
A Proof of Theorem 5

Let us first verify that Md is a submartingale for the filtration {Fd}d�1 with Fd being the sigma
algebra generated by all weights and biases up to and including layer d (for background on sigma
algebras and martingales we refer the reader to Chapters 2 and 37 in [3]). Since act(0) is a fixed
non-random vector, it is clear that Md is measurable with respect to Fd. We have
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where we can replace the sigma algebra Fd�1 by the sigma algebra generated by act(d�1) since
the computation done by a feed-forward neural net is a Markov chain with respect to activations at
consecutive layers (for background see Chapter 8 in [3]). Next, recall that by assumption the weights
and biases are symmetric in law around 0. Note that for each �, changing the signs of all the weights
w

(d)
↵,� and biases b(d)� causes preact(d)� to change sign. Hence, we find
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Note that
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Symmetrizing the expression in (9), we obtain
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where in the second equality we used that the weights w(d)
↵,� and biases b(d)� are independent of Fd�1

with mean 0 and in the last equality that Var[w(d)
↵,� ] = 2/nj�1. The above computation also yields

that for each d � 1,
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It also shows that cMd = Md �
Pd

j=1
1
2⌫

(d)
2 is a martingale. Taking the limit d ! 1 in (11) proves

(4). Next, assuming condition (4), we find that
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which is finite. Hence, we may apply Doob’s pointwise martingale convergence theorem (see Chapter
35 in [3]) to conclude that the limit

M1 = lim
d!1

Md

is exists and is finite almost surely. Indeed, Doob’s result states that if our martingale cMd is bounded
in L

1 uniformly in d, then, almost surely, cMd has a finite pointwise limit as d ! 1. To show (5) we
will need the following result.
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Lemma 1. Fix d � 1. Then
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, the random variables {act(d)� }� are i.i.d. Hence,
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We apply the same symmetrization trick as in the derivation of (10) to obtain
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which after using that the odd moments of w(d)
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To evaluate the first term, note that
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we conclude that
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where we recall that eµ(d)
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Recall that the excess kurtosis eµ(d)
4 � 3 of µ(d) is bounded below by �2 for any probability measure

(see Chapter 4 in [28]) and observe that || act(d�1) ||44  || act(d�1) ||4. Therefore, using that 1
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2 )2 � 0, we obtain

M
2
d�1 + (6� ⌫

(d)
2 )Md�1  Var

⇣
act(d)1

⌘2 �� Fd�1

�
 C(1 +M

2
d�1 +Md�1)

with
C = max{1, 1

2
⌫
(d)
4 � 1

2

⇣
µ
(d)
2

⌘2
, 2 |eµ4|� 3}.

This completes the proof of the Lemma.

To conclude the proof of Theorem 5, we write
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and combine Lemma 1 with the expression (11) to obtain with C as in Lemma 1
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Taking expectations of both sides in the inequalities above yields with C as in Lemma 1
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Iterating the lower bound in this inequality yields the lower bound in (5). Similarly, using that
1 + C/nd > 1, we iterate the upper bound to obtain
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Using the above estimate for
P

j aj , gives the upper bound in (5) and completes the proof of Theorem
5.
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B Proof of Corollary 2

Fix a fully connected ReLU net N with depth d and hidden layer widths n0, . . . , nd. We fix an
input act(0) to N and study the empirical variance dVar[M ] of the squared sizes of activations
Mj , j = 1, . . . , d. Since the biases in N are 0, the squared activations Mj are a martingale (see (10))
and we find
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To see that this sum is exponential in
P

1/nj as in (7), let us consider the special case of equal
widths nj = n. Then, writing
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This proves the lower bounds in (6) and (7). The upper bounds are similar.

C Proof of Theorem 6

To understand the sizes of activations produced by N res
L , we need the following Lemma.

Lemma 2. Let N be a feed-forward, fully connected ReLU net with depth d and hidden layer widths

n0, . . . , nd having random weights as in Definition 1 and biases set to 0. Then for each ⌘ 2 (0, 1),
we have

kx+ ⌘N (x)k2 = kxk2 (1 +O(⌘)) .

Proof of Lemma. We have:
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where bx = x
kxk , and we have used the fact that kN (x)k2 = kxk2 (see (10)) as well as the positive

homogeneity of ReLU nets with zero biases:
N (�x) = �N (x), � > 0.
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Let us also write x = x
(0) for the input to N , similarly set x(j) for the activations at layer j. We

denote by W
(j)
� the �

th row of the weights W (j) at layer j in N . We have:
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since by Jensen’s inequality,
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Combining this with (13) completes the proof.

The Lemma implies part (i) of the Theorem as follows:
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where we used the fact that ⌘2` = O(⌘`) since ⌘` 2 (0, 1). Iterating this inequality yields
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Derivation of the estimates (ii) follows exactly the same procedure and hence is omitted. Finally,
using these estimates, we find that the mean empirical variance of {Mres

` } is exponential in
P

` ⌘` :

E

2

4 1

L

LX

`=1

(Mres
` )2 �

 
1

L

LX

`=1

M
res
`

!2
3

5  1

L

LX

`=1

E
h
(Mres

` )2
i

=
1

L

LX

`=1

exp

0

@O

0

@
X̀

j=1

⌘j

1

A

1

A

= exp

0

@O

0

@
LX

j=1

⌘j

1

A

1

A .

16


	Introduction
	Related Work
	Results
	Avoiding FM1 for Fully Connected Networks: Variance of Weights
	Avoiding FM1 for Residual Networks: Weights of Residual Modules
	FM2 for Fully Connected Networks: The Effect of Architecture
	FM2 for Residual Networks
	Convolutional Architectures

	Notation
	Formal statements
	Conclusion
	Proof of Theorem 5
	Proof of Corollary 2
	Proof of Theorem 6

