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A Insensitivity
In the main text we described that we want to construct functions which are insensitive to certain
input variations. We describe the variations for a particular input x using the distribution p(xa|x),
and we want to limit the probability of a large difference in the function f(·) as

P
(
[f(x)− f(xa)]

2
> L

)
< ε ∀x ∈ X xa ∼ p(xa|x) . (1)

For a given ε, a smaller L implies more insensitivity. In this note, we aim to quantify the degree of
insensitivity for priors with double sum kernels. To simplify our analysis, we assume that p(xa|x)
randomly samples points from an “augmentation set” A(x), and that our kernel is defined as

k(x,x′) =

∑
xa∈A(x)

∑
x′
a∈A(x′) kg(xa,x

′
a)√∑

xa,xb∈A(x) k(xa,xb)
√∑

x′
a,x

′
b∈A(x′) k(x

′
a,x
′
b)
, (2)

i.e. we normalise the double sum kernel from the main paper. We do this to ensure that we always
retain a unit marginal variance k(x,x′), in order to ensure that our kernel can actually learn something.
Without this constraint, we can trivially pick A(x) to average many distant points, which makes all
f(·)s insensitive, but also completely constant. We do not need to apply this constraint in our practical
method, as we choose the scale of the kernel by optimising the marginal likelihood.

We start by bounding the deviation of functions under the prior between x and xa.

Lemma. When f ∼ GP(0, k(x,x′)) we can bound the probability of a deviation as

P
(
[f(x)− f(xa)]

2
> 2ε(1− Exa|x[k(x,xa))]

)
<

1

ε
. (3)

Proof. We apply Markov’s inequality to the random variable [f(x)− f(xa)]
2:

P
(
[f(x)− f(xa)]

2
> εEf,xa|x

[
[f(x)− f(xa)]

2
])

<
1

ε
. (4)

The expectation over f(·) evaluates as

Ef

[
[f(x)− f(xa)]

2
]
= Ef

[
f(x)2 − 2f(x)f(xa) + f(xa)

2
]
= k(x,x)− 2k(x,xa) + k(xa,xa)

= 2(1− k(x,xa)) , (5)
leaving only the expectation over xa as in the statement.

This shows that we can increase the insensitivity of functions in the prior by increasing
Exa|x[k(x,xa)]. Not all distributions p(xa|x) actually increase the expected covariance. In our
method, we simply parameterise kernels that allow insensitivity, and then let the marginal likelihood
determine the extent to which it is applied. As an example, we take kg(x,x′) to be a squared expo-
nential kernel. We can increase the expected covariance by ensuring that the augmentation densities
of x and a random augmented point xa overlap largely. If the augmentation distributions fully and
uniformly overlap, we obtain strict invariance again.
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B Unbiased estimators for kernel matrices
Here, we elaborate on the derivation of unbiased estimators for the kernel expressions that are needed
to compute the variational lower bound. In addition to the estimator for double-integral kernels, we
will also discuss estimators for double-sum kernels more closely.

B.1 Double-sum kernels
When we consider strictly invariant kernels or p(xa|x) with discrete support, the kernel becomes a
sum over the augmentation set A(x) of size P . Our kernel and inducing variable covariances are:

kf (x,x
′) =

∑
xa∈A(x)

∑
x′
a∈A(x)

kg(xa,x
′
a) , kfu(x, z) =

∑
xa∈A(x)

kg(xa, z) . (6)

We aim to find unbiased estimates for the squared predictive mean µ2
n = (kfnuK

−1
uum)2, and the

predictive covariance σ2
n = kf (xn,xn)− kfnuK

−1
uu(Kuu − S)K−1uukufn , for which we require

I =
∑

xa∈A(x)

∑
x′
a∈A(x)

r(xa,x
′
a) (7)

for r = kf (xa,x
′
a) and r = kfu(xa, zm)kfu(x

′
a, zm′). As mentioned in the main text, the most

obvious unbiased estimator would sub-sample two different sets of A for each of the two sums.
However, given the cost of transforming input images, we aim to use the same subset for both sums.
This additionally speeds up the kernel computations, as the same covariances with the inducing points
are needed. We also want to sample without replacement to reduce variance. We denote the randomly
sampled subset asM⊂ A(x), and for now denote its elements as xi, with i ≤M . In order to ensure
uniform weighting over all elements in the sum, we re-weight the diagonal elements in the estimator:

Î =

M∑
i=1

M∑
j=1

r(xi,xj)

(
P (P − 1)

M(M − 1)
(1− δij) +

P

M
δij

)
. (8)

We show that this estimator is unbiased by taking an expectation over the random subsetM. To
simplify expressions, we first separate the sum in eq. (7) into the off- and on-diagonal components:

I =
∑

xa∈A(x)

∑
x′
a∈A(x)

x′
a 6=xa

r(xa,x
′
a) +

∑
xa∈A(x)

r(xa,xa) = I¬d + Id . (9)

Remember that the distribution p(xi,xj) samples without replacement, and for i = j the density
equals the marginal p(xi). We summarise this as

p(xi = xa,xj = x′a) = (1− δ(xa − x′a))(1− δij)
1

P (P − 1)
+ δijδ(xa − x′a)

1

P
(10)

We now take the expectation over Î:

Ep(M)

[
Î
]
=

M∑
i=1

M∑
j=1

∑
xa∈A(x)

∑
x′
a∈A(x)

p(xi = xa,xj = x′a)r(xi,xj)wij

=

M∑
i=1

M∑
j=1

(1− δij)
wij

P (P − 1)
I¬d + δij

wij

P
Id

=
�
���

��P (P − 1)

M(M − 1)��
����M(M − 1)

P (P − 1)
I¬d +

�
��P

M �
��M

P
Id = I . (11)

For ease of implementation, we re-write the estimator in terms of a full and diagonal sum over r:

Î =
P (P − 1)

M(M − 1)

M∑
i=1

M∑
j=1

r(xi,xj) +
P (M − P )
M(M − 1)

M∑
i=1

r(xi,xi) . (12)
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B.2 Double-integral kernels
We now consider double integral kernels, giving kernel and inducing variable covariances of:

kf (x,x
′) =

∫∫
p(xa|x)p(x′a|x′)kg(xa,x

′
a)dxadx

′
a , (13)

kfu(x, z) =

∫
p(xa|x)kg(xa, z)dxa . (14)

Informally, we can think of this as the double-sum kernel, where we take a limit to an infinite
augmentation set and divide by P 2 to normalise. This gives us the estimator from the main paper:

Î =
1

M(M − 1)

 M∑
i=1

M∑
j=1

r(xi,xj)−
M∑
i=1

r(xi,xi)

 , xi ∼ p(xa|x) . (15)

We can show it to be unbiased by taking the expectation over all xi, and a small re-arrangement:

Ep({xi}Mi=1|x)

[
Î
]
=

1

M(M − 1)

M∑
i=1

M∑
j=1

(1− δij)E[r(xi,xj)]

=

∫∫
p(xi|x)p(xj |x)r(xi,xj)dxidxj = I (16)

B.2.1 Computational complexity
The estimator for kf (x,x′) costs O(M2), as the double sum needs to be evaluated for each element.
When r = kfu(xa, zm)kfu(x

′
a, zm′), the estimator costs only O(M), as the double sum factorises

over each term.
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