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1 Derivation of the Upper Bound on the KL divergence

Theorem 1. The KL divergence between a Gaussian and a Mixture of Gaussians has an upper
bound Dvar.

Proof. Dvar(f ‖ g) [3] is an approximation of KL divergence between two Mixture of Gaussians
(MoG), which is defined as the following:
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∑
j

πf
j log

∑
j′
πf
j′e
−KL(fj‖fj′)∑
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πg
i e
−KL(fj‖gi)

(1)

In our case, f is a Gaussian, a special case of MoG where the number of mode equals one. Then,
Eq. (1) becomes:
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1
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= − log
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Let define the log-likelihood Lf (g) = Ef(x) [log g (x)], the lower bound for Lf (g) can be also be
derived, using variational parameters as follows:
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where βi ≥ 0 and
K∑
i=1

βi = 1. According to [2], maximizing the RHS of the above inequality with

respect to βi provides a lower bound for Lf (g):
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Lf (g) ≥ log

K∑
i=1

πie−KL(f‖gi) + Lf (f)

=−Dvar + Lf (f)

⇒ Dvar ≥Lf (f)− Lf (g)

=KL (f ‖ g)

Therefore, the KL divergence has an upper bound: Dvar.

2 Derivation of the Upper Bound on the Total Timestep-wise KL Divergence

Lemma 2. Chebyshev’s sum inequality:
if

a1 ≥ a2 ≥ ... ≥ an
and

b1 ≥ b2 ≥ ... ≥ bn
then
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Proof. Consider the sum:

S =

n∑
j=1

n∑
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(aj − ak) (bj − bk)

The two sequences are non-increasing, therefore aj − ak and bj − bk have the same sign for any
j, k. Hence S ≥ 0. Opening the brackets, we deduce:
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whence:

1

n

n∑
j=1

ajbj ≥

 1

n

n∑
j=1

aj

 (
1

n

n∑
k=1

bk

)

In our problem, ai = fi (x) and bi = log [gi (x)], i = 1, T . Under the assumption that at each step,
thanks to minimizing Dvar, the approximation between the MoG and the Gaussian is adequate to
preserve the order of these values, that is, if fi (x) ≤ fj (x), then gi (x) ≤ gj (x) and log [gi (x)] ≤
log [gj (x)]. Without loss of generality, we hypothesize that f1 (x) ≤ f2 (x) ≤ ... ≤ fT (x), then
we have log [g1 (x)] ≤ log [g2 (x)] ≤ ... ≤ log [gT (x)]. Thus, applying Lemma 2, we have:
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Thus, the upper bound on the total timestep-wise KL divergence reads:
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3 Proof
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i
t (x) is a Scaled MoG

Lemma 3. Product of two Gaussians is a scaled Gaussian.

Proof. Let Nx (µ,Σ) denote a density of x, then

Nx (µ1,Σ1) · Nx (µ2,Σ2) = ccNx (µc,Σc)

where:

cc =
1√

det (2π (Σ1 + Σ2))
exp

(
−1

2
(m1 −m2)

T
(Σ1 + Σ2)

−1
(m1 −m2)

)
mc =

(
Σ−11 + Σ−12

)−1 (
Σ−11 m1 + Σ−12 m2

)
Σc =

(
Σ−11 + Σ−12

)
Lemma 4. Product of two MoGs is proportional to an MoG.

Proof. Let g1 (x) =
K1∑
i=1

π1,iNx (µ1,i,Σ1,i) and g2 (x) =
K2∑
j=1
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of Gaussians. We have:
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By applying Lemma 3 to Eq. (2), we have

g1 (x) · g2 (x) =
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where C =
K1∑
i=1

K2∑
,j=1

π1,iπ2,jcij . Clearly, Eq. (3) is proportional to an MoG with K1 ·K2 modes
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Theorem 5.
T∏

t=1
gt (x) =

T∏
t=1

K∑
i=1

πi
tg

i
t (x) is a scaled MoG.

Proof. By induction from Lemma 4, we can easily show that product of T MoGs is also proportional

to an MoG. That means
T∏

t=1
gt (x) equals to a scaled MoG.

4 Details of Data Descriptions and Model Implementations

Here we list all datasets used in our experiments:

• Open-domain datasets:

– Cornell movie dialog: This corpus contains a large metadata-rich collection of fic-
tional conversations extracted from 617 raw movies with 220,579 conversational ex-
changes between 10,292 pairs of movie characters. For each dialog, we preprocess the
data by limiting the context length and the utterance output length to 20 and 10, re-
spectively. The vocabulary is kept to top 20,000 frequently-used words in the dataset.

– OpenSubtitles: This dataset consists of movie conversations in XML format. It also
contains sentences uttered by characters in movies, yet it is much bigger and noisier
than Cornell dataset. After preprocessing as above, there are more than 1.6 million
pairs of contexts and utterance with chosen vocabulary of 40,000 words.

• Closed-domain datasets::

– Live Journal (LJ) user question-answering dataset: question-answer dialog by LJ users
who are members of anxiety, arthritis, asthma, autism, depression, diabetes, and obe-
sity LJ communities1. After preprocessing as above, we get a dataset of more than
112,000 conversations. We limit the vocabulary size to 20,000 most common words.

– Reddit comments dataset: This dataset consists of posts and comments about movies
in Reddit website2. A single post may have multiple comments constituting a multi-
people dialog amongst the poster and commentors, which makes this dataset the most
challenging one. We crawl over four millions posts from Reddit website and after
preprocessing by retaining conversations whose utterance’s length are less than 20,
we have a dataset of nearly 200 thousand conversations with a vocabulary of more
than 16 thousand words.

We trained with the following hyperparameters (according to the performance on the validate
dataset): word embedding has size 96 and is shared across everywhere. We initialize the word
embedding from Google’s Word2Vec [5] pretrained word vectors. The hidden dimension of LSTM
in all controllers is set to 768 for all datasets except the big OpenSubtitles whose LSTM dimension
is 1024. The number of LSTM layers for every controllers is set to 3. All the initial weights are
sampled from a normal distribution with mean 0, standard deviation 0.1. The mini-batch size is
chosen as 256. The models are trained end-to-end using the Adam optimizer [4] with a learning
rate of 0.001 and gradient clipping at 10. For models using memory, we set the number and the size
of memory slots to 16 and 64, respectively. As indicated in [1], it is not trivial to optimize VAE
with RNN-like decoder due to the vanishing latent variable problem. Hence, to make the variational
models in our experiments converge we have to use the KL annealing trick by adding to the KL
loss term an annealing coefficient α starts with a very small value and gradually increase up to 1.

1https://www.livejournal.com/
2https://www.reddit.com/r/movies/
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5 Full Reports on Model Performance

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 A-glove
Seq2Seq 18.4 14.5 12.1 9.5 0.52

Seq2Seq-att 17.7 14.0 11.7 9.2 0.54
DNC 17.6 13.9 11.5 9.0 0.51
CVAE 16.5 13.0 10.9 8.5 0.56

VLSTM 18.6 14.8 12.4 9.7 0.59
VMED (K=1) 20.7 16.5 13.8 10.8 0.57
VMED (K=2) 22.3 18.0 15.2 11.9 0.64
VMED (K=3) 19.4 15.6 13.2 10.4 0.63
VMED (K=4) 23.1 18.5 15.5 12.3 0.61

Table 1: Results on Cornell Movies

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 A-glove
Seq2Seq 11.4 8.7 7.1 5.4 0.29

Seq2Seq-att 13.2 10.2 8.4 6.5 0.42
DNC 14.3 11.2 9.3 7.2 0.47
CVAE 13.5 10.2 8.4 6.6 0.45

VLSTM 16.4 12.7 10.4 8.1 0.43
VMED (K=1) 12.9 9.5 7.5 6.2 0.44
VMED (K=2) 15.3 13.8 10.4 8.8 0.49
VMED (K=3) 24.8 19.7 16.4 12.9 0.54
VMED (K=4) 17.9 14.2 11.8 9.3 0.52

Table 2: Results on OpenSubtitles

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 A-glove
Seq2Seq 13.1 10.1 8.3 6.4 0.45

Seq2Seq-att 11.4 8.7 7.1 5.6 0.49
DNC 12.4 9.6 7.8 6.1 0.47
CVAE 12.2 9.4 7.7 6.0 0.48

VLSTM 11.5 8.8 7.3 5.6 0.46
VMED (K=1) 13.7 10.7 8.9 6.9 0.47
VMED (K=2) 15.4 12.2 10.1 7.9 0.51
VMED (K=3) 18.1 14.8 12.4 9.8 0.49
VMED (K=4) 14.4 11.4 9.5 7.5 0.47

Table 3: Results on LJ users question-answering

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 A-glove
Seq2Seq 7.5 5.5 4.4 3.3 0.31

Seq2Seq-att 5.5 4.0 3.1 2.4 0.25
DNC 7.5 5.6 4.5 3.4 0.28
CVAE 5.3 4.3 3.6 2.8 0.39

VLSTM 6.9 5.1 4.1 3.1 0.27
VMED (K=1) 9.1 6.8 5.5 4.3 0.39
VMED (K=2) 9.2 7.0 5.7 4.4 0.38
VMED (K=3) 12.3 9.7 8.1 6.4 0.46
VMED (K=4) 8.6 6.9 5.9 4.6 0.41

Table 4: Results on Reddit comments
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