
Appendix

A Proof

Lemma 1. In the decision region ddŷ of class ŷ, ∀i, j 6= ŷ, d̃bij ∈ DBij , the value of non-ME for
any point on the low-dimensional manifold

⋂
i,j 6=ŷ d̃bij is constant. In particular, non-ME obtains

its global maximal value log(L− 1) on and only on Sŷ .

Proof. ∀i, j 6= ŷ, we take a hyperplane d̃bij ∈ DBij . Then according to the definition of the setDBij ,
it is easily shown that ∀z ∈ d̃bij , Zpre,i − Zpre,j = constant, and we denote this corresponding
constant as Cij . Thus given any k 6= ŷ, we derive that ∀z ∈

⋂
i,j 6=ŷ d̃bij

F̂ (z)k =
F (z)k∑
j 6=ŷ F (z)j

=
exp(Zpre,k)∑
j 6=ŷ exp(Zpre,j)

=
1∑

j 6=ŷ exp(Zpre,j − Zpre,k)

=
1∑

j 6=ŷ exp(Cjk)

= constant,

and according to the defination of the non-ME value non-ME(z) = −
∑
i 6=ŷ F̂ (z)i log(F̂ (z)i), we

can conclude that non-ME(z) = constant, ∀z ∈
⋂
i,j 6=ŷ d̃bij .

In particular, according to the property of entropy in information theory, we know that non-ME ≤
log(L− 1), and non-ME achieve its maximal value if and only if ∀k 6= ŷ, F̂k = 1

L−1 . In this case,
there is ∀i, j 6= ŷ, Zpre,i = Zpre,j , which is easy to show that the conditions hold on Sŷ . Conversely,
∀z /∈ Sŷ, there must ∃i, j 6= ŷ, such that Zpre,i 6= Zpre,j which leads to F̂i 6= F̂j . This violates the
condition of non-ME achieving its maximal value. Thus non-ME obtains its global maximal value
log(L− 1) on and only on Sŷ .
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Theorem 1. In the decision region ddŷ of class ŷ, ∀i, j 6= ŷ, z0 ∈ ddŷ, there exists a unique

d̃b0ij ∈ DBij , such that z0 ∈ Q0, where Q0 =
⋂
i,j 6=ŷ d̃b

0
ij . Let Qŷ0 = Q0

⋂
ddŷ, then the solution

set of the problem
argmin

z0

( max
z∗∈Qŷ

0

F (z∗)ŷ)

is Sŷ . Furthermore, ∀z0 ∈ Sŷ there is Q0 = Sŷ , and ∀z∗ ∈ Sŷ
⋂
ddŷ , F (z∗)ŷ = 1

L .

Proof. It is easy to show that given a point and a normal vector, one can uniquely determine a hyper-
plane. Thus ∀i, j 6= ŷ, z0 ∈ ddŷ , there exists unique d̃b0ij ∈ DBij , such that z0 ∈

⋂
i,j 6=ŷ d̃b

0
ij = Q0.

According to the proof of Lemma 1, we have ∀i, j 6= ŷ, z∗ ∈ Qŷ0 , there is Zpre,i−Zpre,j = Cij , and
∃k 6= ŷ, s. t. Zpre,ŷ = Zpre,k. Thus we can derive

F (z∗)ŷ =
exp(Zpre,ŷ)∑
i exp(Zpre,i)

=
1

1 +
∑
i6=ŷ exp(Zpre,i − Zpre,ŷ)

=
1

1 + exp(Zpre,k − Zpre,ŷ)(1 +
∑
i 6=ŷ,k exp(Zpre,i − Zpre,k))

=
1

2 +
∑
i6=ŷ,k exp(Cik)

.

Let M = {i : Cij ≥ 0,∀j 6= ŷ}, there must be k ∈M so M is not empty, and we have

max
z∗∈Qŷ

0

F (z∗)ŷ = max
l∈M

1

2 +
∑
i 6=ŷ,l exp(Cil)

=
1

2 +minl∈M
∑
i6=ŷ,l exp(Cil)

=
1

2 +
∑
i 6=ŷ,k̃ exp(Cik̃)

,

where k̃ is any element in M . This equation holds since ∀k1, k2 ∈M , there is Ck1k2 ≥ 0, Ck2k1 ≥ 0
and Ck1k2 = −Ck2k1 , which leads to Ck1k2 = Ck2k1 = 0. Therefore, ∀l ∈M ,

∑
i6=ŷ,l exp(Cil) has

the same value.

This equation consequently results in

argmin
z0

( max
z∗∈Qŷ

0

F (z∗)ŷ) = argmin
z0

1

2 +
∑
i 6=ŷ,k̃ exp(Cik̃)

= argmax
z0

∑
i6=ŷ,k̃

exp(Cik̃).

From the conclusion in Lemma 1, we know that the value
∑
i 6=ŷ,k̃ exp(Cik̃) obtains its maximum

when Cik̃ = 0,∀i 6= ŷ, k̃. Thus the solution set of the above problem is Sŷ. Furthermore, we have
∀z∗ ∈ Sŷ

⋂
ddŷ , F (z∗)ŷ = 1

2+L−2 = 1
L .
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Theorem 2. Let (x, y) be a given training data. Under the L∞-norm, if there is a training error
α� 1

L that ‖S(Zpre(x, θ∗R))−Ry‖∞ ≤ α, then we have bounds

‖S(−Zpre(x, θ∗R))− 1y‖∞ ≤ α(L− 1)2,

and ∀j, k 6= y,
|S(−Zpre(x, θ∗R))j − S(−Zpre(x, θ∗R))k| ≤ 2α2(L− 1)2.

Proof. For simplicity we omit the dependence of the logits Zpre on the input x and the parameters θ∗R.
Let G = (g1, g2, ..., gL) be the exponential logits, where gi = exp(Zpre,i). Then from the condition
‖S(Zpre)−Ry‖∞ ≤ α we have

{ gy∑
i gi
≤ α∣∣∣ gj∑

i gi
− 1

L−1

∣∣∣ ≤ α j 6= y.

Let C =
∑
i gi, we can further write the condition as

{
gy ≤ αC
( 1
L−1 − α)C ≤ gj ≤ ( 1

L−1 + α)C j 6= y.

Then we can have bounds (L ≥ 2)

S(−Zpre)y =

1
gy

1
gy

+
∑
i 6=y

1
gi

=
1

1 +
∑
i6=y

gy
gi

≥ 1

1 +
∑
i6=y

αC
( 1
L−1−α)C

=
1

1 + α(L−1)2
1−α(L−1)

= 1− α(L− 1)2

1− α(L− 1) + α(L− 1)2

≥ 1− α(L− 1)2

and ∀j 6= y,

S(−Zpre)j =
1
gj

1
gy

+
∑
i 6=y

1
gi

=

gy
gj

1 +
gy
gj

+
∑
i 6=y,j

gy
gi

≤
gy
gj

1 +
gy
gj

=
1

1 +
gj
gy

≤ 1

1 +
( 1
L−1−α)C
αC

= α(L− 1)

≤ α(L− 1)2.
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Then we have proven that ‖S(−Zpre)− 1y‖∞ ≤ α(L− 1)2. Furthermore, we have ∀j, k 6= y,

|S(−Zpre)j − S(−Zpre)k| =

∣∣∣ 1
gj
− 1

gk

∣∣∣
1
gy

+
∑
i 6=y

1
gi

≤
1

( 1
L−1−α)C

− 1
( 1
L−1+α)C

1
αC +

∑
i 6=y

1
( 1
L−1+α)C

=

L−1
1−α(L−1) −

L−1
1+α(L−1)

1
α + (L−1)2

1+α(L−1)

=
2α2(L− 1)2

1 + α(L− 1)2(1− αL)
≤ 2α2(L− 1)2.
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B Additional Experiments

B.1 Training Settings

We apply the same hyperparameters when training Resnet networks via the CE and RCE. The
optimizer is SGD with momentum, and the mini-batch size is 128. The weight decay is 0.0002, the
leakiness of Relu is 0.1.

On MNIST the training steps are 20,000, with piecewise learning rate as

steps:[10, 000, 15, 000, 20, 000],

lr:[0.1, 0.01, 0.001, 0.0001].

Each training image pixel values are scaled to be in the interval [−0.5, 0.5].
On CIFAR-10 the training steps are 90,000, with piecewise learning rate as

steps:[40, 000, 60, 000, 80, 000],

lr:[0.1, 0.01, 0.001, 0.0001].

The training set is augmented by two ways as

• Resizing images to 40× 40× 3 and then randomly cropping them back to 32× 32× 3.

• Randomly flipping images along their second dimension, which is width.

After augmentation each training image pixel values are also scaled to be in the interval [−0.5, 0.5].

B.2 Time Costs on Crafting Adversarial Examples

Our experiments are done on NVIDIA Tesla P100 GPUs. We set the binary search steps to be 9 and
the maximal iteration steps to be 10,000 in C&W-family attacks (i.e., C&W, C&W-hc and C&W-wb),
which promises large enough searching capacity for these attacks. We set the maximal iteration steps
to be 100 for JSMA, which means that JSMA perturbs at most 100 pixels on each image. Table 1
demonstrates the average time costs on crafting each adversarial example via different attacks. We
can find that C&W-family attacks are extremely time consuming compared to other iterative methods.
Furthermore, C&W-family attacks usually take longer time to attack the networks trained by the RCE
than those trained by the CE.

Table 1: The average time costs (s) on crafting each adversarial example via different attacks. The
values are also the average values between MNIST and CIFAR-10. The models is Resnet-32.

Attack Objective Time

FGSM CE ∼ 1.9× 10−3

RCE ∼ 2.4× 10−3

BIM CE ∼ 3.3× 10−3

RCE ∼ 3.6× 10−3

ILCM CE ∼ 4.1× 10−3

RCE ∼ 4.3× 10−3

JSMA CE ∼ 2.9× 101

RCE ∼ 2.0× 101

C&W CE ∼ 4.5× 101

RCE ∼ 5.5× 101

C&W-hc CE ∼ 6.5× 101

RCE ∼ 1.1× 102

C&W-wb CE ∼ 7.0× 102

RCE ∼ 1.3× 103
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B.3 Robustness to Noisy Examples

For more complete analysis, we investigate whether our method can distinguish between noisy
examples and adversarial examples. The noisy examples (RAND) here are defined as

x∗ = x+ U(−ε, ε)

where U(−ε, ε) denotes an element-wise distribution on the interval [−ε, ε]. Fig. 1 gives the classi-
fication error rates on the test set of CIFAR-10, where εRAND = 0.04. We find that the networks
trained by both the CE and RCE are robust to noisy examples in the sense of having low error rates.
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(b) RCE

Figure 1: Classification error rates on CIFAR-10. Two panels separately show the results when the
networks are trained via the CE and RCE. The models is Resnet-32.

Furthermore, in Fig. 2 and Fig. 3, we show the number of images w.r.t. the values of K-density under
various attacks, also on normal and noisy examples. We work on 1,000 test images of CIFAR-10,
and our baseline is the kernel density estimate method (CE as the objective and K-density as the
metric). We can see that the baseline returns quite different distributions on K-density between normal
and noisy examples, and it cannot distinguish noisy examples from the adversarial ones crafted by,
e.g., JSMA and C&W-hc, as shown in Fig. 2. In comparison, our method (RCE as the objective
and K-density as the metric) returns similar distributions on K-density between normal and noisy
examples, and noisy examples can be easily distinguished from other adversarial ones, as shown in
Fig. 3.

B.4 The Limitation of C&W-wb

When we apply the C&W-wb attack, the parameter κ is set to be 0. This makes C&W-wb succeed to
fool the K-density detector but fail to fool the confidence metric. Thus we construct a high-confidence
version of C&W-wb, where we set κ be 5. However, none of the crafted adversarial examples can
have f2(x∗) ≤ 0, as shown in Table 2. This means that it is difficult for C&W-wb to simultaneously
fool both the confidence and the K-density metrics.

Table 2: The ratios (%) of f2(x∗) > 0 of the adversarial examples crafted by the high-confidence
version of C&W-wb on MNIST and CIFAR-10. The model is Resnet-32 and the metric is K-density.

Objective MNIST CIFAR-10
CE 100 100

RCE 100 100
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Figure 2: Number of images w.r.t. K-density. The target networks are trained by the CE.
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Figure 3: Number of images w.r.t. K-density. The target networks are trained by the RCE.
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B.5 Extended experiments

Usually there is a binary search mechanism of the parameter c in C&W attacks to obtain minimal
adversarial perturbation. In Fig. 4 we show the extended experiment result of classification accuracy
under C&W attacks with different values of c.
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Figure 4: The network is Resnet-32, the dataset is CIFAR-10.
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