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Abstract

This supplementary material contains proof of the theorems of the submission
“Lipschitz regularity of deep neural networks: analysis and efficient estimation”, as
well as more details on the parameters used for the experiments.

1 Proof of Theorem 2

We reduce the problem of maximizing a quadratic convex function on a hypercube to LIP-CST.
Start from the following NP-hard problem [1, Quadratic Optimization, Section 4]:

maximize
σ

∑
i(h
>
i σ)2 = σ>Hσ

s. t. ∀k, 0 ≤ σk ≤ 1 ,
(1)

where H =
∑
i hih

>
i is a positive semi-definite matrix with full rank. Let’s note

M1 =

(
h1 h2 · · · hn

)
, M2 =

 1
... 0
1


so that we have

M2 diag(σ)M1 =

 h>1 σ
... 0

h>n σ

 .

The spectral norm of this 1-rank matrix is
∑
i(h
>
i σ)2. We proved that Eq. (1) is equivalent to the

following optimization problem

maximize
σ

‖M2 diag(σ)M1‖22
s. t. σ ∈ [0, 1]n .

(2)

We recover the exact formulation of Section 6 Eq. (6) for a 2-layer MLP (the reader can verify there
is no recursive loop). Because H is full rank, M1 is surjective and all σ are admissible values for
g′i(x) which is the equality case. Finally, ReLU activation units take their derivative within {0, 1}
and Eq. (2) is its relaxed optimization problem, that has the same optimum points.
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2 Proof of Theorem 3

Consider a single factor
∥∥∥Σ̃V diag(σ)U>Σ̃′

∥∥∥
2

with V and U unitary matrices and Σ̃ (resp. Σ̃′) is

diagonal with eigenvalues (sk)k (resp. (s′j)j) in decreasing order along the diagonal. Decompose the
eigenvalue matrices as Σ̃ = s1E11 +D and Σ̃′ = s′1E

′
11 +D′, by orthogonality we can write∥∥∥Σ̃V diag(σ)U>Σ̃′

∥∥∥2
2
≤
∥∥∥s1E11V diag(σ)U>E′11s

′
1 (3)

+ s1E11Vi diag(σ)U>D′

+DV diag(σ)U>E′11s
′
1

∥∥∥2
2

+
∥∥DV diag(σ)U>D′

∥∥2
2
. (4)

First we can bound (4) ≤ (s2s
′
2)2. For (3) denote vk (resp. uk) the k-th column of V (resp. of U ). It

follows that
(3) ≤ (s1s

′
1)2〈v1, σ · u1〉2 +

∑
j>1

(s1s
′
j)

2〈v1, σ · uj〉2 +
∑
k>1

(sks
′
1)2〈vk, σ · u1〉2 .

The columns (vk)k of V form an orthonormal basis so we have∑
k>1

〈vk, σ · u1〉2 = ‖σ · u1‖2 − 〈v1, σ · u1〉2 ,

and we deduce a similar equality for
∑
j>1〈v1, σ · uj〉2. Using sk ≤ s2 for k > 1 we finally obtain

(3) ≤ (s1s
′
1)2
(
〈v1, σ · u1〉2 (1− r̃1 − r̃2) + r̃1 + r̃2

)
,

with r̃1 = ( s2s1 )2 and r̃2 = (
s′2
s′1

)2. In conclusion we proved the following inequality:∥∥∥Σ̃V diag(σ)U>Σ̃′
∥∥∥2
2
≤ (s1s

′
1)2
(
(1− r̃1 − r̃2) 〈v1, σ · u1〉2 + r̃1 + r̃2 + r̃1r̃2

)
.

The Lipschitz upper bound given by AutoLip of
∥∥∥Σ̃1V diag(σ)U>Σ̃2

∥∥∥
2

is s1s′1. For the middle

layers, we have Σ̃ = Σ1/2, and the inequality still holds for the first and last layer due to r̃i ≤ s2
s1

;
taking the maximum for σ leads to the theorem.

3 Proof of Lemma 2

Let U, V ∼ N (0, In) be two independent n-dimensional Gaussian random vectors. Then, u =
U/‖U‖2 and v = V/‖V ‖2 are uniform on the unit sphere Sn−1, and

max
σ∈[0,1]n

|〈σ · u, v〉| = max
σ∈[0,1]n

∣∣∣∣∣
n∑
i=1

σiuivi

∣∣∣∣∣
= max

{
n∑
i=1

(uivi)
+,

n∑
i=1

(uivi)
−

}
,

(5)

where x+ = max{0, x} and x− = max{0,−x} are respectively the positive and negative parts of
x. Note that

∑n
i=1(uivi)

+ and
∑n
i=1(uivi)

− have the same law, since the distribution of u and v is
symmetric w.r.t. the coordiante axes. Moreover, we may rewrite

n∑
i=1

(uivi)
+ =

1
n

∑n
i=1(UiVi)

+√
1
n

∑n
i=1 U

2
i

√
1
n

∑n
i=1 V

2
i

, (6)

and each term converges almost surely to its expectation due to the strong law of large numbers.
Finally, noting that E

[
U2
i

]
= E

[
V 2
i

]
= 1 and

E
[
(UiVi)

+
]

=
1

2
E [|UiVi|] =

1

2
E [|Ui|]E [|Vi|] =

1

π
, (7)

leads to the desired result.
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4 Convolutional Neural Network of Section 7

For each model of depth n, convolution except the last one are followed by a ReLU activation unit.

# Layer Layer # channels out kernel stride padding
1 Conv2D + bias 32 (5, 5) 2 0
2 Conv2D + bias 64 (3, 3) 2 0
3 Conv2D + bias 64 (3, 3) 1 1
...

...
...

...
...

...
... Conv2D + bias 64 (3, 3) 1 1
...

...
...

...
...

...
n− 1 Conv2D + bias 128 (3, 3) 2 0
n Conv2D + bias 10 (2, 2) 1 0
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