Lipschitz regularity of deep neural networks: analysis and efficient estimation

SUPPLEMENTARY MATERIAL

Kevin Scaman Huawei Noah's Ark Lab kevin.scaman@huawei.com Aladin Virmaux Huawei Noah's Ark Lab aladin.virmaux@huawei.com

Abstract

This supplementary material contains proof of the theorems of the submission "Lipschitz regularity of deep neural networks: analysis and efficient estimation", as well as more details on the parameters used for the experiments.

1 **Proof of Theorem 2**

We reduce the problem of maximizing a quadratic convex function on a hypercube to **LIP-CST**. Start from the following **NP**-hard problem [1, Quadratic Optimization, Section 4]:

$$\begin{array}{ll} \underset{\sigma}{\text{maximize}} & \sum_{i} (h_{i}^{\top} \sigma)^{2} = \sigma^{\top} H \sigma \\ \text{s. t.} & \forall k, \ 0 < \sigma_{k} < 1 \ , \end{array}$$
(1)

where $H = \sum_{i} h_i h_i^{\top}$ is a positive semi-definite matrix with full rank. Let's note

$$M_1 = \left(\begin{array}{c|c} h_1 & h_2 & \cdots & h_n \end{array}\right), \quad M_2 = \left(\begin{array}{c|c} 1 & & \\ \vdots & & \\ 1 & & \end{array}\right)$$

so that we have

$$M_2 \operatorname{diag}(\sigma) M_1 = \begin{pmatrix} h_1^{\top} \sigma & & \\ \vdots & & \\ h_n^{\top} \sigma & & \end{pmatrix}.$$

The spectral norm of this 1-rank matrix is $\sum_i (h_i^{\top} \sigma)^2$. We proved that Eq. (1) is equivalent to the following optimization problem

$$\begin{array}{ll} \underset{\sigma}{\operatorname{maximize}} & \|M_2 \operatorname{diag}(\sigma) M_1\|_2^2 \\ \text{s.t.} & \sigma \in [0,1]^n \,. \end{array}$$

$$(2)$$

We recover the exact formulation of Section 6 Eq. (6) for a 2-layer MLP (the reader can verify there is no recursive loop). Because H is full rank, M_1 is surjective and all σ are admissible values for $g'_i(x)$ which is the equality case. Finally, ReLU activation units take their derivative within $\{0, 1\}$ and Eq. (2) is its relaxed optimization problem, that has the same optimum points.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

2 Proof of Theorem 3

Consider a single factor $\|\widetilde{\Sigma}V \operatorname{diag}(\sigma)U^{\top}\widetilde{\Sigma}'\|_2$ with V and U unitary matrices and $\widetilde{\Sigma}$ (resp. $\widetilde{\Sigma}'$) is diagonal with eigenvalues $(s_k)_k$ (resp. $(s'_j)_j$) in decreasing order along the diagonal. Decompose the eigenvalue matrices as $\widetilde{\Sigma} = s_1 E_{11} + D$ and $\widetilde{\Sigma}' = s'_1 E'_{11} + D'$, by orthogonality we can write

$$\begin{aligned} \left\| \widetilde{\Sigma} V \operatorname{diag}(\sigma) U^{\top} \widetilde{\Sigma}' \right\|_{2}^{2} &\leq \left\| s_{1} E_{11} V \operatorname{diag}(\sigma) U^{\top} E_{11}' s_{1}' \right\|_{2}^{4} \\ &+ s_{1} E_{11} V_{i} \operatorname{diag}(\sigma) U^{\top} D' \\ &+ D V \operatorname{diag}(\sigma) U^{\top} E_{11}' s_{1}' \right\|_{2}^{2} \\ &+ \left\| D V \operatorname{diag}(\sigma) U^{\top} D' \right\|_{2}^{2}. \end{aligned}$$

$$(3)$$

First we can bound $(4) \leq (s_2 s'_2)^2$. For (3) denote v_k (resp. u_k) the k-th column of V (resp. of U). It follows that

$$(3) \le (s_1 s_1')^2 \langle v_1, \sigma \cdot u_1 \rangle^2 + \sum_{j>1} (s_1 s_j')^2 \langle v_1, \sigma \cdot u_j \rangle^2 + \sum_{k>1} (s_k s_1')^2 \langle v_k, \sigma \cdot u_1 \rangle^2 \,.$$

The columns $(v_k)_k$ of V form an orthonormal basis so we have

$$\sum_{k>1} \langle v_k, \sigma \cdot u_1 \rangle^2 = \| \sigma \cdot u_1 \|^2 - \langle v_1, \sigma \cdot u_1 \rangle^2,$$

and we deduce a similar equality for $\sum_{j>1} \langle v_1, \sigma \cdot u_j \rangle^2$. Using $s_k \leq s_2$ for k > 1 we finally obtain (3) $\leq (s_1 s'_1)^2 (\langle v_1, \sigma \cdot u_1 \rangle^2 (1 - \tilde{r}_1 - \tilde{r}_2) + \tilde{r}_1 + \tilde{r}_2)$,

with $\widetilde{r}_1 = (\frac{s_2}{s_1})^2$ and $\widetilde{r}_2 = (\frac{s'_2}{s'_1})^2$. In conclusion we proved the following inequality: $\left\|\widetilde{\Sigma}V\operatorname{diag}(\sigma)U^{\top}\widetilde{\Sigma}'\right\|_2^2 \leq (s_1s'_1)^2\left((1-\widetilde{r}_1-\widetilde{r}_2)\langle v_1,\sigma\cdot u_1\rangle^2 + \widetilde{r}_1 + \widetilde{r}_2 + \widetilde{r}_1\widetilde{r}_2\right).$

The Lipschitz upper bound given by AutoLip of $\left\|\widetilde{\Sigma}_1 V \operatorname{diag}(\sigma) U^{\top} \widetilde{\Sigma}_2\right\|_2$ is $s_1 s'_1$. For the middle layers, we have $\widetilde{\Sigma} = \Sigma^{1/2}$, and the inequality still holds for the first and last layer due to $\widetilde{r}_i \leq \frac{s_2}{s_1}$; taking the maximum for σ leads to the theorem.

3 Proof of Lemma 2

Let $U, V \sim \mathcal{N}(0, I_n)$ be two independent *n*-dimensional Gaussian random vectors. Then, $u = U/||U||_2$ and $v = V/||V||_2$ are uniform on the unit sphere S^{n-1} , and

$$\max_{\sigma \in [0,1]^n} |\langle \sigma \cdot u, v \rangle| = \max_{\sigma \in [0,1]^n} \left| \sum_{i=1}^n \sigma_i u_i v_i \right|$$

$$= \max\left\{ \sum_{i=1}^n (u_i v_i)^+, \sum_{i=1}^n (u_i v_i)^- \right\},$$
(5)

where $x^+ = \max\{0, x\}$ and $x^- = \max\{0, -x\}$ are respectively the positive and negative parts of x. Note that $\sum_{i=1}^{n} (u_i v_i)^+$ and $\sum_{i=1}^{n} (u_i v_i)^-$ have the same law, since the distribution of u and v is symmetric w.r.t. the coordiante axes. Moreover, we may rewrite

$$\sum_{i=1}^{n} (u_i v_i)^+ = \frac{\frac{1}{n} \sum_{i=1}^{n} (U_i V_i)^+}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} U_i^2} \sqrt{\frac{1}{n} \sum_{i=1}^{n} V_i^2}},$$
(6)

and each term converges almost surely to its expectation due to the strong law of large numbers. Finally, noting that $\mathbb{E}\left[U_i^2\right] = \mathbb{E}\left[V_i^2\right] = 1$ and

$$\mathbb{E}\left[\left(U_i V_i\right)^+\right] = \frac{1}{2} \mathbb{E}\left[\left|U_i V_i\right|\right] = \frac{1}{2} \mathbb{E}\left[\left|U_i\right|\right] \mathbb{E}\left[\left|V_i\right|\right] = \frac{1}{\pi},\tag{7}$$

leads to the desired result.

4 Convolutional Neural Network of Section 7

# Layer	Layer	# channels out	kernel	stride	padding
1	Conv2D + bias	32	(5, 5)	2	0
2	Conv2D + bias	64	(3,3)	2	0
3	Conv2D + bias	64	(3,3)	1	1
÷	:	:	÷	÷	÷
÷	Conv2D + bias	64	(3,3)	1	1
:	:		:	:	
n-1	Conv2D + bias	128	(3, 3)	2	0
n	Conv2D + bias	10	(2,2)	1	0

References

[1] Reiner Horst and Panos M Pardalos. *Handbook of global optimization*, volume 2. Springer Science & Business Media, 2013.