
Supplementary Material for “Tree-to-tree Neural
Networks for Program Translation”

A Hyper-parameters of Neural Network Models

Seq2seq Seq2tree Tree2seq Tree2tree
Batch size 100 20 100 100
Number of RNN layers 3 1 1 1
Encoder RNN cell LSTM LSTM Tree LSTM Tree LSTM
Decoder RNN cell LSTM
Initial learning rate 0.005

Learning rate decay schedule Decay the learning rate by a factor of 0.8× when the
validation loss does not decrease for 500 mini-batches

Hidden state size 256
Embedding size 256
Dropout rate 0.5
Gradient clip threshold 5.0
Weights initialization Uniformly random from [-0.1, 0.1]

Table 1: Hyper-parameters chosen for each neural network model.

We present the hyper-parameters of different neural networks in Table 1. These hyper-parameters are
chosen to achieve the best accuracy on the development set through a grid search.

B More Statistics of the Datasets

We present more detailed statistics of the datasets for the CoffeeScript-JavaScript task and the
translation of real-world projects from Java to C# in Table 2 and 3 respectively.

C More Results on the CoffeeScript-JavaScript Task

Besides the program accuracy, we also measure the token accuracy of different approaches, which
is the percentage of the tokens that are exactly the same as the ground truth. This metric is a finer-
grained measurement of the correctness, thus provides some additional insights of the performance
of different models.

Table 4 shows the token accuracy of different approaches for the translation between CoffeeScript
and JavaScript.

D Grammar for the CoffeeScript-JavaScript Task

The grammar used to generate the CoffeeScript-JavaScript dataset, which is a subset of the core
CoffeeScript grammar, is provided in Figure 1.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

CJ-(A/B)S CJ-(A/B)L
Average input length (P) 10 20
Minimal output length (P) 23 33
Maximal output length (P) 151 311
Average output length (P) 44 69
Minimal input length (T) 34 69
Maximal input length (T) 61 111
Average input length (T) 48 85
Minimal output length (T) 38 73
Maximal output length (T) 251 531
Average output length (T) 71 129

Table 2: Statistics of the datasets used for the CoffeeScript-JavaScript task.
Project # of matched methods

Lucene [5] 5,516
POI [6] 3,153
Itext [2] 3,079
JGit [3] 2,780
JTS [4] 2,003

Antlr [1] 465
Total 16,996

Table 3: Statistics of the Java to C# dataset.

Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
CoffeeScript to JavaScript translation

CJ-AS 99.97% 99.97% 56.21% 93.51% 92.30% 95.46% 95.05% 93.29% 95.94% 98.96% 98.09%
CJ-BS 99.98% 99.98% 47.54% 99.08% 87.51% 99.11% 96.14% 98.31% 98.09% 99.27% 98.10%
CJ-AL 99.37% 98.16% 32.99% 85.84% 25.65% 19.13% 36.18% 95.64% 94.74% 94.18% 84.71%
CJ-BL 99.36% 99.27% 31.80% 80.22% 63.49% 87.27% 79.85% 94.09% 94.64% 93.85% 78.07%

JavaScript to CoffeeScript translation
JC-AS 99.14% 98.81% 65.42% 88.44% 96.27% 88.46% 98.34% 98.20% 99.06% 86.93% 98.36%
JC-BS 98.84% 98.18% 55.22% 86.85% 97.92% 85.98% 98.09% 96.93% 98.84% 84.81% 97.94%
JC-AL 96.95% 92.65% 42.23% 88.09% 95.94% 87.19% 95.04% 93.51% 96.59% 84.57% 94.63%
JC-BL 96.48% 92.49% 39.89% 87.31% 94.12% 85.70% 96.24% 94.79% 96.33% 83.03% 94.68%

Table 4: Token accuracy of different approaches for translation between CoffeeScript and JavaScript.

E Evaluation on the Synthetic Task

In the following, we discuss our synthetic translation task from an imperative language to a functional
language.

E.1 Evaluation Setup

For the synthetic task, we design an imperative source language and a functional target language.
Such a design makes the source and target languages use different programming paradigms, so that the
translation can be challenging. Figure 2 illustrates an example of the translation, which demonstrates
that a for-loop is translated into a recursive function. We manually implement a translator, which is
used to acquire the ground truth. The grammar specifications of the source language (FOR language)
and the target language (LAMBDA language) are provided in Figure 3 and Figure 4 respectively.
The python source code to implement the translator from a FOR program to a LAMBDA program is
provided in Figure 5.

To build the dataset, similar to the CoffeeScript-JavaScript task, we randomly generate 100,000 pairs
of source and target programs for training, 10,000 pairs as the development set, and 10,000 pairs
for testing. We guarantee that there is no overlap among training, development and test sets, and all
samples are unique in the dataset. More statistics of the dataset can be found in Table 6.

2

<Expr> ::= <Var>
| <Const>
| <Expr> + <Var>
| <Expr> + <Const>
| <Expr> * <Var>
| <Expr> * <Const>
| <Expr> == <Var>
| <Expr> == <Const>

<Simple> ::= <Var> = <Expr>
| <Expr>

<IfShort> ::= <Simple> if <Expr>
| <IfShort> if <Expr>

<WhileShort> ::= <Simple> while <Expr>
| <WhileShort> while <Expr>

<ShortStatement> ::= <Simple> | <IfShort> | <WhileShort>
<Statement> ::= <ShortStatement>

| if <Expr>
 <indent+> <Block> <indent->
| while <Expr>
 <indent+> <Block> <indent->
| if <Expr>
 <indent+> <Block> <indent->

else
 <indent+> <Block> <indent->
| if <Expr> then <ShortStatement> else <ShortStatement>

<Block> ::= <Statement>
| <Block>
 <Statement>

Figure 1: A subset of the CoffeeScript grammar used to generate the CoffeeScript-JavaScript dataset.
Here,
 denotes the newline character.

Source program Target program
for i=1; i<10; i+1 do letrec f i =

if x>1 then if i<10 then
y=1 let = if x>1 then

else let y=1 in ()
y=2 else let y=2 in ()

endfor in f i+1
else ()

in f 1

Figure 2: An example of the translation for the synthetic task.

E.2 Results on the Synthetic Task

We create two datasets for the synthetic task: one with an average length of 20 (SYN-S) and the other
with an average length of 50 (SYN-L). Here, the length of a program indicates the number of tokens
in the source program.

We present the results in Table 5. Our observations are consistent with the results of the CoffeeScript-
JavaScript task: our tree2tree model outperforms all baseline models; all models perform worse on
longer inputs; both the attention and the parent attention feeding mechanisms boost the performance
of our tree2tree model significantly.

References
[1] Antlr. Antlr. https://github.com/antlr/, 2018.

[2] IText. Itext. http://sourceforge.net/projects/itext/, 2018.

[3] JGit. Jgit. https://github.com/eclipse/jgit/, 2018.

[4] JTS. Jts. http://sourceforge.net/projects/jts-topo-suite/, 2018.

3

Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
Token accuracy

SYN-S 99.99% 99.95% 55.60% 99.75% 99.59% 99.90% 99.73% 99.70% 99.51% 99.88% 99.82%
SYN-L 99.60% 96.68% 34.48% 68.31% 45.28% 67.37% 35.01% 96.95% 97.41% 97.08% 95.88%

Program accuracy
SYN-S 99.76% 98.61% 0% 97.92% 97.35% 98.38% 98.18% 96.14% 98.01% 98.51% 98.36%
SYN-L 97.50% 57.42% 0% 12.19% 0% 9.19% 0% 67.34% 68.11% 91.35% 87.84%

Table 5: Token accuracy and program accuracy of different approaches for the synthetic task.

SYN-S SYN-L
Average input length (P) 20 50
Minimal output length (P) 22 46
Maximal output length (P) 44 96
Average output length (P) 30 71
Minimal input length (T) 40 100
Maximal input length (T) 56 134
Average input length (T) 49 111
Minimal output length (T) 41 90
Maximal output length (T) 82 177
Average output length (T) 55 133

Table 6: Statistics of the datasets used for the synthetic task.

[5] Lucene. Lucene. http://lucene.apache.org/, 2018.

[6] POI. Poi. http://poi.apache.org/, 2018.

4

<Expr> ::= <Var>
| <Const>
| <Expr> + <Var>
| <Expr> + <Const>
| <Expr> − <Var>
| <Expr> − <Const>

<Cmp> ::= <Expr> == <Expr>
| <Expr> > <Expr>
| <Expr> < <Expr>

<Assign> ::= <Var> = <Expr>
<If> ::= if <Cmp> then <statement>

else <statement> endif
<For> ::= for <Var> = <Expr> ;

<Cmp> ; <Expr> do
<Statement> endfor

<Single> ::= <Assign> | <If> | <For>
<Seq> ::= <Single> ; <Single>

| <Seq> ; <Single>
<Statement> ::= <Seq> | <Single>

Figure 3: Grammar for the source language FOR in the synthetic task.

<Unit> ::= ()
<App> ::= <Var> <Expr>

| <App> <Expr>
<Expr> ::= <Var>

| <Expr> + <Var>
| <Expr> − <Var>

<Cmp> ::= <Expr> == <Expr>
| <Expr> > <Expr>
| <Expr> < <Expr>

<Term> ::= <LetTerm> | <Expr> | <Unit>
| <IfTerm> | <App>

<LetTerm> ::= let <Var> = <Term> in <Term>
| letrec <Var> <Var> = <Term>

in <Term>
<IfTerm> ::= if <Cmp> then <Term>

else <Term>

Figure 4: Grammar for the target language LAMBDA in the synthetic task.

5

1 d e f t r a n s l a t e f r o m f o r (s e l f , a s t) :
2 i f t y p e (a s t) == t y p e ([]) :
3 i f a s t [0] == ’<SEQ>’ :
4 t 1 = s e l f . t r a n s l a t e f r o m f o r (a s t [1])
5 t 2 = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
6 i f t 1 [0] == ’<LET>’ and t 1 [−1] == ’<UNIT>’ :
7 t 1 [−1] = t 2
8 r e t u r n t 1
9 e l s e :

10 r e t u r n [’<LET>’ , ’ b l a n k ’ , t1 , t 2]
11 e l i f a s t [0] == ’<IF>’ :
12 cmp = a s t [1]
13 t 1 = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
14 t 2 = s e l f . t r a n s l a t e f r o m f o r (a s t [3])
15 r e t u r n [’<IF>’ , cmp , t1 , t 2]
16 e l i f a s t [0] == ’<FOR>’ :
17 v a r = s e l f . t r a n s l a t e f r o m f o r (a s t [1])
18 i n i t = s e l f . t r a n s l a t e f r o m f o r (a s t [2])
19 cmp = s e l f . t r a n s l a t e f r o m f o r (a s t [3])
20 i n c = s e l f . t r a n s l a t e f r o m f o r (a s t [4])
21 body = s e l f . t r a n s l a t e f r o m f o r (a s t [5])
22 t b = [’<LET>’ , ’ b l a n k ’ , body , [’<APP>’ , ’ f unc ’ , i n c]]
23 f u n c b o d y = [’<IF>’ , cmp , tb , ’<UNIT>’]
24 t r a n s l a t e = [’<LETREC>’ , ’ f unc ’ , var , func body , [’<APP>’ , ’

f unc ’ , i n c]]
25 r e t u r n t r a n s l a t e
26 e l i f a s t [0] == ’<ASSIGN>’ :
27 r e t u r n [’<LET>’ , a s t [1] , a s t [2] , ’<UNIT>’]
28 e l i f a s t [0] == ’<Expr>’ :
29 r e t u r n a s t
30 e l i f a s t [0] == ’<Op+> ’ :
31 r e t u r n a s t
32 e l i f a s t [0] == ’<Op−>’ :
33 r e t u r n a s t
34 e l i f a s t [0] == ’<CMP>’ :
35 r e t u r n a s t
36 e l s e :
37 r e t u r n a s t

Figure 5: The Python code to translate a FOR program into a LAMBDA program in the synthetic
task.

6

	Hyper-parameters of Neural Network Models
	More Statistics of the Datasets
	More Results on the CoffeeScript-JavaScript Task
	Grammar for the CoffeeScript-JavaScript Task
	Evaluation on the Synthetic Task
	Evaluation Setup
	Results on the Synthetic Task

