A DeepProbLog Programs

nn(m_digit, X, [0,...,9]) :: digit(X,0);...;digit(X,9).

addition (X,Y,Z) :— digit(X,X2), digit(Y,Y2), Z is X2+Y2.

Listing 1: Single-digit MNIST addition (T1)

In Listing 1, digit/2 is the neural predicate that classifies an MNIST image into the integers O to
9. The addition/3 predicate’s first two arguments are MNIST digits, and the last is the sum. It
classifies both images using and calculates the sum of the two results.

nn(m_digit, X, [0,...,9]) :: digit(X,0);...;digit(X,9).

number ([], Result , Result).
number ([H|T],Acc, Result) :—
digit (H,Nr),
Acc2 is Nr+10=xAcc,
number (T, Acc2, Result).
number(X,Y) :— number(X,0,Y).

multi_addition (X,Y,Z) :— number(X,X2), number(Y,Y2), Z is X2+Y2.

Listing 2: Multi-digit MNIST addition (T2)

In Listing 2, the only difference with Listing 1 is that the multi_addition/3 predicate now uses
the number/2 predicate instead of the digit/2 predicate. The number/3 predicate’s first argu-
ment is a list of MNIST images. It uses the digit/2 neural predicate on each image in the list,
summing and multiplying by ten to calculate the number represented by the list of images (e.g.
number ([El,H] ,38)).

nn(m-_result ,D1,D2, Carry ,[0,...,9]):: result(D1,D2,Carry ,0);
.;result(D1,D2, Carry ,9).

nn(m_carry ,D1,D2, Carry ,[0,1])::carry (D1,D2, Carry ,0); carry (D1,D2, Carry ,1).
slot (I1,12,Carry ,NewCarry, Result) :—

result (I1,I2,Carry, Result),
carry (I1,1I2,Carry ,NewCarry).

add ([1,[1.[C],C,[1).

add ([H1|T1],[H2|T2],C,Carry ,[Digit|Res]) :—
add (T1,T2,C,NewCarry,Res),
slot (H1,H2,NewCarry, Carry , Digit).

Listing 3: Forth addition sketch (T3)

In Listing 3, there are two neural predicates: result/4 and carry/4. These are used in the slot/4
predicate that corresponds to the slot in the Forth program. The first three arguments are the two
digits and the previous carry to be summed. The next two arguments are the new carry and the new
resulting digit. The add/5 predicate’s arguments are: the two list of input digits, the input carry,
the resulting carry and the resulting sum. It recursively calls itself to loop over both lists, calling the
slot/5 predicate on each position, using the carry from the previous step.

In Listing 4, there’s a single neural predicate: swap/3. It’s first two arguments are the numbers that
are compared, the last argument is an indicator whether to swap or not. The bubble/3 predicate
performs a single step of bubble sort on its first argument using the hole/4 predicate. The second
argument is the resulting list after the bubble step, but without its last element, which is the third

12

nn(m-_swap, X,[0,1]) ::swap(X,Y,0) ; swap(X,Y,1).

hole (X,Y,X,Y): —
swap(X,Y,0).

hole (X,Y,Y,X): —
swap (X,Y,1).

bubble ([X],[]1.X).

bubble ([HI,H2|T],[X1|T1],X):—
hole (H1,H2,X1,X2),
bubble ([X2|T],T1,X).

bubblesort ([],L,L).
bubblesort (L,L3, Sorted) :—
bubble (L,L2,X),
bubblesort (L2,[X|L3], Sorted).

sort (L,L2) :— bubblesort(L,[],L2).

Listing 4: Forth sorting sketch (T4)

argument. The bubblesort/3 predicate uses the bubble/3 predicate, and recursively calls itself
on the remaining list, adding the last element on each step to the front of the sorted list.

permute (0 ,A,B,C,A,B,C)

permute (1,A,B,C,A,C,B)

permute (2 ,A,B,C,B,A,C)

permute (3,A,B,C,B,C,A)

permute (4 ,A,B,C,C,A,B)

permute (5 ,A,B,C,C,B,A).

swap (0,X,Y.X,Y).

swap (1,X,Y,Y,X).

operator (0,X,Y,Z) :— Z is X+Y.

operator (1,X,Y,Z) :(— Z is X-Y.

operator (2,X,Y,Z) :— Z is XxY.

operator (3,X,Y,Z) :(— Y > 0, 0 === X mod Y,Z is X//Y.
nn(m-netl, Repr, [0 ,...,6])::netl (Repr,0);...;netl (Repr,6).
nn(m_net2, Repr, [0,...,3])::net2(Repr,0);...;net2(Repr,3).
nn(m-net3, Repr, [0,1])::net3(Repr,0);net3 (Repr,1).
nn(m_net4, Repr, [0,...,3])::net4(Repr,0);...; netd (Repr,3).

wap (Text ,X1,X2,X3,0ut) :—
netl (Text,Perm),
permute (Perm ,X1,X2,X3,N1,N2,N3),
net2 (Text,Opl),
operator (Opl,N1,N2,Resl),
net3 (Text,Swap),
swap (Swap,Resl ,N3,X,Y),
net4 (Text ,Op2),
operator (Op2,X,Y,Out).

Listing 5: Forth WAP sketch (T5)

In Listing 5, there are four neural predicates: net1/2 to net4/2. Their first argument is the input
question, and the second argument are indicator variables for the choice of respectively: one of six
permutations, one of 4 operations, swapping and one of 4 operations. These are implemented in the

13

permute/7, swap/5 and operator/4 predicates. The wap/5 predicate then sequences these steps
to calculate the result.

nn(m_colour ,R,G,B,[red, green,blue]):: colour(R,G,B,red);
colour (R,G,B, green); colour (R,G,B, blue).

nn(m_coin , Coin ,[heads , tails]) :: coin(Coin,heads);coin(Coin, tails).

t(0.5)::col(l,red);t(0.5)::col(1,blue).
t(0.333)::col(2,red);t(0.333)::col(2,green);t(0.333)::col(2,blue).
t(0.5)::is_heads.

outcome (heads ,red ,_,win).

outcome (heads ,_,red ,win).

outcome (- ,C,C,win).

outcome (Coin , Colourl , Colour2 ,loss) :— \+outcome(Coin, Colourl ,Colour2 ,win).

game (Coin , Urnl ,Urn2, Result) :—
coin (Coin, Side),
urn(1,Urnl,Cl1),
urn(2,Urn2,C2),
outcome (Side ,C1,C2, Result).

urn (ID, Colour ,C) :—
col (ID,C),
colour (Colour ,C).

coin (Coin, heads) :—
coin (Coin , heads),
is_heads.

coin(Coin, tails) :—
coin(Coin, tails),
\+is_heads.

Listing 6: The coin-ball problem (T6)

In Listing 6, there are two neural predicates: colour/4 and coin/2. There are also 6 learnable
parameters: 2 for the first urn, 3 for the second and one for the coin. The outcome/4 defines the
winning conditions based on the coin and the two urns. The urn/3 and coin/2 predicates tie the
parameters to the detections of the neural predicates. The game predicate is the high-level predicate
that plays the game.

14

