can reconstruct all the probabilities of the topic that dominates w;, to within an
additive O(¢) error. Since no two w;’s are codominated, and since there are K distinct w;’s,
there will exist a bijection ¢ from {¢1,...,tx} to T such that |[t; — ¢(t;)]|cc < O(0).



	Missing Proofs
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Lemma 5
	Proof of Theorem 6
	Proof of Lemma 7
	Proof of Theorem 8
	Proof of Corollary 9
	Proof of Theorem 10


