A Proof of Theorem

Let us first verify that M, is a submartingale for the filtration {F;}4>1 with Fy being the sigma
algebra generated by all weights and biases up to and including layer d (for background on sigma
algebras and martingales we refer the reader to Chapters 2 and 37 in [3]). Since act(®) is a fixed
non-random vector, it is clear that M is measurable with respect to F;. We have

E [Mg| Far] = nidE [Hact(d)H2 | act(dl)}
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where we can replace the sigma algebra F,_; by the sigma algebra generated by act(®~1) since
the computation done by a feed-forward neural net is a Markov chain with respect to activations at
consecutive layers (for background see Chapter 8 in [3]]). Next, recall that by assumption the weights
and biases are symmetric in law around 0. Note that for each [, changing the signs of all the weights

(d) and biases b(d) causes preact(ﬁd) to change sign. Hence, we find

d 2 d 2 _
E [(preact&) l{prcact(d)>0} | actdV| = E (preacté)> 1{prcact(d)<0} act(@=1

Note that
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Symmetrizing the expression in (9)), we obtain
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where in the second equality we used that the weights wa)ﬁ and biases bgl) are independent of F4_;

with mean 0 and in the last equality that Var[w((j)ﬁ] = 2/n;_1. The above computation also yields

that for each d > 1,
— Al (d) ? — 1 (0) > 1 . ()
E[My =E {nd Hact H ] = Hact H + 5]221 vy (11)

It also shows that My = My — Zd—1 2V§d) is a martingale. Taking the limit d — oo in (L) proves
(). Next, assuming condition (), we find that

sup E [max{My,0}] < Hact(o) H Z 1/2(j),
d>1 no —

which is finite. Hence, we may apply Doob’s pointwise martingale convergence theorem (see Chapter
35 in [3]) to conclude that the limit

My = lim My
d—o0
is exists and is finite almost surely. Indeed, Doob’s result states that if our martingale M, is bounded

in Lt uniformly in d, then, almost surely, J\//.Td has a finite pointwise limit as d — co. To show we
will need the following result.
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Lemma l. Fixd > 1. Then

M2+ (6 — S M,_ C(+ M2, + My
d—1 ( VZ ) d—1 Svar[Md‘fdil] S ( d—1 d 1)’

nq ng

where

a1 @\? o~
€ =max{1, g — 5 (1) 20i? ~ 3).

Proof. Note that

1 )\ 2
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4= > (acty”)
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and, conditioned on act(?~1), the random variables {act(ﬁd)} g are i.i.d. Hence,

1 2
Var[Mq | Faoa] = - Var {(act(ld)> ]—‘d_l} . (12)

We apply the same symmetrization trick as in the derivation of (10) to obtain

1 4
E {(act(d)) ‘ fd_l} = iE [(preaetgd)> | act(dl)]
Nng—1 4
<Z act w (d) +b(1d)> | act(@1 ,

which after using that the odd moments of wfﬁ1 and bgd) vanish becomes

1 Nd—1 4 61/(d)
3 E <Z act(@~Y wéﬂ) ‘ act@D | 4 2
a=1

(d— 1)H +1 (d)'
Ndg—1

Hact

To evaluate the first term, note that

Nd—1 4 Ndg—1
(Z act(d D ) ‘ act(@=1) Z Hact(d 1)IE

a;=1 i1=1
1<i<4
Since
d d
H“’( | ] = [z + Lz + Lz +0 —9ommmnima ]

we conclude that

— 4 4 4
o) NP I ey S S ] S
Ng_1 4

2
where we recall that ﬁfld) = ufld) / (,uéd)) . Putting together the preceding computations and using

that

2
E [(actéd)) | act(dl)} My_1+ 2v(d),

we find that

2 ~(d) -3 4
Var [(act ) | Fa— 1} =5M3 | + % Hact(d_l)H4
d—1

1 1 2
+ (6 - Véd)) Mdfl + §V£d) - Z (Véd))
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Recall that the excess kurtosis ijid) — 3 of 14 is bounded below by —2 for any probability measure

(see Chapter 4 in [28])) and observe that || act(“~1) ||} < || act(@~1) ||4. Therefore, using that (d)
%(z/éd))z > 0, we obtain

2
M3+ (6 - yéd))qu < Var {(aet@) ’ fd_1} <O+ Mj |+ Mgy)

with )
1 -
C= max{l A =5 (") 2] - 3).
This completes the proof of the Lemma. ]

To conclude the proof of Theorem[5] we write
2 _ L ()
E [Mg | Fa-1] = Var[My | Fg—1] + | Ma—1 + 3V

and combine Lemma|I| with the expression (L1]) to obtain with C' as in LemmalT]

c 1
E[M3| Fs-1] < o (14 M3, + My) + M3, + Mg 15 + Ey‘id)

and

(d)
1 6 — 1
E[Mflfd_ﬂ ZM(?_l <1+n) + My (uéd)JrV?) ZMf_l <1+)'
d

ng ng

Taking expectations of both sides in the inequalities above yields with C' as in Lemmal[I]

=) <B[M] < (o EPa]) (14 ).

2
E[M2,] (1 vl .

where
a0 < — {1+ Mo+ Y v | + 57 [ Mo+ S8 | + (uéd))
nd j=1 j=1
and therefore

[eS) 9] d
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Jj=1 j=1"" j=1 j=1 j=1
d d
< (1eae (s S ) S S () “C(”sz > )
j=1 — =1

Iterating the lower bound in this inequality yields the lower bound in (5). Similarly, using that
1+ C/ngq > 1, we iterate the upper bound to obtain

E[M3] < (aq +E [M2)]) <1 N C)

ng
< (ag+ aa—1 + E [M7_,]) (1+7»LC;> (1+ndcl>
d 41
2
< Zaj-l-Mo €xXp CZTT]
j=1 =1

Using the above estimate for ; @ gives the upper bound in (5) and completes the proof of Theorem
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B Proof of Corollary

Fix a fully connected ReLLU net N with depth d and hidden layer widths ng, ..., ns. We fix an
input act(®) to AV and study the empirical variance Var[M] of the squared sizes of activations
M;, j =1,...,d. Since the biases in V" are 0, the squared activations ); are a martingale (see (10))
and we find

E [Mij’] =E |:Mr%11n{j,j’}:| :

Thus, using that by (5) for some ¢ > 0

we find

j=1 3,g'=1
1 & S )
=S E[M]] = > (d—j+E [M]]
j=1 j=1
d . d—1
Ienj—1 1
> ﬁ; p cexp C;nk

To see that this sum is exponential in Y 1/n; as in (7)), let us consider the special case of equal
widths n; = n. Then, writing
d—1
1
j=1 n’
we have
d

>

Jj=1

d—1 1 Be
1 1 / ,Bc(lfz) e 1 < 1 >
cexp | ¢ — | =ec ze dx = +—=-1{1-—=.
kz:; N 0 pre B e
This proves the lower bounds in (6)) and (7). The upper bounds are similar.

C Proof of Theorem 6]

To understand the sizes of activations produced by N7} ¢*, we need the following Lemma.

Lemma 2. Let N be a feed-forward, fully connected ReLU net with depth d and hidden layer widths
no, - . - , Nq having random weights as in DeﬁnitionEand biases set to 0. Then for eachn € (0,1),
we have

|z +nN (@)[* = [lz]* (1 + O(n)) .
Proof of Lemma. We have:
E{|lz +nN (2)[]* =E [||33||2 + 20 (z, N (2)) +n? ||N(JU)||2} (13)
= |l2[* (1 +n” + 29E [(Z, N ())]) ,

where T = pr, and we have used the fact that ||V (z) I = ||z||® (see (T0)) as well as the positive
homogeneity of ReLU nets with zero biases:

N(zx) = AN (x), A > 0.
Write

E[{z,N(z ZﬂfﬂE (Na(@)].
=1
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Let us also write z = x(9) for the input to A/, similarly set () for the activations at layer j. We
denote by Wé] ) the Bth row of the weights W) at layer j in . We have:

d d —

E[Ns(@) | #9V] = E [2§"] =B [wi?at¢-01
d) (d— _

B [[W570 Larsey [ #47Y]

= %]E HWéd)x(dfl)’ | x(dfl)}

1/2
g (w7 a0

7= =
2n

Therefore, using that Hx(j ) H is a supermartingale (since its square is a martingale by (10)):

Bpto) < o= ([ < S o) = S et

d-1
(Wit ay>o0 | z )}

IN

Hence, we obtain:

BN @) =0 (1Z1) = o

since by Jensen’s inequality,

n n
Z|x,|§\/ﬁZx12, z; € R.
j=1 =1

Combining this with completes the proof. O

The Lemma implies part (i) of the Theorem as follows:

E[M;%] = [HNfesl ) +nNL (NLeS1( ))Hz}
— & [B W5 0+ s Wi @) | N o)
=(1+0m))E [Mm}
where we used the fact that 7 = O(n;) since n; € (0, 1). Iterating this inequality yields

I L
Mres H 1 + O 77@ = exp (Z log 1 + 0O (W))) = exp (O (Z 77€>> 5
P /=1

(=1

Derivation of the estimates (ii) follows exactly the same procedure and hence is omitted. Finally,
using these estimates, we find that the mean empirical variance of {;“*} is exponential in ) _, 7y :
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