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A Missing Proofs

A.1 Proof of Lemma 3

Observe that, by the bag of words property, the prefix of length i of a sample from DT ,α` , ` ≥ i, is
distributed like a sample from DT ,αi .

By the Hoeffding bound, we know that if Z =
∑n
i=1 Zi is that sum of n iid Z1, . . . , Zn satisfying

0 ≤ Zi ≤ 1, then (a) Pr [|Z − E[Z]| ≥ nξ] ≤ 2e−2nξ
2

; and (b) Pr [|Z − E[Z]| ≥ ξE[Z]] ≤
2e−E[Z]ξ2/3. Take a given document d ∈ [m]i of length i ∈ [`] and observe thatDT ,αi (d) = E [nd/n].
By applying (a), if n ≥ 2

ξ2 · ` · lnm,

Pr[|DT ,αi (d)− D̃i(d)| ≥ ξ] = Pr
[∣∣∣n · DT ,αi (d)− nd

∣∣∣ ≥ nξ] ≤ 2e−2nξ
2

≤ 2e−4` lnm = 2m−4`.

Similarly, using (b), if DT ,αi (d) ≥ q and n ≥ 9
q·ξ2 · ` · lnm,

Pr[|DT ,αi (d)− D̃i(d)| ≥ ξDT ,αi (d)] ≤ 2e−nqξ
2/3 ≤ 2e−3` lnm = 2m−3`.

The number of documents of length at most [`] is upper bounded by

∑̀
i=0

mi ≤ m`+1 − 1

m− 1
≤ m`+1.

By union bounding across all the documents of length smaller than or equal `, we get the stated claim.

A.2 Proof of Theorem 4

First we prove the following technical Lemma, that will later be used in the proof of Theorem 4.
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Lemma 1. Let λ = λ(α,K, T ) = (ST
1 (w))

2

DT ,α
2 (ww)

. Then it holds that 0 ≤ λ ≤ 1.

Proof. We now show that 0 ≤ λ ≤ 1. The lower bound is trivial; we prove the upper bound. Fix a
word w, and let xw be the vector of its probabilities in the K topics, so that ST1 (w) = K−1 · |xw|1
and ST2 (ww) = K−1 · |xw|22. By applying Theorem 2, we can rewrite DT ,α2 (ww) as

DT ,α2 (ww) =
1

Kα+ 1
ST2 (ww) +

Kα

Kα+ 1
ST1 (w)2 =

1

K2α+K
|xw|22 +

α

K2α+K
|xw|21.

Then,(
ST1 (w)

)2
DT ,α2 (w,w)

=
K−2 · |xw|21

1
K2α+K (|xw|22 + α|xw|21)

=

(
α+

1

K

)
· |xw|21
|xw|22 + α|xw|21

=

(
α+

1

K

)
· 1
|xw|22
|xw|21

+ α
.

The vector xw has K dimension. Thus, by the Cauchy-Schwartz inequality, we have that |xw|21 ≤
K · |xw|22, and (

ST1 (w)
)2

DT ,α2 (w,w)
≤
(
α+

1

K

)
· 1
|xw|22
K·|xw|22

+ α
= 1.

We now move on to the proof of Theorem 4. By Theorem 2, we have that ST1 (w) = DT1 (w)
for each w ∈ [m] and ST2 (ww′) = (Kα + 1) · DT2 (ww′) − Kα · ST1 (w) · ST1 (w′). Let Di =

maxd∈[m]i |DT ,αi (d)− D̃i(d)| and Si = maxd∈[m]i |STi (d)− S̃i(d)|. Observe that, since S̃1 = D̃1

and ST1 = DT ,α1 , it holds that S1 = D1 ≤ ξ
4Kα+4 .

We now proceed to bound S2, in terms of D2 and S1. First, we observe that, in general, if it holds
0 ≤ xj ≤ 1, and 0 ≤ εj ≤ 1, for each j ∈ [n], then

|(x1 + ε1) · (x2 + ε2)− x1x2| ≤ 3 ·max(|ε1|, |ε2|).

Thus, ∣∣∣S̃1(w) · S̃1(w′)− ST1 (w) · ST1 (w′)
∣∣∣ ≤ 3 · S1 <

3ξ

4Kα
.

We now compute S2:∣∣∣ST2 (ww′)− S̃2(ww′)
∣∣∣ = ∣∣∣(Kα+ 1)

(
DT2 (ww′)− D̃2(ww

′)
)
−Kα

(
ST1 (w)ST1 (w′)− S̃1(w)S̃1(w′)

)∣∣∣
≤ (Kα+ 1)

∣∣∣DT2 (ww′)− D̃2(ww
′)
∣∣∣+Kα

∣∣∣ST1 (w)ST1 (w′)− S̃1(w)S̃1(w′)
∣∣∣

< (Kα+ 1) · ξ

4 · (Kα+ 1)
+Kα · 3ξ

4Kα
= ξ,

and the proof of the first claim is complete.

We now proceed to the second claim. Let λ := λ(w,α,K, T ) = (ST
1 (w))

2

DT ,α
2 (ww)

. By Lemma 1, we know
that 0 ≤ λ ≤ 1. By Theorem 2, we have that

ST2 (ww) = (Kα+ 1) · DT2 (ww)−Kα ·
(
ST1 (w)

)2
= (Kα+ 1) · DT2 (ww)−Kα · λ · DT2 (ww) = DT2 (ww) · (Kα · (1− λ) + 1).
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Recall that ST1 (w) = DT ,α1 (w) and S̃1(w) = D̃1(w), so that S̃1(w) = (1 ± ξ′)ST1 (w). Moreover,
S̃2(ww) = (Kα+ 1)D̃2(ww)−Kα · (S̃1(w))2. We provide an upper bound for S̃2(ww):

S̃2(ww) ≤ (1 + ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1− ξ′)2 ·Kα · (ST1 (w))2

≤ (1 + ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1− 2ξ′) ·Kα · (ST1 (w))2

= (1 + ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1− 2ξ′) ·Kα · λ · DT ,α2 (ww)

= DT ,α2 (ww) · (Kα(1− λ) + 1 + ξ′(Kα(1 + 2λ) + 1))

≤ DT ,α2 (ww) · (Kα(1− λ) + 1 + ξ′(3Kα+ 1))

≤ DT ,α2 (ww) · (Kα(1− λ) + 1 + ξ)

≤ DT ,α2 (ww) · (Kα(1− λ) + 1 + ξ · (Kα(1− λ) + 1))

= (1 + ξ) · DT ,α2 (ww) · (Kα(1− λ) + 1)

= (1 + ξ) · ST2 (ww).

The other direction is analogous:

S̃2(ww) ≥ (1− ξ′) · (Kα+ 1) · DT2 (ww)− (1 + ξ′)2 ·Kα · (ST1 (w))2

≥ (1− ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1 + 2ξ′ + (ξ′)2) ·Kα · (ST1 (w))2

≥ (1− ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1 + 3ξ′) ·Kα · (ST1 (w))2

= (1− ξ′) · (Kα+ 1) · DT ,α2 (ww)− (1 + 3ξ′) ·Kα · λ · DT ,α2 (ww)

= DT ,α2 (ww) · (Kα(1− λ) + 1− ξ′(Kα(1 + 3λ) + 1))

≥ DT ,α2 (ww) · (Kα(1− λ) + 1− ξ′(4Kα+ 1))

≥ DT ,α2 (ww) · (Kα(1− λ) + 1− ξ)
≥ DT ,α2 (ww) · (Kα(1− λ) + 1− ξ · (Kα(1− λ) + 1))

= (1− ξ) · DT ,α2 (ww) · (Kα(1− λ) + 1)

= (1− ξ) · ST2 (ww).

A.3 Proof of Lemma 5

Let i? ∈ [n] be an integer such that |v(i?)| = |v|∞. We begin with the lower bound on |v|p:

|v|pp =
∑
|v(i)|p ≥ |v(i?)|p = |v|p∞ = (1− ε)p · |v|p1.

We now move on to the upper bound on |v|p. If n = 1, the upper bound is trivial, since all the
p-norms of any given 1-dimensional vector are identical. We then assume n ≥ 2. Then,

|v|pp =
∑
|v(i)|p =

∑(
|v(i)| · |v(i)|p−1

)
≤
∑(

|v(i)| · |v|p−1∞
)

= |v|1 · |v|p−1∞ = (1− ε)p−1 · |v|p1.

A.4 Proof of Theorem 6

We have

ρw ≥
K · ST2 (ww) · (1− ξ)
K ·

(
ST1 (w) · (1 + ξ)

)2 =
|xw|22 · (1− ξ)
|xw|21(1 + ξ)2

≥ (1− εw)2(1− ξ)
(1 + ξ)2

,

where the last inequality follows from Lemma 5. The other direction is analogous:

ρw ≤
K · ST2 (ww) · (1 + ξ)

K ·
(
ST1 (w) · (1− ξ)

)2 =
|xw|22 · (1 + ξ)

|xw|21(1− ξ)2
≤ (1− εw)(1 + ξ)

(1− ξ)2
.
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A.5 Proof of Lemma 7

The first claim follows directly from the lower bound on ρw of Theorem 6.

As for the second claim, suppose that ρw ≥ 1−ξ
(1+ξ)2 . By Theorem 6, we have that (1−εw)(1+ξ)

(1−ξ)2 ≥ ρw.
Thus,

(1− εw)(1 + ξ)

(1− ξ)2
≥ 1− ξ

(1 + ξ)2
⇐⇒ 1− εw ≥

(
1− ξ
1 + ξ

)3

⇐⇒ εw ≤ 1−
(
1− ξ
1 + ξ

)3

.

Now, 1−ξ
1+ξ ≥

(1−ξ)−ξ
(1+ξ)−ξ = 1− 2ξ, and, by the union bound, (1− 2ξ)3 ≥ 1− 6ξ. Hence, εw ≤ 6ξ.

A.6 Proof of Theorem 8

By rearranging the terms in the reduction of Theorem 2, we have

DT2 (w1w2)

DT1 (w1) · DT1 (w2)
=

1

Kα+ 1

(
Kα+

ST2 (w1w2)

ST1 (w1) · ST1 (w1)

)
.

If w1 and w2 are co-dominated, that is, the case where they have their largest probability on the same
topic, we have:

KST2 (w1w2) = 〈xw1
, xw2

〉 ≥
∏

i∈{1,2}

|xwi |∞ =
∏

i∈{1,2}

((1− εwi)|xwi |1) =
∏

i∈{1,2}

(
(1− εwi)KST1 (wi)

)
,

implying

τ(w1, w2) ≥
(1− ξ)
(1 + ξ)2

· DT2 (w1w2)

DT1 (w1) · DT1 (w2)
≥ 1

Kα+ 1
(Kα+K(1− ε1)(1− ε2)) .

On the other hand, if w1 and w2 are not co-dominated, we have
K · ST2 (w1w2) ≤

(
K · ST1 (w1)(1− εw1)

) (
K · ST1 (w2)εw2

)
+
(
K · ST1 (w1)εw1

) (
K · ST1 (w2)(1− εw2)

)
+
(
K · ST1 (w1)εw1

) (
K · ST1 (w2)εw2

)
≤ (K · ST1 (w1)) · (K · ST1 (w2)) · (εw1

+ εw2
+ εw1

εw2
),

implying

τ(w1, w2) ≤
(1 + ξ)

(1− ξ)2
· DT2 (w1w2)

DT1 (w1) · DT1 (w2)
≤ 1

Kα+ 1
(Kα+K(εw1

+ εw2
+ εw1

εw2
)) .

A.7 Proof of Corollary 9

It is enough to show that the minimum τ(w1, w2) on pairs of words w1, w2 that are co-dominated is
larger than the maximum τ(w′1, w

′
2) on pairs of words w′1, w

′
2 that are not co-dominated. Hence, by

Theorem 8, it is sufficient to show that

(1− ξ)
(1 + ξ)2

· Kα+K(1− ε)2

Kα+ 1
>

(1 + ξ)

(1− ξ)2
Kα+K(2ε+ ε2)

Kα+ 1
⇐⇒

(
1− ξ
1 + ξ

)3

>
α+ 2ε+ ε2

α+ (1− ε)2
.

For the LHS, we have 1−ξ
1+ξ ≥

(1−ξ)−ξ
(1+ξ)−ξ = 1− 2ξ, and (1− 2ξ)3 ≥ 1− 6ξ. The RHS is equivalent

to 1 − (1−ε)2−2ε−ε2
α+(1−ε2) = 1 − 1−4ε

α+(1−ε)2 ≤ 1 − 1−4ε
α+1 . Then, it suffices for ξ to satisfy 1 − 6ξ >

1− 1−4ε
α+1 ⇐⇒ ξ < 1

6
1−4ε
α+1 .

A.8 Proof of Theorem 10

We analyze each step of Algorithm 1:

1. Consider the set W =
{
w ∈ V | D̃1(w) ≥ p

2K

}
of words of empirical frequency at least

p
2K . By definition every anchor word has probability at least p

K ; by Lemma 3(b), if n ≥⌈
K
p ·

9
δ2 lnm

⌉
, every anchor wordw satisfies D̃1(w) ≥ (1−δ)DT ,α1 (w) ≥ (1−δ) pK ≥

p
2K ,

so every actual anchor words belong to W .
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2. Applying Lemma 3(b) with q =
(
p

2K

)2
and ξ = δ

4(Kα+1) , we can obtain D̃1(w) and

D̃2(ww) within a
(
1± δ

4(Kα+1)

)
multiplicative error for all words w ∈W .

3. Theorem 4(b) immediately implies that the reduction of of Theorem 2 provides an estimate
S̃2(ww) within a (1± δ) multiplicative error from ST2 (ww), for any w ∈W .

4. We now apply Lemma 7 to obtain the set A of quasi-anchor words (that is, of words w
whose vector of probabilities xw has large `1-weight, at least p/2, and such that at least
1− εw ≥ 1− 6δ ≥ 1− 6

48 ≥
7
8 of their weight belongs to a single topic.)

5. Let E be the maximal subset of
(
A
2

)
such that D̃2(w1w2) = (1 ± ξ)DT2 (w1w2) for

each {w1, w2} ∈ E. We prove that each co-dominated pair {w,w′} is part of E.
Observe that for any co-dominated pair {w,w′}, the reduction of Theorem 2 implies
that DT ,α2 (ww′) ≥ 1

Kα+1S
T
2 (ww′) ≥ (1−ε)2

Kα+1S
T
1 (w)ST1 (w′) ≥

(
7
8

)2 p2

K(Kα+1) . An-

other application of Lemma 3(b) with q =
(
7
8

)2 p2

K(Kα+1) and ξ = δ ensures that

D̃2(w,w
′) = (1± δ)DT ,α2 (ww′). Hence, all co-dominated pairs belong to E.

6. At this point the algorithm has obtained K pairwise non-codominated quasi-anchor words
say w1, . . . , wK . For each i ∈ [K], the ith vector will be defined to be equal to ti(w) ←
S̃2(wiw)

S̃1(wi)
, for each w in the vocabulary. Recall that each wi is such that |xwi |∞ ≥ (1 −

6δ)|xwi |1; let j be the topic such that xwi(j) = |xwi |∞. Then, S̃2(wiw)

S̃1(wi)
= xw(j)± O(δ).

Thus, we can reconstruct all the probabilities of the topic that dominates wi, to within an
additive O(δ) error. Since no two wi’s are codominated, and since there are K distinct wi’s,
there will exist a bijection φ from {t1, . . . , tK} to T such that |ti − φ(ti)|∞ ≤ O(δ).
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