
Appendix

6.1 Proof of Lemmas

Lemma 6.1. Eqw(z)

�
∇w log qw(Z)

�
= 0

Proof.
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�
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Lemma 6.2. Let h(w) ∈ RD be a random variable, C(w) ∈ RL×D a matrix of random variables
such that each element has mean zero. For a ∈ RL, define ĝ(w) = h(w) + C(w)a. The value of a
that minimizes E �ĝ(w)�2 for a given w is

a∗(w) = − E
p(C,h|w)

�
CTC

�−1
E
�
CTh

�
. (6)

Proof.
E[ĝT ĝ] = E[(h+ Ca)T (h+ Ca)]

= E[hTh+ 2hTCa+ aTCTCa]

= E[hTh] + 2E[hTC]a+ aTE[CTC]a

Differentiating with respect to a, and making the result equal to 0 gives us

2E[hTC] + 2E[CTC]a = 0 −→ a∗ = −E[CTC]−1E[CTh]

6.2 Proof of Theorem 4.1

First we state Lemma 6.3 and Lemma 6.4, which will use to prove the main theorem 4.1.
Lemma 6.3. Suppose that

P (x|w) = h(x) exp(�w, T (x)� −A(w))

be some exponential family, and let

P (w|τ0) ∝ exp (�τ0, w� − n0A(w))

be the conjugate prior to that family. If x1, ..., xN are i.i.d. variables and X is new data from the
distribution, then

E[T (X)|x1, ..., xN ] = κ
τ0
n0

+ (1− κ)µ̂,

where µ̂ = 1
N

�N
n=1 T (xn) and κ = n0

n0+N .

For a proof see Jordan [10].
Lemma 6.4. Given some observations C1, h1, ..., CM , hM , the decision rule that minimizes the
Bayes regret is

a(C1, h1, ..., CM , hM ) = E[CCT |C1, h1, ..., CM , hM ]−1 E[Ch|C1, h1, ..., CM , hM ]

Where the expectations are over all possible values of θ, C and h, given the observed data.
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Proof. We have

a∗(C1, h1, ..., CM , hM ) = argmina E
�
�h+ Ca�2|C1, h1, ..., CM , hM

�

= argmina E
�
(h+ Ca)T (h+ Ca)|C1, h1, ..., CM , hM

�

The solution to this is to find the derivative of the above expression with respect to a and find a such
that

0 = E
�
hTCa+ h+ aTCTCa|C1, h1, ..., CM , hM

�

This gives a∗ = E[CCT |C1, h1, ..., CM , hM ]−1 E[C h|C1, h1, ..., CM , hM ]

Now we prove Theorem 4.1 for an arbitrary V0, using Lemma 6.3 and Lemma 6.4. Consider the same
setting as in Section 4. Let h1, ..., hM be observed gradients and C1, ..., CM be observed control
variates. We define a probabilistic model composed by the likelihood p(h,C|θ) and the prior p(θ).
Theorem 6.5. If we choose the likelihood to be a Gaussian,

P (h,C|θ = (η,Λ)) = Gaussian

��
h

vec(C)

�
|µ = Λ−1η,Σ = Λ−1

�

the prior (conjugate) to be

P (θ = (η,Λ)) ∝ exp(tT0 η − tr(V T
0 Λ)− n0A(η,Λ))

where V0 can be written as:

V0 =




Vhh V �
hc1

V �
hc2

· · · V �
hcL

Vhc1 Vc1c1 V �
c2c1 · · · V �

cLc1
Vhc2 Vc2c1

...
...

VhcL VcLc1 · · · VcLcL




then the decision rule that minimizes the Bayesian regret is

a∗(h1, C1, ..., hM , CM ) = −E[CTC|h1, C1, ..., hM , CM ]−1E[CTh|h1, C1, ..., hM , CM ] (8)

Where

E[CTh|h1, C1, ..., hM , CM ] =
κ

n0




trVhc1
trVhc2

...
trVhcL


+ (1− κ)CTh.

and

E[CTC|h1, C1, ..., hM , CM ] =
κ

n0




trVc1c1 trV T
c2c1 · · · trV T

cLc1
trVc2c1

...
...

trVcLc1 · · · trVcLcL


+ (1− κ)CTC.

With CTC = 1
M

�M
m=1 CmCT

M being an empircal average and CTh = 1
M

�M
m=1 C

T
mhm also

being an empirical average.

13



Proof. The expression for a∗ in equation 8 is obtained using Lemma 6.4. We need to find
E[CTC|h1, C1, ..., hM , CM ] and E[CTh|h1, C1, ..., hM , CM ]. Using Lemma 6.3, given observa-
tions h1, C1, ..., hM , CM we have a closed form expression form

E

��
h

vec(C)

� �
h

vec(C)

�T

|h1, C1, ..., hM , CM

�
= κ

V0

n0
+ (1− κ)

�
h

vec(C)

� �
h

vec(C)

�T

(9)

Where vec(C) is a vector with the columns of C concatenated. Noticing that

CTh =




cT1 h
cT2 h

...
cTLh




it can be concluded that each component of E[CTh|h1, C1, ..., hM , CM ] corresponds to the sum of
d components of the matrix on the right hand side of equation 9. Using the decomposition for V0

shown above, we get:

E
�
CTh|h1, C1, ..., hM , CM

�
=




trVhc1
trVhc2

...
trVhcL


+ (1− κ)CTh. (10)

A similar reasoning can be used for E[CTC|h1, C1, ..., hM , CM ], getting:

E[CTC|h1, C1, ..., hM , CM ] =




trVc1c1 trV T
c2c1 · · · trV T

cLc1
trVc2c1

...
trVcLc1 · · · trVcLcL


+ (1− κ)CTC (11)

Replacing these expressions in a∗(h1, C1, ..., hM , CM ) concludes the proof.

Using the result above we now prove Theorem 4.1, which takes V0 = v0 I .

Theorem 4.1. If p(C, h|θ) is a Gaussian parameterized as

p(C, h|θ = (η,Λ)) = Gaussian

�
[vec(C), h]

���µ = Λ−1η,Σ = Λ−1

�
,

and the prior is a Normal-Wishart, parameterized as p(θ = (η,Λ)) ∝ exp(tT0 η − trace(V T
0 Λ) −

n0A(η,Λ)), then the decision rule that minimizes the Bayesian regret for V0 = v0I is

α∗(C1, h1, ..., CM , hM ) = −
�
d v0
M

I + CTC

�−1

CTh (7)

Where h ∈ Rd, CTC = 1
M

�M
m=1 CmCT

m and CTh = 1
M

�M
m=1 C

T
mhm.

Proof. The expression for a∗ is given in eq. 8. We need to find the expressions for
E[CTC|h1, C1, ..., hM , CM ] and E[CTh|h1, C1, ..., hM , CM ] when V0 = v0 I . In this particular
case we get that trVhcl = 0 for l = 1, ..., L. Combining this with eq. 10 gives

E[CTh|h1, C1, ..., hM , CM ] = (1− κ)CTh.

When V0 = v0 I we also get
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• trVclck = 0 for k �= l

• trVclcl = d

Combining these two facts with eq. 11 gives

E[CTC|h1, C1, ..., hM , CM ] =
κ

n0
d v0 I + (1− κ)CTC.

Finally,

a∗(h1, C1, ..., hM , CM ) = −
�

κ
n0

d v0 I + (1− κ)CTC

�−1

(1− κ)CTh

= −
�

κ
n0(1−κ)d v0 I + CTC

�−1

CTh

= −
�

d v0
M I + CTC

�−1

CTh

Where in the last equality we used κ = n0

n0+M

6.3 Adaptation of control variate introduced by Miller et al. [17] to full covariance
Gaussians

The derivation of the variate introduced by Miller et al. [17] was done for the case in which qw is a
Gaussian distribution with a diagonal covariance matrix. This section of the appendix explains how
to use the CV in the case in which qw is a Gaussian distribution with full covariance matrix, in which
case w = [Cw, µw], where CwC

T
w = Σ and µw is the mean of the distribution.

Following the procedure in Miller et al. [17], we build an approximation for g(w) = ∇w Eqw [f(Z)]

as g̃(w) = ∇w Eqw [f̃(Z)] = [∇µw Eqw f̃(Z),∇Cw Eqw f̃(Z)], where f̃(z) is a second order Taylor
expansion. The difference between g̃(w) computed exactly (lemma 6.6) and its estimation using
reparameterization is used as a control variate.

Lemma 6.6. Let qw = N (µw, CwC
T
w ) and f̃(z) be a second order Taylor expansion of f , then

∇µw Eqw f̃(Z) = ∇f(z0) and ∇Cw Eqw f̃(Z) = ∇2f(z0)C.

Proof. Applying reparameterization we can express ∇w Eqw f̃(Z) = ∇w Eq̄ f̃(Tw(r)), where r ∼
q̄ = N (0, I) and Tw(r) = Cwr + µw.

Introducing the Taylor expansion we get

Eq̄[f̃(Tw(r))] = Eq̄[f(z0) + (Z − z0)
T∇f(z0) +

1
2
(Z − z0)

T∇2f(z0)(Z − z0)]Z=Tw(r)

= f(z0) + (E Tw(r)− z0)∇f(z0) +
1
2 E

�
tr(∇2f(z0)(Tw(r)− z0)(Tw(r)− z0)

T )
�

= f(z0) + (µw − z0)∇f(z0) +
1
2

tr(∇2f(z0)E[(Tw(r)− z0)(Tw(r)− z0)
T )])

(12)

Where

15



E[(Tw(r)− z0)(Tw(r)− z0)
T ] = E[(Cwr + µw − z0)(Cwr + µw − z0)

T ]

= Cw E[rrT ]� �� �
I

CT
w + Cw E[r]����

0

(µw − z0)
T

+(µw − z0) E[r]����
0

CT
w + (µw − z0)(µw − z0)

T

= CwC
T
w + (µw − z0)(µw − z0)

T

= CwC
T
w + µwµ

T
w − µwz

T
0 − z0µ

T
w + z0z

T
0

And thus

tr(∇2f(z0)E[(Tw(r)− z0)(Tw(r)− z0)
T )]) = tr

�
∇2f(z0)(CwC

T
w + µwµ

T
w − µwz

T
0 − z0µ

T
w)

�

= tr(CT
w∇2f(z0)Cw)

+µT
w∇2f(z0)µw − 2zT0 ∇2f(z0)µw

(13)

Using the results from eq. 13 in eq. 12 we get

Eq̄[f̃(Tw(r))] = f(z0) + (µw − z0)∇f(z0)

+ 1
2

tr(CT
w∇2f(z0)Cw) + µT

w∇2f(z0)µw − 2zT0 ∇2f(z0)µw

Finally, computing the gradient ∇µwEq̄[∇wf̃(Tw(r))] and ∇CwEq̄[∇wf̃(Tw(r))] and evaluating the
results in z0 = µw (following [17]) yields

∇µw
Eq̄[f̃(Tw(r))]

��
z0=µw

= ∇f(µw) + 2∇2f(µw)µw − 2∇2f(µw)µw

= ∇f(µw)

∇Cw
Eq̄[f̃(Tw(r))]

��
z0=µw

= ∇2f(µw)Cw
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6.4 Previously used Control Variates

In this section we show how many of the control variates described and used in previous work fit the
proposed framework. For convenience, we repeat our generic recipe for control variates.

1st estimate
(SF, RP, CF, etc.)Pick Term t(w).

(Part of g1, g2, g3)
Approximate

Term (optional)
Take Difference

T − T �
2nd Estimate

(SF, RP, CF, etc.)

T
t

t̃

t̃ T �

Also, recall our decomposition of the full gradient into different terms:

g(w) = ∇w E
qw

log p(x|Z)

� �� �
g1(w): Data term

+ ∇w E
qw

log p(Z)

� �� �
g2(w): Prior term

− ∇w E
qw

log qv(Z)
��
v=w

� �� �
g3(w): Variational term

−∇w E
qv
log qw(Z)

��
v=w

� �� �
g4(w): Score term

.

The rest of this section gives seven examples of existing control variates, and how they can be seen as
instantiations of the above generic recipe.

Closed form
entropy

t = g3
No

Approximation
Take Difference

T − T �
Score function

or Reparam.

T
t

t̃

t̃ T �

Figure 6: Even if the exact entropy can be computed, it may be preferable to approximate it when
qw ≈ p [23]. This suggests a control variate consisting of the difference of the exact entropy gradient
and an approximation of it. In general, it is most beneficial to include the same estimator as used to
estimate gradients of the data and prior terms.

Closed form
t = g1 + g2

Second order
Taylor expansion

Take Difference
T − T �

Score function

T
t

t̃

t̃ T �

Figure 7: To estimate gradients Paisley et al. [19] approximate f = g1 + g2 using a second order
Taylor expansion and upper/lower bounds, leading to t̃(w) = Eqw(z) f̃(Z). The difference between
the approximate term computed in closed form and its estimation using the score function is used as
a control variate.

Closed form
t = g1 + g2 Lower Bound Take Difference

T − T �
Score function

T
t

t̃

t̃ T �

Figure 8: To estimate gradients Paisley et al. [19] approximate f = g1 + g2 using a second order
Taylor expansion and upper/lower bounds, leading to t̃(w) = Eqw(z) f̃(Z). The difference between
the approximate term computed in closed form and its estimation using the score function is used as
a control variate.
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Closed form
t = g1

Second order
Taylor expansion

Take Difference
T − T �

Reparam.

T
t

t̃

t̃ T �

Figure 9: To estimate gradients Miller et al. [17] approximate the data term using a second order
Taylor expansion of f , leading to t̃(w) = Eqw(z) f̃(Z). The difference between the approximate term
computed in closed form and its estimation using reparameterization is used as a control variate.

Reparam. (qw) +
Closed form (D)

t = g1
Second order

Taylor expansion
Take Difference

T − T �
Reparam. (qw) +

Minibatch

T
t

t̃

t̃ T �

Figure 10: To estimate gradients Wang et al. [30] approximate the data term using a second order
Taylor expansion of f , for which the expectation with respect to D (distribution over minibatches) can
be computed in closed form. We adapt this idea to the VI setting, leading to t̃(w) = Eqw(z) ED f̃d(Z).
The difference between the results obtained by computing the inner expectation in closed form
and estimating it with a random minibatch (in both cases estimating the outer expectation using
reparameterization) is used as a control variate.

Score function
t = g1 + g2 + g3

Concrete
relaxation

Take Difference
T − T �

Reparam.

T
t

t̃

t̃ T �

Figure 11: To estimate gradients for problems with discrete variables Tucker et al. [28] use a
continuous relaxation [9, 16] for the discrete variational distribution qw(z), q̃w(z), leading to t̃(w) =

Eq̃w(z) f̃(Z). Then, the difference of a score function and reparameterization estimate is used as a
control variate.

Score function
t = g1 + g2 + g3

Surrogate neural
network

Take Difference
T − T �

Reparam.

T
t

t̃

t̃ T �

Figure 12: To estimate gradients Grathwohl et al. [7] train a surrogate neural network f̃ to approximate
f , leading to t̃(w) = E f̃(Z). Then, the difference of a score function and reparameterization estimate
is used as a control variate. The neural network is trained to minimize the variance of the resulting
estimator. (For discrete variational distributions they also use a continuous relaxation [9, 16] to
approximate qw.)
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