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A Message passing routine and gradients

A.1 Marginalizing over the discrete latent states

For a given sequence (subscript s dropped for clarity), we are interested in computing

pθ(x,h, i,y) =
∑
z

pθ(x, z,h, i,y)

For the GPM-MRP, we can rewrite this quantity as:

pθ(x,h, i,y) = p(x)
∑
z

pθ(z,h, i,y | x)

where p(x) is a Gaussian process prior. We can compute the sum over z via a standard hidden
Markov model (HMM) forward pass that computes messages αn ∈ RB for n = 1, . . . , N , where B
is the number of discrete states. The messages are defined recursively,

α1,b = ψ1,b + `1,b

αn,b = log

(
B∑
b′=1

exp {αn−1,b′ + ψn,b′,b}

)
+ `n,b n = 2, . . . , N ; b = 1, . . . , B,

where we have defined potentials ψ1 = log π ∈ RB for the log initial state distribution;
ψn,b′,b = log p(zn = b | zn−1 = b′, xn−1) ∈ R for the log transition probability at step n given
previous state b and the latent continuous state xn−1; and `n,b = log p(hn, yn, in | zn = b, xn)
for the log likelihood given a current discrete state. Recall that for the GPM-MRP, each of these
terms factorizes as

p(hn, yn, in | zn = b, xn) = p(hn | zn = b)p(yn | hn)p(in | zn = b, xn).

The log normalizer can be computed from the final messages,

log p(h, i,y) = log

B∑
b=1

eαN,b .

A.2 Gradients of the marginal log probability

First define the log-sum-exp function and its gradient.

lse(a) = log

B∑
b=1

eab RB → R

d lse(a)

da
=
[

ea1∑B
b=1 e

ab
. . . eaB∑B

b=1 e
ab

]
∈ R× RB .
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Note that the gradients are always (output dimension) by (input dimension).

Likewise, define a+Q = [a+Q:,1, . . . , a+Q:,B ] for a broadcast vector plus a matrix. The column-
wise log-sum-exp of a+Q is a vector,

LSE(a+Q) =

 log
∑B
b=1 e

ab+Qb,1

...
log
∑B
b=1 e

ab+Qb,B

 RB × RB×B → RB .

Its gradients are,

dLSE(a+Q)

da
=


ea1+Q1,1∑
b e

ab+Qb,1
. . . eaB+QB,1∑

b e
ab+Qb,1

...
...

ea1+Q1,B∑
b e

ab+Qb,B
. . . eaB+QB,B∑

b e
ab+Qb,B

 ∈ RB×B ,

and

dLSE(a+Q)

dQ:,b′
=

 . . . 0 . . .
e
a1+Q

1,b′∑
b e

ab+Q
b,b′

. . . e
aB+Q

B,b′∑
b e

ab+Q
b,b′

. . . 0 . . .

 ∈ RB×B .

Now we can define the gradients required for the backward pass. Let Z(ψ1, {ψn,b}, {`n}) =
log p(h, i,y) denote the marginal log probability as a function of these potentials. We can compute
the gradient of the marginal log likelihood with respect to the potentials via the following identities:

dαn+1

dαn
=

dLSE(αn + ψn,:,:)

dαn
.

dαn+1

dψn,:,b
=

dLSE(αn + ψn,:,:)

dψn,:,b
dαn
d`n

= I

dα1

dψ1
= I.

To kick off the backpropagation, we have,

dZ

dαN
=

d lse(αN )

dαN
.

We have implemented the marginal likelihood and its gradients in Cython and wrapped them in a
PyTorch primitive for computational speed. This offers many orders of magnitude speedup over using
PyTorch’s automatic differentiation code to compute these gradients.
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B Zebrafish experiment details

B.1 Data collection

In Figure 1, we outline the process for collecting the eye and tail angles which serve as the marks in
our point process latent variable model (PPLVM).

B.2 Summary statistics of the inferred bouts

Figure 2 shows a variety of summary statistics for the inferred bout types. These provide further
support for the labels we assign.

B.3 Baselines

Our Poisson process baseline models in as exponentially distributed and yn as Gaussian. In our
gamma renewal process baseline (GRP), in is instead modeled by a gamma distribution. The
autoregressive (AR) baseline is a (Gaussian, gamma) GLM on the (yn, in) pairs with 10 lagged
time-steps as regressors. We swept over lags between 1 and 100 and 10 resulted in the highest
test likelihood. Our Markov renewal process (MRP) baseline uses B = 8 states and models yn as
diagonal Gaussian and in as gamma, conditioned on the discrete state zn.

In addition to our standard baselines, to isolate for the effect of our learned temporal dynamics,
we introduce the gamma renewal process with embeddings (GRP+) and MRP with embedding
(MRP+) baselines. Similarly to the GPM-MRP, these models use a deep generative model that relates
low dimensional embeddings hn to observed marks yn. In the GRP+ baseline, we model hn as a
Gaussian, while in the MRP+, we model hn as a Gaussian conditioned on the discrete state zn. In
both, yn | hn is modeled by a deep latent Gaussian model with additive diagonal Gaussian noise, as
in the GPM-MRP.

B.4 Training

In Section 7 of the main paper, we have discussed the choice of B and H , the number of discrete
states and the dimensionality of the latent space in our GPM-MRP. Here, we discuss the choice
of kernel for the Gaussian process and architecture for the deep generative model and the LSTM
recognition model.

For our Gaussian process (GP) prior, we use a squared exponential kernel parameterized by a variance
parameter σ2 and a lengthscale parameter `: K(t, t′) = σ2 exp(− (t−t′)2

2`2 ). We fix the variance
parameter to σ2 = 1 and set the lengthscale to ` = 20 minutes based on our prior knowledge.

Our deep generative model of marks y is parameterized by a decoder network that outputs µ(hn) and
Σ(hn). In our experiments, we use a two-layer feed-forward network with 128 hidden units per layer
and tanh nonlinearities. We use the same architecture for the recognition network qφ(h

(s)
n ; y

(s)
n ).

The second recognition network in our variational inference algorithm, qφ(xs; is,hs), is implemented
as a bidirectional LSTM with 16 hidden units and tanh nonlinearities.

B.5 Number of Inducing Points

Figure 3 shows the ELBO of held-out data as a function of the inducing rate—the number of bouts in
between inducing events. We find that one inducing point every 20 bouts is optimal. Our results are
robust to this choice, and over the entire range our model outperforms the MRP+, which does not
have continuous latent states.
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Figure 1: Each swim bout is represented as a high-dimensional mark encoding posture. A. Video is acquired at
60Hz with a spatial resolution of 13 µm/pixel. Each video frame is rotated and translated to align and center
the fish. Swim bouts are brief and are represented as a sequence of postures through 10 image frames (167ms)
beginning at bout initiation. A rightward pursuit bout is shown in which the fish advances toward a prey object.
B. The posture of the fish is estimated in each of the 10 frames. The vergence angle of each eye (arrows) and 20
local tail tangent measurements (arrowheads) represent the posture in each frame. C. The vergence angle of
the ipsilateral and contralateral eye are shown for the swim bout in A-B. For leftward bouts (∆heading >0),
the ipsilateral eye is the left eye. For rightward bouts (∆heading < 0, as in A-B), the ipsilateral eye is the right
eye. Together, these measurements for a 20D observation of the eye positions associated with each bout. D.
The absolute value of the change in local tail angle from frame to frame is used to represent the tail dynamics
associated with each bout as a 180D observation.
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Figure 2: Summary statistics for each of the B = 8 discrete bout types. (Caption continues on the following
page.)
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Figure 2: A. The name assigned to each of the B = 8 bout types is displayed next to a rectangle indicating
the color used to identify those bout types in the main text. In each row, all of the swim bouts assigned to the
discrete state indicated here are summarized in B-F. B. Similar to Supplementary Figure 1C. The vergence angle
(mean ±SD) of the ipsilateral eye through the 10 image frames used to represent each swim bout is shown. Note
that for all exploratory bouts, the mean vergence angle is <20 degrees. C. The vergence angle (mean ±SD) of
the contralateral eye through the 10 image frames used to represent each swim bout is shown. Note that both
eyes converge as hunts are initiated with a ‘j-turn,’ remain converged through ‘pursuit’ bouts, and diverge during
the hunt-end bouts. D. Similar to Supplementary Figure 1D, except for the average across all swim bouts of each
discrete state. The average change of each local tail tangent angle from frame to frame is shown. E. For each
swim bout, all elements of the 180-D tail-movement vector are averaged to give a single value, mean segment
change, which is a simple way to quantify how much the tail changed shape during each swim bout. For each
discrete state, mean segment change is plotted against the change in heading angle for every bout. A density
contour map is plotted to summarize how the swim bouts for each discrete state are distributed in this space.
Partitions between 10% quantiles are indicated. Note that fish swim very straight for several bout types, but
‘j-turns’ are quite lateralized. F. Similar to E but for distance traveled during each swim bout (in millimeters)
again plotted against the change in heading angle for each bout. Unsurprisingly, distance traveled is highly
correlated with ‘mean segment change.’
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Figure 3: Cross-validation of number of inducing points We select an “inducing rate” of one inducing point per
20 bouts by cross-validation.
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