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Abstract

The determinantal point process (DPP) is an elegant probabilistic model of repul-
sion with applications in various machine learning tasks including summarization
and search. However, the maximum a posteriori (MAP) inference for DPP which
plays an important role in many applications is NP-hard, and even the popular
greedy algorithm can still be too computationally expensive to be used in large-
scale real-time scenarios. To overcome the computational challenge, in this paper,
we propose a novel algorithm to greatly accelerate the greedy MAP inference for
DPP. In addition, our algorithm also adapts to scenarios where the repulsion is
only required among nearby few items in the result sequence. We apply the pro-
posed algorithm to generate relevant and diverse recommendations. Experimental
results show that our proposed algorithm is significantly faster than state-of-the-art
competitors, and provides a better relevance-diversity trade-off on several public
datasets, which is also confirmed in an online A/B test.

1 Introduction

The determinantal point process (DPP) was first introduced in [33] to give the distributions of fermion
systems in thermal equilibrium. The repulsion of fermions is described precisely by DPP, making it
natural for modeling diversity. Besides its early applications in quantum physics and random matrices
[35], it has also been recently applied to various machine learning tasks such as multiple-person
pose estimation [27], image search [28], document summarization [29], video summarization [19],
product recommendation [18], and tweet timeline generation [49]. Compared with other probabilistic
models such as the graphical models, one primary advantage of DPP is that it admits polynomial-time
algorithms for many types of inference, including conditioning and sampling [30].

One exception is the important maximum a posteriori (MAP) inference, i.e., finding the set of items
with the highest probability, which is NP-hard [25]. Consequently, approximate inference methods
with low computational complexity are preferred. A near-optimal MAP inference method for DPP
is proposed in [17]. However, this algorithm is a gradient-based method with high computational
complexity for evaluating the gradient in each iteration, making it impractical for large-scale real-time
applications. Another method is the widely used greedy algorithm [37], justified by the fact that the
log-probability of set in DPP is submodular. Despite its relatively weak theoretical guarantees [13], it
is widely used due to its promising empirical performance [29, 19, 49]. Known exact implementations
of the greedy algorithm [17, 32] have O(M4) complexity, where M is the total number of items. Han
et al.’s recent work [20] reduces the complexity down toO(M3) by introducing some approximations,
which sacrifices accuracy. In this paper, we propose an exact implementation of the greedy algorithm
with O(M3) complexity, and it runs much faster than the approximate one [20] empirically.
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The essential characteristic of DPP is that it assigns higher probability to sets of items that are diverse
from each other [30]. In some applications, the selected items are displayed as a sequence, and the
negative interactions are restricted only among nearby few items. For example, when recommending
a long sequence of items to the user, each time only a small portion of the sequence catches the user’s
attention. In this scenario, requiring items far away from each other to be diverse is unnecessary.
Developing fast algorithm for this scenario is another motivation of this paper.

Contributions. In this paper, we propose a novel algorithm to greatly accelerate the greedy MAP
inference for DPP. By updating the Cholesky factor incrementally, our algorithm reduces the com-
plexity down to O(M3), and runs in O(N2M) time to return N items, making it practical to be used
in large-scale real-time scenarios. To the best of our knowledge, this is the first exact implementation
of the greedy MAP inference for DPP with such a low time complexity.

In addition, we also adapt our algorithm to scenarios where the diversity is only required within a
sliding window. Supposing the window size is w < N , the complexity can be reduced to O(wNM).
This feature makes it particularly suitable for scenarios where we need a long sequence of items
diversified within a short sliding window.

Finally, we apply our proposed algorithm to the recommendation task. Recommending diverse items
gives the users exploration opportunities to discover novel and serendipitous items, and also enables
the service to discover users’ new interests. As shown in the experimental results on public datasets
and an online A/B test, the DPP-based approach enjoys a favorable trade-off between relevance and
diversity compared with the known methods.

2 Background and Related Work

Notations. Sets are represented by uppercase letters such as Z, and #Z denotes the number of
elements in Z. Vectors and matrices are represented by bold lowercase letters and bold uppercase
letters, respectively. (·)> denotes the transpose of the argument vector or matrix. 〈x,y〉 is the inner
product of two vectors x and y. Given subsets X and Y , LX,Y is the sub-matrix of L indexed by
X in rows and Y in columns. For notation simplicity, we let LX,X = LX , LX,{i} = LX,i, and
L{i},X = Li,X . det(L) is the determinant of L, and det(L∅) = 1 by convention.

2.1 Determinantal Point Process

DPP is an elegant probabilistic model with the ability to express negative interactions [30]. Formally,
a DPP P on a discrete set Z = {1, 2, . . . ,M} is a probability measure on 2Z , the set of all subsets of
Z. When P gives nonzero probability to the empty set, there exists a matrix L ∈ RM×M such that
for every subset Y ⊆ Z, the probability of Y is

P(Y ) ∝ det(LY ),

where L is a real, positive semidefinite (PSD) kernel matrix indexed by the elements of Z. Under this
distribution, many types of inference tasks including marginalization, conditioning, and sampling can
be performed in polynomial time, except for the MAP inference

Ymap = argmaxY⊆Z det(LY ).

In some applications, we need to impose a cardinality constraint on Y to return a subset of fixed size
with the highest probability, resulting in the MAP inference for k-DPP [28].

Besides the works on the MAP inference for DPP introduced in Section 1, some other works propose
to draw samples and return the one with the highest probability. In [16], a fast sampling algorithm
with complexity O(N2M) is proposed when the eigendecomposition of L is available. Though the
update rules of [16] and our work are similar, there are two major differences making our approach
more efficient. First, [16] requires the eigendecomposition of L with time complexity O(M3). This
computation overhead dominates the overall running time when we only need to return a small
number of items. By contrast, our approach only requires overall O(N2M) complexity to return
N items. Second, sampling algorithm of DPP usually needs to perform multiple sample trials to
achieve comparable empirical performance with the greedy algorithm, which further increases the
computational complexity.
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2.2 Greedy Submodular Maximization

A set function is a real-valued function defined on 2Z . If the marginal gains of a set function f are
non-increasing, i.e., for any i ∈ Z and any X ⊆ Y ⊆ Z \ {i},

f(X ∪ {i})− f(X) ≥ f(Y ∪ {i})− f(Y ),

then f is submodular. The log-probability function in DPP f(Y ) = log det(LY ) is submodular,
as is revealed in [17]. Submodular maximization corresponds to finding a set which maximizes a
submodular function. The MAP inference for DPP is a submodular maximization.

Submodular maximization is generally NP-hard. A popular approximation approach is based on the
greedy algorithm [37]. Initialized as ∅, in each iteration, an item which maximizes the marginal gain

j = argmaxi∈Z\Yg
f(Yg ∪ {i})− f(Yg),

is added to Yg, until the maximal marginal gain becomes negative or the cardinality constraint is
violated. When f is monotone, i.e., f(X) ≤ f(Y ) for any X ⊆ Y , the greedy algorithm admits a
(1− 1/e)-approximation guarantee subject to a cardinality constraint [37]. For general submodular
maximization with no constraints, a modified greedy algorithm guarantees (1/2)-approximation [10].
Despite these theoretical guarantees, greedy algorithm is widely used for DPP due to its promising
empirical performance [29, 19, 49].

2.3 Diversity of Recommendation

Improving the recommendation diversity has been an active field in machine learning and information
retrieval. Some works addressed this problem in a generic setting to achieve better trade-off between
arbitrary relevance and dissimilarity functions [11, 9, 51, 8, 21]. However, they used only pairwise
dissimilarities to characterize the overall diversity property of the list, which may not capture some
complex relationships among items (e.g., the characteristics of one item can be described as a simple
linear combination of another two). Some other works tried to build new recommender systems to
promote diversity through the learning process [3, 43, 48], but this makes the algorithms less generic
and unsuitable for direct integration into existing recommender systems.

Some works proposed to define the similarity metric based on the taxonomy information [52, 2,
12, 45, 4, 44]. However, the semantic taxonomy information is not always available, and it may be
unreliable to define similarity based on them. Several other works proposed to define the diversity
metric based on explanation [50], clustering [7, 5, 31], feature space [40], or coverage [47, 39].

In this paper, we apply the DPP model and our proposed algorithm to optimize the trade-off between
relevance and diversity. Unlike existing techniques based on pairwise dissimilarities, our method
defines the diversity in the feature space of the entire subset. Notice that our approach is essentially
different from existing DPP-based methods for recommendation. In [18, 34, 14, 15], they proposed
to recommend complementary products to the ones in the shopping basket, and the key is to learn the
kernel matrix of DPP to characterize the relations among items. By contrast, we aim to generate a
relevant and diverse recommendation list through the MAP inference.

The diversity considered in our paper is different from the aggregate diversity in [1, 38]. Increasing
aggregate diversity promotes long tail items, while improving diversity prefers diverse items in each
recommendation list.

3 Fast Greedy MAP Inference

In this section, we present a fast implementation of the greedy MAP inference algorithm for DPP. In
each iteration, item

j = argmaxi∈Z\Yg
log det(LYg∪{i})− log det(LYg) (1)

is added to the already selected item set Yg. Since L is a PSD matrix, all of its principal minors are
also PSD. Suppose det(LYg

) > 0, and the Cholesky decomposition of LYg
is available as

LYg
= VV>,
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Algorithm 1 Fast Greedy MAP Inference
1: Input: Kernel L, stopping criteria
2: Initialize: ci = [], d2i = Lii, j = argmaxi∈Z log(d2i ), Yg = {j}
3: while stopping criteria not satisfied do
4: for i ∈ Z \ Yg do
5: ei = (Lji − 〈cj , ci〉)/dj
6: ci = [ci ei], d2i = d2i − e2i
7: end for
8: j = argmaxi∈Z\Yg

log(d2i ), Yg = Yg ∪ {j}
9: end while

10: Return: Yg

where V is an invertible lower triangular matrix. For any i ∈ Z \ Yg, the Cholesky decomposition of
LYg∪{i} can be derived as

LYg∪{i} =

[
LYg LYg,i

Li,Yg
Lii

]
=

[
V 0
ci di

] [
V 0
ci di

]>
, (2)

where row vector ci and scalar di ≥ 0 satisfies

Vc>i = LYg,i, (3)

d2i = Lii − ‖ci‖22. (4)

In addition, according to Equ. (2), it can be derived that

det(LYg∪{i}) = det(VV>) · d2i = det(LYg
) · d2i . (5)

Therefore, Opt. (1) is equivalent to

j = argmaxi∈Z\Yg
log(d2i ). (6)

Once Opt. (6) is solved, according to Equ. (2), the Cholesky decomposition of LYg∪{j} becomes

LYg∪{j} =

[
V 0
cj dj

] [
V 0
cj dj

]>
, (7)

where cj and dj are readily available. The Cholesky factor of LYg can therefore be efficiently updated
after a new item is added to Yg.

For each item i, ci and di can also be updated incrementally. After Opt. (6) is solved, define c′i and
d′i as the new vector and scalar of i ∈ Z \ (Yg ∪ {j}). According to Equ. (3) and Equ. (7), we have[

V 0
cj dj

]
c′i
>
= LYg∪{j},i =

[
LYg,i

Lji

]
. (8)

Combining Equ. (8) with Equ. (3), we conclude

c′i = [ci (Lji − 〈cj , ci〉)/dj ]
.
= [ci ei] .

Then Equ. (4) implies

d′2i = Lii − ‖c′i‖22 = Lii − ‖ci‖22 − e2i = d2i − e2i . (9)

Initially, Yg = ∅, and Equ. (5) implies d2i = det(Lii) = Lii. The complete algorithm is summarized
in Algorithm 1. The stopping criteria is d2j < 1 for unconstraint MAP inference or #Yg > N when
the cardinality constraint is imposed. For the latter case, we introduce a small number ε > 0 and add
d2j < ε to the stopping criteria for numerical stability of calculating 1/dj .

In the k-th iteration, for each item i ∈ Z \ Yg, updating ci and di involve the inner product of two
vectors of length k, resulting in overall complexity O(kM). Therefore, Algorithm 1 runs in O(M3)
time for unconstraint MAP inference and O(N2M) to return N items. Notice that this is achieved
by additional O(NM) (or O(M2) for the unconstraint case) space for ci and di.
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Algorithm 2 Fast Greedy MAP Inference with a Sliding Window
1: Input: Kernel L, window size w, stopping criteria
2: Initialize: V = [], ci = [], d2i = Lii, j = argmaxi∈Z log(d2i ), Yg = {j}
3: while stopping criteria not satisfied do
4: Update V according to Equ. (7)
5: for i ∈ Z \ Yg do
6: ei = (Lji − 〈cj , ci〉)/dj
7: ci = [ci ei], d2i = d2i − e2i
8: end for
9: if #Yg ≥ w then

10: v = V2:,1, V = V2:, ai = ci,1, ci = ci,2:
11: for l = 1, · · · , w − 1 do
12: t2 = V2

ll + v2
l

13: Vl+1:,l = (Vl+1:,lVll + vl+1:vl)/t, vl+1: = (vl+1:t−Vl+1:,lvl)/Vll

14: for i ∈ Z \ Yg do
15: ci,l = (ci,lVll + aivl)/t, ai = (ait− ci,lvl)/Vll

16: end for
17: Vll = t
18: end for
19: for i ∈ Z \ Yg do
20: d2i = d2i + a2i
21: end for
22: end if
23: j = argmaxi∈Z\Yg

log(d2i ), Yg = Yg ∪ {j}
24: end while
25: Return: Yg

4 Diversity within Sliding Window

In some applications, the selected set of items are displayed as a sequence, and the diversity is only
required within a sliding window. Denote the window size as w. We modify Opt. (1) to

j = argmaxi∈Z\Yg
log det(LY w

g ∪{i})− log det(LY w
g
), (10)

where Y wg ⊆ Yg contains w − 1 most recently added items. When #Yg ≥ w, a simple modification
of method [32] solves Opt. (10) with complexity O(w2M). We adapt our algorithm to this scenario
so that Opt. (10) can be solved in O(wM) time.

In Section 3, we showed how to efficiently select a new item when V, ci, and di are available. For
Opt. (10), V is the Cholesky factor of LY w

g
. After Opt. (10) is solved, we can similarly update V,

ci, and di for LY w
g ∪{j}. When the number of items in Y wg is w − 1, to update Y wg , we also need to

remove the earliest added item in Y wg . The detailed derivations of updating V, ci, and di when the
earliest added item is removed are given in the supplementary material.

The complete algorithm is summarized in Algorithm 2. Line 10-21 shows how to update V, ci, and di
in place after the earliest item is removed. In the k-th iteration where k ≥ w, updating V, all ci and
di require O(w2), O(wM), and O(M) time, respectively. The overall complexity of Algorithm 2 is
O(wNM) to return N ≥ w items. Numerical stability is discussed in the supplementary material.

5 Improving Recommendation Diversity

In this section, we describe a DPP-based approach for recommending relevant and diverse items to
users. For a user u, the profile item set Pu is defined as the set of items that the user likes. Based on
Pu, a recommender system recommends items Ru to the user.

The approach takes three inputs: a candidate item set Cu, a score vector ru which indicates how
relevant the items in Cu are, and a PSD matrix S which measures the similarity of each pair of items.
The first two inputs can be obtained from the internal results of many traditional recommendation
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algorithms. The third input, similarity matrix S, can be obtained based on the attributes of items, the
interaction relations with users, or a combination of both. This approach can be regarded as a ranking
algorithm balancing the relevance of items and their similarities.

To apply the DPP model in the recommendation task, we need to construct the kernel matrix. As
revealed in [30], the kernel matrix can be written as a Gram matrix, L = B>B, where the columns
of B are vectors representing the items. We can construct each column vector Bi as the product of
the item score ri ≥ 0 and a normalized vector fi ∈ RD with ‖fi‖2 = 1. The entries of kernel L can
be written as

Lij = 〈Bi,Bj〉 = 〈rifi, rjfj〉 = rirj〈fi, fj〉. (11)
We can think of 〈fi, fj〉 as measuring the similarity between item i and item j, i.e., 〈fi, fj〉 = Sij .
Therefore, the kernel matrix for user u can be written as

L = Diag(ru) · S ·Diag(ru),

where Diag(ru) is a diagonal matrix whose diagonal vector is ru. The log-probability of Ru is

log det(LRu) =
∑
i∈Ru

log(r2u,i) + log det(SRu). (12)

The second term in Equ. (12) is maximized when the item representations of Ru are orthogonal, and
therefore it promotes diversity. It clearly shows how the DPP model incorporates the relevance and
diversity of the recommended items.

A nice feature of methods in [11, 51, 8] is that they involve a tunable parameter which allows users to
adjust the trade-off between relevance and diversity. According to Equ. (12), the original DPP model
does not offer such a mechanism. We modify the log-probability of Ru to

logP(Ru) ∝ θ ·
∑
i∈Ru

ru,i + (1− θ) · log det(SRu),

where θ ∈ [0, 1]. This corresponds to a DPP with kernel

L′ = Diag(exp(αru)) · S ·Diag(exp(αru)),

where α = θ/(2(1− θ)). We can also get the marginal gain of log-probability

logP(Ru ∪ {i})− logP(Ru) ∝ θ · ru,i + (1− θ) · (log det(SRu∪{i})− log det(SRu
)). (13)

Then Algorithm 1 and Algorithm 2 can be easily modified to maximize (13) with kernel matrix S.

Notice that we need the similarity Sij ∈ [0, 1] for the recommendation task, where 0 means the most
diverse and 1 means the most similar. This may be violated when the inner product of normalized
vectors 〈fi, fj〉 can take negative values. In the extreme case, the most diverse pair fi = −fj , but the
determinant of the corresponding sub-matrix is 0, same as fi = fj . To guarantee nonnegativity, we
can take a linear mapping while keeping S a PSD matrix, e.g.,

Sij =
1 + 〈fi, fj〉

2
=

〈
1√
2

[
1
fi

]
,
1√
2

[
1
fj

]〉
∈ [0, 1].

6 Experimental Results

In this section, we evaluate and compare our proposed algorithms on synthetic dataset and real-world
recommendation tasks. Algorithms are implemented in Python with vectorization. The experiments
are performed on a laptop with 2.2GHz Intel Core i7 and 16GB RAM.

6.1 Synthetic Dataset

In this subsection, we evaluate the performance of our Algorithm 1 on the MAP inference for DPP.
We follow the experimental setup in [20]. The entries of the kernel matrix satisfy Equ. (11), where
ri = exp(0.01xi + 0.2) with xi ∈ R drawn from the normal distribution N (0, 1), and fi ∈ RD with
D same as the total item size M and entries drawn i.i.d. from N (0, 1) and then normalized.

Our proposed faster exact algorithm (FaX) is compared with Schur complement combined with lazy
evaluation (Lazy) [36] and faster approximate algorithm (ApX) [20]. The parameters of the reference
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Figure 1: Comparison of Lazy, ApX, and our FaX under different M when N = 1000 (left), and
under different N when M = 6000 (right).

algorithms are chosen as suggested in [20]. The gradient-based method in [17] and the double greedy
algorithm in [10] are not compared because as reported in [20], they performed worse than ApX. We
report the speedup over Lazy of each algorithm, as well as the ratio of log-probability [20]

log detLY / log detLYLazy ,

where Y and YLazy are the outputs of an algorithm and Lazy, respectively. We compare these metrics
when the total item size M varies from 2000 to 6000 with the selected item size N = 1000, and
when N varies from 400 to 2000 with M = 6000. The results are averaged over 10 independent
trials, and shown in Figure 1. In both cases, FaX runs significantly faster than ApX, which is the
state-of-the-art fast greedy MAP inference algorithm for DPP. FaX is about 100 times faster than
Lazy, while ApX is about 3 times faster, as reported in [20]. The accuracy of FaX is the same as Lazy,
because they are exact implementations of the greedy algorithm. ApX loses about 0.2% accuracy.

6.2 Short Sequence Recommendation

In this subsection, we evaluate the performance of Algorithm 1 to recommend short sequences of
items to users on the following two public datasets.

Netflix Prize2: This dataset contains users’ ratings of movies. We keep ratings of four or higher and
binarize them. We only keep users who have watched at least 10 movies and movies that are watched
by at least 100 users. This results in 436, 674 users and 11, 551 movies with 56, 406, 404 ratings.

Million Song Dataset [6]: This dataset contains users’ play counts of songs. We binarize play counts
of more than once. We only keep users who listen to at least 20 songs and songs that are listened to
by at least 100 users. This results in 213, 949 users and 20, 716 songs with 8, 500, 651 play counts.

For each dataset, we construct the test set by randomly selecting one interacted item for each user,
and use the rest data for training. We adopt an item-based recommendation algorithm [24] on the
training set to learn an item-item PSD similarity matrix S. For each user, the profile set Pu consists
of the interacted items in the training set, and the candidate set Cu is formed by the union of 50 most
similar items of each item in Pu. The median of #Cu is 735 and 811 on Netflix Prize and Million
Song Dataset, respectively. For any item in Cu, the relevance score is the aggregated similarity to all
items in Pu [22]. With S, Cu, and the score vector ru, algorithms recommend N = 20 items.

Performance metrics of recommendation include mean reciprocal rank (MRR) [46], intra-list average
distance (ILAD) [51], and intra-list minimal distance (ILMD). They are defined as

MRR = mean
u∈U

p−1u , ILAD = mean
u∈U

mean
i,j∈Ru,i6=j

(1− Sij), ILMD = mean
u∈U

min
i,j∈Ru,i6=j

(1− Sij),

where U is the set of all users, and pu is the smallest rank position of items in the test set. MRR
measures relevance, while ILAD and ILMD measure diversity. We also compare the metric popularity-
weighted recall (PW Recall) [42] in the supplementary material. For these metrics, higher ones are
preferred.

Our DPP-based algorithm (DPP) is compared with maximal marginal relevance (MMR) [11], max-
sum diversification (MSD) [8], entropy regularizer (Entropy) [40], and coverage-based algorithm
(Cover) [39]. They all involve a tunable parameter to adjust the trade-off between relevance and
diversity. For Cover, the parameter is γ ∈ [0, 1] which defines the saturation function f(t) = tγ .

In the first experiment, we test the impact of trade-off parameter θ ∈ [0, 1] of DPP on Netflix Prize
dataset. The results are shown in Figure 2. As θ increases, MRR improves at first, achieves the best

2Netflix Prize website, http://www.netflixprize.com/

7



0.25 0.50 0.75 1.00

0.05

0.06

M
RR

DPP

0.25 0.50 0.75 1.00
0.75
0.80
0.85
0.90
0.95

IL
AD

DPP

0.25 0.50 0.75 1.00
0.4

0.5

0.6

0.7

0.8

IL
M

D

DPP

Figure 2: Impact of trade-off parameter θ on Netflix Prize dataset.

Figure 3: Comparison of trade-off performance between relevance and diversity under different
choices of trade-off parameters on Netflix Prize (left) and Million Song Dataset (right). The standard
error of MRR is about 0.0003 and 0.0006 on Netflix Prize and Million Song Dataset, respectively.

Table 1: Comparison of average / upper 99% running time (in milliseconds).

Dataset MMR MSD Entropy Cover DPP

Netflix Prize 0.23 / 0.50 0.21 / 0.41 200.74 / 2883.82 120.19 / 1332.21 0.73 / 1.75
Million Song Dataset 0.23 / 0.41 0.22 / 0.34 26.45 / 168.12 23.76 / 173.64 0.76 / 1.46

value when θ ≈ 0.7, and then decreases a little bit. ILAD and ILMD are monotonously decreasing as
θ increases. When θ = 1, DPP returns items with the highest relevance scores. Therefore, taking
moderate amount of diversity into consideration, better performance can be achieved.

In the second experiment, by varying the trade-off parameters, the trade-off performance between
relevance and diversity are compared in Figure 3. The parameters are chosen such that different
algorithms have approximately the same range of MRR. As can be seen, Cover performs the best
on Netflix Prize but becomes the worst on Million Song Dataset. Among the other algorithms, DPP
enjoys the best relevance-diversity trade-off performance. Their average and upper 99% running time
are compared in Table 1. MMR, MSD, and DPP run significantly faster than Entropy and Cover.
Since DPP runs in less than 2ms with probability 99%, it can be used in real-time scenarios.

We conducted an online A/B test in a movie recommender system for four weeks. For each user,
candidate movies with relevance scores were generated by an online scoring model. An offline matrix
factorization algorithm [26] was trained daily to generate movie representations which were used to
calculate similarities. For the control group, 5% users were randomly selected and presented with
N = 8 movies with the highest relevance scores. For the treatment group, another 5% random users
were presented with N movies generated by DPP with a fine-tuned trade-off parameter. Two online
metrics, improvements of number of titles watched and watch minutes, are reported in Table 2. The
results are also compared with another 5% randomly selected users using MMR. As can be seen,
DPP performed better compared with systems without diversification algorithm or with MMR.

6.3 Long Sequence Recommendation

In this subsection, we evaluate the performance of Algorithm 2 to recommend long sequences of
items to users. For each dataset, we construct the test set by randomly selecting 5 interacted items for
each user, and use the rest for training. Each long sequence contains N = 100 items. We choose
window size w = 10 so that every w successive items in the sequence are diverse. The value of w
usually depends on specific applications. Generally speaking, if each time a user can only see a small
portion of the sequence, w can be of the order of the portion size. Other settings are the same as in
the previous subsection.
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Table 2: Performance improvement of MMR and DPP over Control in an online A/B test.

Algorithm Improvement of No. Titles Watched Improvement of Watch Minutes

MMR 0.84% 0.86%
DPP 1.33% 1.52%
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DPP
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Figure 4: Comparison of trade-off performance between relevance and diversity under different
choices of trade-off parameters on Netflix Prize (left) and Million Song Dataset (right). The standard
error of nDCG is about 0.00025 and 0.0005 on Netflix Prize and Million Song Dataset, respectively.

Performance metrics include normalized discounted cumulative gain (nDCG) [23], intra-list average
local distance (ILALD), and intra-list minimal local distance (ILMLD). The latter two are defined as

ILALD = mean
u∈U

mean
i,j∈Ru,i6=j,dij≤w

(1− Sij), ILMLD = mean
u∈U

min
i,j∈Ru,i6=j,dij≤w

(1− Sij),

where dij is the position distance of item i and j in Ru. Similarly, higher metrics are desirable. To
make a fair comparison, we modify the diversity terms in MMR and MSD so that they only consider
the most recently added w − 1 items. Entropy and Cover are not tested because they are not suitable
for this scenario. By varying trade-off parameters, the trade-off performance between relevance and
diversity of MMR, MSD, and DPP are compared in Figure 4. The parameters are chosen such that
different algorithms have approximately the same range of nDCG. As can be seen, DPP performs
the best with respect to relevance-diversity trade-off. We also compare the metric PW Recall in the
supplementary material.

7 Conclusion and Future Work

In this paper, we presented a fast and exact implementation of the greedy MAP inference for DPP. The
time complexity of our algorithm is O(M3), which is significantly lower than state-of-the-art exact
implementations. Our proposed acceleration technique can be applied to other problems with log-
determinant of PSD matrices in the objective functions, such as the entropy regularizer [40]. We also
adapted our fast algorithm to scenarios where the diversity is only required within a sliding window.
Experiments showed that our algorithm runs significantly faster than state-of-the-art algorithms,
and our proposed approach provides better relevance-diversity trade-off on recommendation task.
Potential future research directions include learning the optimal trade-off parameter automatically
and the theoretical analysis of Algorithm 2.
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