
Supplementary Material: Zero-Shot Transfer with
Deictic Object-Oriented Representation in

Reinforcement Learning

Ofir Marom1, Benjamin Rosman 1,2

1University of the Witwatersrand, Johannesburg, South Africa
2Council for Scientific and Industrial Research, Pretoria, South Africa

1 All-passenger any-destination Taxi domain preconditions and effects

In the main paper we introduce the all-passenger any-destination Taxi domain. Here we show for
each attribute and action the relevant preconditions and effects.

We define the following preconditions:

• WallNorthOfMe(taxi, s): returns 1 if there is a wall one square north of taxi (f1)
• WallEastOfMe(taxi, s): returns 1 if there is a wall one square east of taxi (f2)
• WallSouthOfMe(taxi, s): returns 1 if there is a wall one square south of taxi (f3)
• WallWestOfMe(taxi, s): returns 1 if there is a wall one square west of taxi (f4)
• TaxiOnMe(passenger, s): returns 1 if for a taxi is on the same square as passenger (f5)
• MeAtDestination(passenger, s): returns 1 if passenger.at-destination is true (f6)
• AnyPassengerInTaxi(s): returns 1 if a passenger’s in-taxi attribute is true (f7)
• MeInTaxi(passenger, s): returns 1 if passenger.in-taxi is true (f8)
• TaxiOnAnyDestination(s): returns 1 if a taxi is on the same square as a destination (f9)

Note that some preconditions above are actually propositions, not deictic predicates (for example
f7) since they do not depend on any grounded object. This does not contradict the Deictic OO-MDP
framework since a deictic predicate may simply not refer to a grounded object in which case it is a
proposition.

Define the following effects:

• Reli(x)→ x+ i for i ∈ {−1, 0, 1} where x is an Integer
• Flipi(x)→ (i = 0 : x), (else : !x) for i ∈ {0, 1} where x is Boolean

Then Table 1 shows for each attribute and action the relevant preconditions and effects

In the main paper we run experiments on the all-passenger any-destination Taxi domain. To test
the performance and compare to Propositional OO-MDPs we need to choose a set of hypothesized
preconditions. In constructing our experiments, we set out to mimic as closely as possible the
representation described for the classical Taxi domain under Propositional OO-MDPs. Specifically,
for the classic Taxi domain, the propositional representation depends for each attribute and action on
the following propositions:

• TouchNorth(Taxi,Wall): a taxi has a wall one square to its north (p1)
• TouchEast(Taxi,Wall): a taxi has a wall one square to its east (p2)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Table 1: All-passenger any-destination Taxi domain preconditions and effects for each attribute and
action.

Action Attribute Preconditions Effects

North Taxi.y WallNorthOfMe Rel

East Taxi.x WallEastOfMe Rel

South Taxi.y WallSouthOfMe Rel

West Taxi.x WallWestOfMe Rel

P ickup Passenger.in-taxi
TaxiOnMe, MeAtDestination,

AnyPassengerInTaxi
F lip

Dropoff Passenger.in-taxi MeInTaxi, TaxiOnAnyDestination F lip

Dropoff Passenger.at-destination MeInTaxi, TaxiOnAnyDestination F lip

• TouchSouth(Taxi,Wall): a taxi has a wall one square to its south (p3)
• TouchWest(Taxi,Wall): a taxi has a wall one square to its west (p4)
• On(Taxi, Passenger): a taxi is on the same square as a passenger (p5)
• On(Taxi,Destination): a taxi is on the same square as a destination (p6)
• InTaxi(Passenger): a passenger has its in-taxi attribute set to true (p7)

In order to remain comparable with Propositional OO-MDPs, our approach is to use deictic predicates
when we can and use propositions when we must. For example, consider the Passenger.in-taxi
attribute. It is not possible to convert TouchNorth(Taxi,Wall) to a deictic predicate since when
predicting the Passenger.in-taxi attribute we only have access to a grounded passenger object, and
we don’t have access to grounded wall or taxi objects. So in this case we use propositions. However
we can convertOn(Taxi, Passenger) to a deictic predicate of the form TaxiOnMe(passenger, s)
which was defined in previously. We note that for the one passenger Taxi domain we have similar
performance between Propositional OO-MDPs and Deictic OO-MPDs as shown in figure 5a in the
main paper indicating that we have not biased Deictic-OO MDPs in our experiments.

As discussed in the main paper, when running the DOORMAXD learning algorithm we take
advantage of conjunctive effects to invalidate multiple preconditions with a single observation. To
illustrate this process we show in Tables 2 and 3 for the Taxi.x attribute, action East and effect
Rel1(x) as well as for the Passenger.in-taxi attribute, action PICKUP and effect Flip1(x) how
the algorithm converges to the true set of preconditions from a simulation of DOORMAXD. Note
for example in Table 2 we were able to learn the correct preconditions in only 7 observations whereas
learning by memorisation would require 26 separate observations.

2 Sokoban domain preconditions and effects

We show for each attribute and action the relevant preconditions and effects for the Sokoban domain.
Note that in Sokoban it is easy for a person to get stuck in state from which the task is no longer
solvable. To overcome this problem, we add a Reset action that activates a person’s reset attribute to
true and that immediately terminates the episode. For this domain, we set the reward dynamics to −1
for each step and 300 for getting all the boxes to a storage location. The high reward for completing
the task is necessary to prevent the agent from learning an optimal policy whereby it just applies the
Reset action at the start of every episode.

We define the following preconditions:

• WallNorthOfMei(person, s): returns 1 if there is a wall i squares north of person
• WallEastOfMei(person, s): returns 1 if there is a wall i squares east of person

2

Table 2: All-passenger any-destination Taxi domain learning preconditions for Taxi.x attribute,
action East and effect Rel1(x).

obs f1 f2 f3 f4 p5 p6 p7

1 0 0 0 1 0 0 0

2 - 0 0 1 0 - 0

3 - 0 0 - 0 - 0

4 - 0 0 - 0 - -

5 - 0 0 - 0 - -

6 - 0 0 - 0 - -

7 - 0 - - - - -

Table 3: All-passenger any-destination Taxi domain learning preconditions forPassenger.in-taxi
attribute, action PICKUP and effect Flip1(x).

obs p1 p2 p3 p4 f5 f6 p7

1 0 1 1 0 1 0 0

2 - 1 - 0 1 0 0

3 - - - - 1 0 0

• WallSouthOfMei(person, s): returns 1 if there is a wall i squares south of person

• WallWestOfMei(person, s): returns 1 if there is a wall i squares west of person

• BoxNorthOfMei(person, s): returns 1 if there is a box i squares north of person

• BoxEastOfMei(person, s): returns 1 if there is a box i squares east of person

• BoxSouthOfMei(person, s): returns 1 if there is a box i squares south of person

• BoxWestOfMei(person, s): returns 1 if there is a box i squares west of person

• PersonNorthOfMe(box, s): returns 1 if there is a person one square north of box

• PersonEastOfMe(box, s): returns 1 if there is a person one square east of box

• PersonSouthOfMe(box, s): returns 1 if there is a person one square south of box

• PersonWestOfMe(box, s): returns 1 if there is a person one square west of box

• BoxNorthOfMe(box, s): returns 1 if there is a box one square north of box

• BoxEastOfMe(box, s): returns 1 if there is a box one square east of box

• BoxSouthOfMe(box, s): returns 1 if there is a box one square south of box

• BoxWestOfMe(box, s): returns 1 if there is a box one square west of box

• ResetActivated(person, s): returns 1 if person.reset is true

Define the following effects:

• Reli(x)→ x+ i for i ∈ {−1, 0, 1} where x is an Integer

• Flipi(x)→ (i = 0 : x), (else : !x) for i ∈ {0, 1} where x is Boolean

Then Table 4 shows for each attribute and action the relevant preconditions and effects

3

Table 4: Sokoban domain preconditions and effects for each attribute and action.

Action Attribute Preconditions Effects

North Person.y
WallNorthOfMe1, WallNorthOfMe2,

BoxNorthOfMe1, BoxNorthOfMe2
Rel

East Person.x
WallEastOfMe1, WallEastOfMe2,

BoxEastOfMe1, BoxEastOfMe2
Rel

South Person.y
WallSouthOfMe1, WallSouthOfMe2,

BoxSouthOfMe1, BoxSouthOfMe2
Rel

West Person.x
WallWestOfMe1, WallWestOfMe2,

BoxWestOfMe1, BoxWestOfMe2
Rel

North Box.y
PersonSouthOfMe, BoxNorthOfMe,

WallNorthOfMe
Rel

East Box.x
PersonWestOfMe, BoxEastOfMe,

WallEastOfMe
Rel

South Box.y
PersonNorthOfMe, BoxSouthOfMe,

WallSouthOfMe
Rel

West Box.x
PersonEastOfMe, BoxWestOfMe,

WallWestOfMe
Rel

Reset Person.reset ResetActivated F lip

3 Prediction with DOORMAXD

In the main paper we leave the prediction procedure out due to space limitations. We include it here
for completeness and note that it is analogous to that introduced under Propositional OO-MDPs. See
Algorithm 2.

4 Proof of theorem

In the main paper we exclude the proof of Theorem 1 due to space limitations. We include it here for
completeness and note that it is analogous to the KWIK bound proof under Propositional OO-MDPs.

Consider an effect type g ∈ Ĝ. If this is the correct effect type then it can be learned with KWIK
bounds Kg

0M + Kg
1 (D + 1). This is because the Kg

1 conjunctive effects require at most D + 1
observations each to learn the terms they depend on while the terms for the Kg

0 disjunctive effects
can be memorised M times each. If we then consider all N effect types in Ĝ, an upper bound on the
number of observations required so that all effect types are either removed or return some prediction
is N(K0M +K1(D + 1) + 1).

Now when we call the prediction procedure (see Algorithm 2) if two effect types provide a prediction
that is not the same we remove one of them on the subsequent run of the learning procedure (see
Algorithm 1 of the main paper) and this can occur at most N − 1 times. This gives a total KWIK
bound of N(K0M +K1(D + 1) + 1) +N − 1.

4

Algorithm 2: DOORMAXD: prediction procedure for C.α and a.
Input : o ∈ O[C], s ∈ S
Output :o.α′ ∈ Dom(C.α) or ⊥

1 let V be a set that may contain elements in Dom(C.α) and set V ← φ

2 pass o and s to the deictic predicates in F̂ to retrieve a set of terms T
3 foreach g ∈ Ĝ do
4 pred← ⊥
5 foreach e ∈ g.E do
6 if ∃Te ∈ T g

e such that Te ⊆ T then
7 pred← e(o.α)
8 exit loop
9 end

10 end
11 if pred = ⊥ then
12 return(⊥)
13 else
14 add pred to V
15 if |V | > 1 then
16 return (⊥)
17 end
18 end
19 return(the only element in V)
20 end

5 Source Code

A C# implementation of the Deictic OO-MDP framework for the Taxi domain experiments described
in the main paper can be found here: https://github.com/OfirMarom/DeicticOOMDPs

5

https://github.com/OfirMarom/DeicticOOMDPs

	All-passenger any-destination Taxi domain preconditions and effects
	Sokoban domain preconditions and effects
	Prediction with DOORMAXD
	Proof of theorem
	Source Code

