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1 Proofs

1.1 Brief Review

See Horn and Johnson (2013) for a linear algebra review. A square complex matrix F is Hermitian if
F = F†. Symmetric positive semi-definite (SPSD) matrices are Hermitian matrices. The set of n× n
Hermitian matrices is a real linear space. As such, it is possible to define a partial ordering (also
called a Loewner partial ordering, denoted by�) on the real linear space. One matrix is "greater" than
another if their difference lies in the closed convex cone of SPSD matrices. Let F,G be Hermitian
and the same size, and x a complex vector of compatible dimension. Then,

F � G ⇐⇒ x†Fx ≤ x†Gx ∀x 6= 0. (SM1)

If F is Hermitian with smallest and largest eigenvalues λmin(F), λmax(F), respectively, then,

λmin(F)I � F � λmax(F)I. (SM2)

Let F,G be Hermitian and the same size, and let H be any complex rectangular matrix of compatible
dimension. The conjugation rule is,

If F � G, then HFH† � HGH†. (SM3)

In addition, let λi(F) and λi(G) be the non-decreasingly ordered eigenvalues of F,G. Then,

If F � G, then ∀i, λi(F) ≤ λi(G). (SM4)

Since the trace of a matrix F is the sum of its eigenvalues, tr F =
∑
i λi(F), and the Loewner

ordering implies the ordering of eigenvalues (Eqn. SM4), the Loewner ordering also implies the
ordering of their sum,

If F � G, then tr F ≤ tr G. (SM5)

1.2 Proof of ridge leverage score sum

The sum of ridge leverage scores is,

d∑
i=1

τ̄i(A) = tr AT

(
AAT +

1

k
||A−Ak||2F I

)+

A

= tr ATUΣ̄
−2

UTA = tr Σ̄
−2

Σ2, (SM6)
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where Σ̄ is diagonal and Σ̄
2
i,i = Σ2

i,i + 1
k ||A\k||

2
F . We split the sum into two parts,

=

k∑
i=1

Σ2
i,i

Σ2
i,i + 1

k ||A\k||
2
F

+

n∑
i=k+1

Σ2
i,i

Σ2
i,i + 1

k ||A\k||
2
F

≤
k∑
i=1

Σ2
i,i

Σ2
i,i

+

n∑
i=k+1

Σ2
i,i

1
k ||A\k||

2
F

= k + k. (SM7)

This proof is due to Cohen et al. (2017).

1.3 Proof of Theorem 1

The upper bound in Eqn. 7 in Theorem 1 follows from the fact that 0 � I−SST and the conjugation
rule (Eqn. SM3),

0 � A(I− SST )AT = AAT −CCT . (SM8)
This upper bound is true for any column selection of A.

For the lower bound in Eqn. 7, consider the quantity,

Y = Σ̄
−1

UTA(I− SST )ATUΣ̄
−1

= Σ̄
−1

ΣVT (I− SST )VΣΣ̄
−1
.

By the conjugation rule (Eqn. SM3) on Eqn. SM8, 0 � Y, so Y is S.P.S.D. By the construction of
DRLS (Eqn. 6) tr Y =

∑
i/∈Θ

∑n
l=1 Σ̄

−2
l,l Σ2

l,lV
2
il = ε̃ < ε, and because Y is S.P.S.D., λmax(Y) ≤

tr Y. By Eqn. SM2 and the previous facts, Y � λmax(Y)I � εI. As a result of the conjugation rule
applied to this upper bound,

UΣ̄YΣ̄UT = AAT −CCT � εUΣ̄
2
UT = ε

(
AAT +

1

k
||A\k||2F I

)
,

and rearrangement leads to the lower bound of Eqn. 7.

1.4 Proof of Theorem 2

To prove Eqn. 8, we will use the following lemma.
Lemma 1. (Boutsidis et al. (2011) Lemma 3.1, Eqn. 3.2, specialized to the Frobenius norm):
Consider A = AZZT + E ∈ Rn×d, where Z ∈ Rn×k and ZTZ = Ik. Let S ∈ Rn×|Θ|(k ≤ |Θ|) be
any matrix such that rank

(
ZTS

)
= k, and let C = AS. Then,

||A−CC+A||2F ≤ ||A−ΠF
C,k(A)||2F ≤ ||E||2F ||S(ZTS)+||22, (SM9)

where ΠF
C,k(A) = (CC+A)k is the best rank-k approximation to A in the column space of C with

the respect to the Frobenius norm.

We’ll use a slightly relaxed version of Lemma 1,

||A−CC+A||2F ≤ ||A−ΠF
C,k(A)||2F ≤ ||E||2F ||S||22||(ZTS)+||22. (SM10)

Choosing Z = Vk, and noting that ||S||22 = 1, we have

||A−CC+A||2F ≤ ||A−ΠF
C,k(A)||2F ≤ ||A\k||2F ||(VT

k S)+||22. (SM11)

It remains to calculate ||(VT
k S)+||22 = σ−2

k (VkSSTVT
k ), where k ≤ rank(A) = r. As a conse-

quence of the conjugation rule (Eqn. SM3) applied to Eqn. 7 with pre- (post-)multiplication by
Σ−1
k UT

k ( UkΣ
−1
k ), we have,

(1− ε)Ik −
ε

k
||A\k||2FΣ−2

k � VkSSTVT
k (SM12)

From Eqn. SM12, the kth eigenvalue σ2
k(VrSSTVT

r ) obeys,

(1− 2ε) ≤ σ2
k(VkSSTVT

k ), (SM13)

after using the fact that 1
k ||A\k||

2
FΣ−2

k ≤ 1 (by definition). Eqn. SM13 shows that, for 0 < ε < 1
2 ,

rank
(
VT
k S
)

= k. Combining Eqn. SM11 and Eqn. SM13 gives Eqn. 8. This proof illustrates the
power of the spectral bound (Eqn. 7), since the column subset selection bound (Eqn. 8) is a direct
consequence of Eqn. 7.
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1.5 Proof of Theorem 3

It will be convenient to define the projection matrix Y = I−X. Then the upper bound in Eqn. 9
follows directly from upper spectral bound (Eqn.SM8), the conjugation rule (Eqn. SM3), and the
trace rule (Eqn. SM5).

The lower projection-cost preservation bound is considerably more involved to prove, and also
relies primarily on the spectral bound (Eqn. 7) and facts from linear algebra. Our proof is nearly
identical to the proof of Cohen et al. (2017)’s Theorem 4, with only one large deviation and several
small differences in constants. We include the full proof for completeness, and point out the major
difference.

We split AAT and CCT into their projections on the topm "head" singular vectors and the remaining
"tail" singular vectors. Choose m such that Σm,m is the smallest singular value that obeys Σ2

m,m ≥
1
k ||A\k||

2
F . Let Pm = UmUT

m and P\m = U\mUT
\m be projection matrices. Note that,

tr
(
YAATY

)
= tr

(
YAmAT

mY
)

+ tr
(
YA\mAT

\mY
)

tr
(
YCCTY

)
= tr

(
YPmCCTPT

mY
)

+ tr
(
YP\mCCTPT

\mY
)

+ 2tr
(
YPmCCTPT

\mY
)
. (SM14)

1.5.1 Head terms

First we bound the terms involving only Pm. Consider Eqn. 7 and the vector y = Pmx for any
vector x. Eqn. 7 gives,

(1− ε)xTPmAATPmx− ε

k
||A\k||2FyTy ≤ yTCCTy

(1− 2ε)xTPmAATPmx ≤ xTPmCCTPmx,

because by the artful definition of m, xTPmAATPmx ≥ 1
k ||A\k||

2
FyTy. Therefore we have,

(1− 2ε)PmAATPm � PmCCTPm, (SM15)

and finally,

(1− 2ε)tr
(
YAmAT

mY
)
≤ tr

(
YPmCCTPmY

)
. (SM16)

1.5.2 Tail terms

To bound the lower singular directions of A, we decompose tr
(
YA\mAT

\mY
)

further as,

tr
(
YA\mAT

\mY
)

= tr
(
A\mAT

\m

)
− tr

(
XA\mAT

\mX
)
, (SM17)

and analogously for C.

The upper spectral bound (Eqn.SM8), the conjugation rule (Eqn. SM3) gives,

P\mCCTP\m � P\mAATP\m, (SM18)

The conjugation rule (Eqn. SM3), and the trace rule (Eqn. SM5) give,

tr
(
XP\mCCTP\mX

)
≤ tr

(
XP\mAATP\mX

)
. (SM19)

Next we consider ||P\mA||2F − ||P\mC||2F . In Cohen et al. (2017)’s proof, a scalar Chernoff bound
is used for ||P\mA||2F − ||P\mC||2F (Cohen et al. (2017) Section 4.3, Eqn. 17). Since our matrix C
is constructed deterministically, we will prove and substitute the following bound (Eqn. SM20),

0 ≤ ||P\mA||2F − ||P\mC||2F ≤ 2ε||A\k||2F . (SM20)

for the scalar Chernoff bound.
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To prove Eqn. SM20, we first note the lower bound follows directly from upper spectral bound (Eqn.
SM8), the conjugation rule (Eqn. SM3), and the trace rule (Eqn. SM5). To prove the upper bound,
we rewrite the difference in Frobenius norms as a difference in sums over column norms:

||P\mA||2F − ||P\mC||2F =

d∑
j /∈Θ

||P\maj ||22 =
∑
j /∈Θ

tr aTj P\mP\maj

≤ 2

k
||A\k||2F

∑
j /∈Θ

tr aTj P\mU\mΣ̄
−2

UT
\mP\maj

≤ 2

k
||A\k||2F

∑
j /∈Θ

tr aTj UΣ̄
−2

Uaj

=
2ε̃

k
||A\k||2F ≤ 2ε||A\k||2F . (SM21)

The first inequality follows from the fact that Σ̄
2
i,i = Σ2

i,i + 1
k ||A\k||

2
F ≤ 2

k ||A\k||
2
F for i ≥ m. As

a result, P\m � 2
k ||A\k||

2
FU\mΣ̄

−2
UT
\m.

Combining the upper bound of Eqn. SM20 with Eqn. SM19 gives,

tr
(
YA\mAT

\mY
)
− 2ε||A\k||2F ≤ tr

(
YP\mCCTP\mY

)
. (SM22)

1.5.3 Cross terms

Finally, we show tr
(
YPmCCTP\mY

)
is small. We rewrite it as,

tr
(
YPmCCTP\mY

)
= tr

(
YAAT (AAT )+PmCCTP\m

)
, (SM23)

using the cyclic property of the trace and the fact that PmCCTPT
\m is in A’s column span. Because

(AAT )+ is semi-positive definite and defines a semi-inner product, we can use the Cauchy-Schwarz
inequality,

|tr
(
YAAT (AAT )+PmCCTPT

\m

)
| ≤

(
tr
(
YAAT (AAT )+AATY

)) 1
2

×
(

tr
(
P\mCCTPT

m(AAT )+PmCCTPT
\m

)
)
) 1

2

=
(

tr
(
YAATY

)) 1
2 ||P\mCCTUmΣ−1

m ||F .
(SM24)

The square of the second term decomposes as,

||P\mCCTUmΣ−1
m ||2F =

m∑
i=1

||P\mCCTui||22Σ−2
i,i , (SM25)

which is small for every i. To show this, we define two convenient vectors. The first is the unit vector
pi = 1

||P\mCCTui||2 P\mCCTui. Note that pTi ui = 0. This is convenient because (pTi CCTui)
2 =

||P\mCCTui||22. The second vector is m = Σ−1
i,i ui +

√
k

||A\k||F
pi. From Eqn. SM8,

mTCCTm ≤mTAATm

Σ−2
i,i uTi CCTui +

k

||A\k||2F
pTi CCTpi +

2
√
k

Σi,i||A\k||F
pTi CCTui ≤

Σ−2
i,i uTi AATui +

k

||A\k||2F
pTi AATpi = 1 +

k

||A\k||2F
pTi AATpi.

(SM26)

From Eqn. SM15, we have,

(1− 2ε)Σi,i = (1− 2ε)uiAATui ≤ uiCCTui. (SM27)
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From Eqn. SM18, we have,

piCCTpi ≤ piAATpi. (SM28)

Using these facts, Eqn. SM26 becomes,

(1− 2ε) +
k

||A\k||2F
pTi CCTpi +

2
√
k

Σi,i||A\k||F
pTi CCTui ≤

1 +
k

||A\k||2F
pTi CCTpi

(pTi CCTui)
2 ≤ ε2

Σ2
i,i||A\k||2F

k
. (SM29)

Returning to Eqn. SM25 with this, we have

||P\mCCTUmΣ−1
m ||2F ≤

m∑
i=1

ε2
||A\k||2F

k
≤ 2ε2||A\k||2F . (SM30)

The factor of 2 comes from the fact that m ≤ 2k. After recalling that the Eckart-Young-Mirsky
theorem (Eckart and Young, 1936) gives ||A\k||2F ≤ tr

(
YAATY

)
, we have for Eqn. SM24,

|tr
(
YAAT (AAT )+PmCCTPT

\m

)
| ≤
√

2εtr
(
YAATY

)
. (SM31)

Combining Eqn. SM14 , Eqn. SM16 , Eqn. SM22, Eqn. SM31 leads to,

(1− 2ε)tr
(
YAmAT

mY
)

+ tr
(
YA\mAT

\mY
)
− 2ε||A\k||2F

−2
√

2εtr
(
YAATY

)
≤ tr

(
YCCTY

)
. (SM32)

Again applying ||A\k||2F ≤ tr
(
YAATY

)
and subtracting an extra 0 ≤ 2εtr

(
YA\mAT

\mY
)

from the lefthand side gives,

(1− 2(2 +
√

2)ε)tr
(
YAATY

)
≤ tr

(
YCCTY

)
, (SM33)

proving Theorem 3.

1.6 Proof of Lemma 1

Let the SVD of C be C = WΣCZT . Set X = WkW
T
k . From the left-hand side of Eqn. 9 and the

Eckart-Young-Mirsky theorem (Eckart and Young, 1936),

(1− αε)||A\k||2F ≤ (1− αε)||A−XA||2F ≤ ||C\k||2F . (SM34)

Similarly, set X = UkU
T
k . From the right-hand side of Eqn. 9,

||C\k||2F ≤ ||C−XC||2F ≤ ||A\k||2F . (SM35)

This means that,

(1− αε)||A\k||2F I � ||C\k||2F I � ||A\k||2F I. (SM36)

Adding 1/k times Eqn. SM36 to Eqn. 7 gives,

(1− ε)K(A)−1 − αε

k
||A\k||2F I � K(C)−1 � K(A)−1. (SM37)

Noting that we can subtract αεAAT from the left-most side of Eqn. SM37 and that all of the matrices
are invertible gives the lemma.
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1.7 Proof of Theorem 4

For ridge regression with matrix A and estimator ŷ = Ax̂ , the statistical risk of the estimatorR(ŷA)
is,

R(ŷA) = 1
nEξ

[
||A

(
ATA +

||A\k||2F
k I

)−1

AT (y∗ + σ2ξ)− y∗||22
]
.

(SM38)

Decomposing into bias and variance terms, taking the expectation, and using the Woodbury matrix
inversion formula gives,

R(ŷA) = 1
n ||
(

A
(
ATA +

||A\k||2F
k I

)−1

AT − I

)
y∗||22

+ σ2

n tr

((
A
(
ATA +

||A\k||2F
k I

)−1

AT

)2
)

=
||A\k||4F
nk2 ||

(
AAT +

||A\k||2F
k

)−1

y∗||22

+ σ2

n tr

((
A
(
ATA +

||A\k||2F
k I

)−1

AT

)2
)

≡ bias(A)2 + variance(A). (SM39)

We begin with the variance term. Using the SVD of A on the variance term gives,

variance(A) = σ2

n tr
(
Σ4Σ̄

−4
)
. (SM40)

As a consequence of Eqn. SM4 and Eqn. 7,

Σ2
C � Σ2. (SM41)

As a consequence of Eqn. SM4 and Eqn. 10,

Σ̄
−2 � Σ̄

−2
C � 1

1− (α+ 1)ε
Σ̄
−2
, (SM42)

where Σ̄
2
C = Σ2

C + 1
k ||C\k||

2
F I. Because the matrices in Eqn. SM41 and Eqn. SM42 are diagonal

and (semi-) positive definite, the relationships can be squared. Finally, because the product of
1

(1−(α+1)ε)2 Σ4Σ̄
−4 is bigger or equal to the product of Σ4

CΣ̄
−4
C for every element along the diagonal,

variance(C) ≤ 1

(1− (α+ 1)ε)2
variance(A). (SM43)

Next we analyze the bias. This part of the proof follows the structure of the proof of Theorem 1 in
Alaoui and Mahoney (2015). It will be useful to analyze the quantity,

||(1− ε)K(C)y∗||2 = || ((1− ε)K(C)−K(A) + K(A)) y∗||2
≤ || ((1− ε)K(C)−K(A)) y∗||2 + ||K(A)y∗||2,

(SM44)

where the last line is due to the triangle inequality. Furthermore,

(1− ε)K(C)−K(A) = K(C)
(
(1− ε)K(A)−1 −K(C)−1

)
K(A), (SM45)

so

|| ((1− ε)K(C)−K(A)) y∗||2 =
= ||K(C)

(
(1− ε)K(A)−1 −K(C)−1

)
K(A)y∗||2

≤ ||K(C)
(
(1− ε)K(A)−1 −K(C)−1

)
||op||K(A)y∗||2, (SM46)

where op refers to the operator norm ||A||op = inf{c ≥ 0 : ||Av|| ≤ c||v||∀v ∈ V }, where V,W
are a normed vector spaces and A is a linear map from A : V →W . We also have,

||K(C)
(
(1− ε)K(A)−1 −K(C)−1

)
||2op =
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= ||K(C)
(
(1− ε)K(A)−1 −K(C)−1

)2
K(C)||op. (SM47)

From Eqn. SM37, we have

(1− ε)K(A)−1 −K(C)−1 � αε

k
||A\k||2F I, (SM48)

which is squareable because (1− ε)K(A)−1 −K(C)−1 commutes with the identity. So,

||K(C)
(
(1− ε)K(A)−1 −K(C)−1

)
||2op

≤ α2ε2

k2
||A\k||4F ||K(C)2||op

≤ α2ε2

k2
||A\k||4F ||K(C)||2op

≤
α2ε2||A\k||4F
||C\k||4F

.

≤ α2ε2

(1− αε)2
. (SM49)

The second to last line follows from the definition of the operator norm and K(C). The last line
follows from Eqn. SM36.

Returning to Eqn. SM44 gives,

||K(C)y∗||2 ≤ 1

(1− ε)

(
αε

(1− αε)
+ 1

)
||K(A)y∗||2

||K(C)y∗||2 ≤ 1

(1− ε)(1− αε)
||K(A)y∗||2. (SM50)

Therefore, using Eqn. SM36 again,

bias(C) ≤ 1

(1− ε)2(1− αε)2
bias(A). (SM51)

Combining Eqn. SM43 and Eqn. SM51 gives,

R(ŷC) ≤ max

((
1

1− (α+ 1)ε

)2

,

(
1

1− αε

)2(
1

1− ε

)2
)
R(ŷA). (SM52)

On the interval 0 < ε < 1
2α , and for α > 1,

max

((
1

1− (α+ 1)ε

)2

,

(
1

1− αε

)2(
1

1− ε

)2
)

< 1 +
2α(−1 + 2α+ 3α2)

(1− α)2
ε. (SM53)

Theorem 4 follows immediately.

1.8 Proof of Theorem 5

The proof is nearly identical to the proof of Theorem 3 of Papailiopoulos et al. (2014), so we do not
repeat all of the algebra. It will be convenient to change notation. Without loss of generality, we
can sort our column indices i in order of decreasing leverage score. We will also start this index at 1
instead of 0. With this change of notation, the power-law decay formula (Eqn. 15) becomes,

τ̄i(A) = (i)−aτ̄1(A) a > 1, (SM54)

By the definition of the sum of ridge leverage scores and power-law decay (Eqn. SM54),

t̄ = τ̄1(A)

d∑
i=1

i−a → τ̄1 =
t̄∑d

i=1 i
−a
. (SM55)
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By the definition of the DRLS algorithm, we collect |Θ| leverage scores such that t̄−ε <
∑
i∈Θ τ̄i (A).

This gives,

t̄− ε < τ̄1

|Θ|∑
i=1

i−a =
t̄∑d

i=1 i
−a

|Θ|∑
i=1

i−a → ε = t̄

∑d
i=|Θ|+1 i

−a∑d
i=1 i

−a
. (SM56)

Papailiopoulos et al. (2014) show that,∑d
i=|Θ|+1 i

−a∑d
i=1 i

−a
≤ max

(
2

(|Θ+1)a ,
2

(a−1)(|Θ|+1)a−1

)
a > 1. (SM57)

Noting that t̄ ≤ 2k, substituting Eqn. SM57 into Eqn. SM56, solving for |Θ|, and noting that the
algorithm collects a minimum of k columns results in the expression for the number of columns
collected when ridge leverage scores exhibit a power-law decay (Eqn. 15).
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Figure 1: Pie chart showing multi-omic feature types of matrix A for LGG tumor data.
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Figure 2: Eigenvalues of matrix AAT for LGG tumor multi-omic data. The eigenvalues range over
multiple orders of magnitude.
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Figure 3: SVD projection of LGG tumor multi-omic data, colored by the combined status for "IDH"
and "codel" outcome variables.
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Figure 4: SVD projection of LGG tumor multi-omic data, colored by the combined status for "IDH"
and "codel" outcome variables.
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Figure 5: SVD projection of LGG tumor multi-omic data, colored by the combined status for "IDH"
and "codel" outcome variables.
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Figure 6: The error ε̃ vs. the number of columns kept for LGG tumor multi-omic data k = 3 ridge
leverage scores. A dramatic reduction in the number of columns kept incurs only a small error penalty.
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Figure 7: Power-law decay of LGG tumor multi-omic data k = 3 ridge leverage scores with sorted
column index. The fit is to Score = b × (Index) a on the first 103 ridge leverage scores.
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Figure 8: Histogram of ||C − XC||2F /||A − XA||2F for 1000 random rank-k = 3 orthogonal
projections X and C selected by the k = 3, ε = 0.1 DRLS algorithm for LGG tumor multi-omic
data.

11



0.0 0.2 0.4 0.6 0.8 1.0
Ridge leverage score

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sic
al

 le
ve

ra
ge

 sc
or

e

Figure 9: Classical leverage scores vs. k = 3 ridge leverage scores for LGG tumor multi-omic
data. Most columns with large classical leverage scores have smalll ridge leverage scores; there is
significant shrinkage.
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Figure 10: Histogram of ŷA − ŷC for the outcome "codel."
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Figure 11: Histogram of ŷA − ŷC for the outcome "IDH."
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Figure 12: Histogram of x̂A − x̂C for the outcome "codel."
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Figure 13: Histogram of x̂A − x̂C for the outcome "IDH."
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Figure 14: Histograms of the predictions ŷC conditioned the outcome y for "codel."
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Figure 15: Histograms of the predictions ŷC conditioned on the outcome y for "IDH."
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