
A Derivation of the recursion for qt

Recalling the definition qt , st�1 [{at�1, nt} and using the recursion (1), we have

qt+1
(a)
= st [{at, nt+1}
(b)
= st�1 [{at�1, nt, Ent ,Nnt} [{at, nt+1}
(c)
= qt [{Ent ,Nnt , at, nt+1}

where step (a) uses the definition of qt+1, step (b) substitutes the recursion (1), and step (c) uses the
definition of qt.

B Algorithm Implementation Details

The detailed algorithm of M-Walk is described in Algorithm 1.

Algorithm 1 M-Walk Training Algorithm
1: Input: Graph G; Initial node nS ; Query q; Target node nT ; Maximum Path Length Tmax; MCTS

Search Number E;
2: for episode e in [1..E] do

3: Set current node n0 = nS ; q0 = f✓q (q, 0, 0, n0)

4: for t = 0 . . . Tmax do

5: Lookup from dictionary to obtain W (st, a) and N(st, a)
6: Select the action at with the maximum PUCT value:

at = argmaxa

(
c·⇡✓(a|st)�

pP
a0 N(st, a0)

1+N(st, a)
+
W (st, a)

N(st, a)

)

7: Update qt+1 = f✓q (qt, hA,t, hat,t, nt+1)

8: if at is STOP then

9: Compute estimated reward value V✓(st) = Q(st, at = STOP)

10: Add generated path p into a path list
11: Backup along the path p to update the visit count N(st, a) using (5) and the total action

reward W (st, a) using (6) on the (st, a)-th edge on the MCTS tree
12: Break

13: end if

14: end for

15: end for

16: for each path p in the path list do

17: Set reward r = 1 if the end of the path nt = nT otherwise r = 0

18: Repeatedly update the model parameters with Q-learning:

✓ ✓ + ↵ ·r✓Q✓(st, at)⇥
⇣
r(st, at) + �max

a0
Q✓(st+1, a

0
)�Q✓(st, at)

⌘

19: end for

B.1 MCTS implementation

In the MCTS implementation, we maintain a lookup table to record values W (st, a) and N(st, a) for
each visited state-action pair. The state st in the graph walk problem contains all the information
along the traversal path, and nt is the node at the current step t. We assign an index ia to each
candidate action a from nt, indicating that a is the ia-th action of the node nt. Thus, the state st
can be encoded as a path string Pst = (q, n0, ia0 , n1, ia1 , . . . , nt). We build a dictionary D using the
path string as a key, and we record W (st, a) and N(st, a) as values in D. In the backup stage, the
W (st, a) and N(st, a) values are updated for each state-action pair along with the traversal path in

13

MCTS:

N(st, a) = N(st, a) + �T�t (5)

W (st, a) = W (st, a) + �T�tV✓(sT), (6)

where T is the length of the traversal path, � is the discount factor of the MDP, and V✓(sT) is the
terminal state-value function modeled by V✓(sT) , Q(sT , a = STOP).

In our experiments, the softmax temperature parameter ⌧ in the policy network ⇡✓ (see (3)) is set to
be a constant. An alternative choice is to anneal it during training (e.g., ⌧ = 1! 0). However, we did
not observe this to produce any significant difference in performance in our experiments. We believe
the main reason is that ⇡✓ is only used as a prior to bias the MCTS search, while the exploration of
MCTS is controlled by the parameters c and � of (4).

B.2 Experiment details

B.2.1 Three Glass Puzzle

Query: 4

Fill BB C
A

Volume: 8 5 3

Status: 0 0 0

B

Volume: 8 5 3

Status : 0 5 0

Empty A

Pour A to B

C
A

Figure 6: Graph traversal in the Three Glass Puzzle problem.

An example Figure 6 illustrates one step in solving a Three Glass Puzzle. The following action
sequences provide one solution to achieve the target q = 4, given initially empty containers with
capacities (A = 8, B = 5, C = 3), where a, b, c denote the current contents of the containers:

• Initial state! (a = 0, b = 0, c = 0)

• Fill B! (a = 0, b = 5, c = 0)

• Pour from B to C ! (a = 0, b = 2, c = 3)

• Empty C ! (a = 0, b = 2, c = 0)

• Pour from B to C ! (a = 0, b = 0, c = 2)

• Fill B! (a = 0, b = 5, c = 2)

• Pour from B to C ! (a = 0, b = 4, c = 3)

Data generation In the Three Glass Puzzle experiments, we randomly draw four integers from
[1, 50) to represent the capacities A,B,C, and the desired volume q. We further restrict the values
so that A � B � C and q < A, to avoid data duplication. We discard puzzles for which there is no
solution. Finally, we keep 600 unique puzzles as the experimental dataset, where 500 puzzles are
used for training and the other 100 are used to test a model’s generalization capability on the unseen
test set.

Experiment settings and hyperparameters Let a, b, c be the current status of each container,
and define the puzzle status at step t as nt = [ITA , I

T
B , I

T
C , I

T
a , I

T
b , I

T
c]

T , where Ix is the one-hot
representation to encode the value of x. Given that A,B,C, a, b and c are all smaller than 50 in the
experiment, the dimension of nt is 300. The initial query q is obtained by q = Emb[q], where Emb

is a query embedding lookup table and Emb[x] indicates the x-th column. The query embedding
dimension is set to 64. In the Three Glass Puzzle, there are 13 actions in total: fill one container to
its capacity, empty one container, pour one container into another container, and a STOP action to
terminate the game. We set the maximum length of an action sequence (i.e., the search horizon) to be
12, where only the STOP action can be taken on the final step. After the STOP action has been taken,
the system evaluates the action sequence and assigns a reward r = 1 if the final status is a success,
otherwise r = 0. The f✓S and f✓A functions are modeled by two different DNNs with the same
architecture: two fully-connected layers with 32 hidden dimensions and ReLU activation function.

14

Table 5: A List of actions for each container in the Three Glass Puzzle. The agent can also determine
to take the STOP action to terminate the game.

Empty A Fill A Pour A to B Pour A to C
Empty B Fill B Pour B to A Pour B to C
Empty C Fill C Pour C to A Pour C to B

Table 6: Knowledge base completion datasets statistics.
Dataset # Train # Test # Relation # Entity avg. degree median degree

WN18RR 86,835 3,134 11 40,943 2.19 2
NELL-995 154,213 3,992 200 75,492 4.07 1
FB15K-237 272,115 20,466 237 14,541 19.74 14

(a) Test Beam / Rollout = 128 (b) Test Beam / Rollout = 300

Figure 7: Three Glass Puzzle test accuracy, where “PG” stands for policy gradient.

f✓v is two fully-connected layers with 16 hidden dimensions, where the first hidden layer uses a
ReLU activation function and the output layer uses a linear activation function. f✓q is modeled by a
GRU with hidden size 64. The hyperparameters in PUCT are set to c = 0.5 and � = 0.2. We use the
ADAM optimization algorithm with learning rate 0.0005 during training, and we set the mini-batch
size to 8.

B.2.2 Knowledge Base Completion

Statistics of the three datasets The NELL-995 knowledge dataset contains 75, 492 unique entities
and 200 relations. WN18RR contains 93, 003 triples with 40, 943 entities and 11 relations. And
FB15k-237, a subset of FB15k where inverse relations are removed, contains 14, 541 entities and 237

relations. The detailed statstics are shown in Table 6.

Experiment settings and hyperparameters For the proposed M-Walk, we set the entity embed-
ding dimension to 4 and relation embedding dimension to 64. The maximum length of the graph
walking path (i.e., the search horizon) is 8 in the NELL-995 dataset and 5 in the WN18RR dataset.
After the STOP action has been taken, the system evaluates the action sequence and assigns a reward
r = 1 if the agent reaches the target node, otherwise r = 0. The initial query q is the concatenation
of the entity embedding vector and the relation embedding vector. The f✓S and f✓A functions are
modeled by two different DNNs with the same architecture: two fully-connected layers with 64
hidden dimensions and the ReLU activation function. f✓v is two fully-connected layers with 16
hidden dimensions, where the first hidden layer uses a Tanh activation function and the output layer
uses a linear activation function. f✓q is modeled by a GRU with hidden size 64. The hyperparameters
in PUCT are set to c = 2 and � = 0.5. We roll out 32 MCTS paths in both training and testing in the
NELL-995 dataset and 128 MCTS paths in the WN18RR dataset. We use the ADAM optimization
algorithm for model training with learning rate 0.0001, and we set the mini-batch size to 8.

15

Table 7: Three Glass Puzzle test accuracy (%), where “Beam” denotes beam search.
Size 1 10 50 100 200 300 400
PG (Beam) 9.3 (2.1) 30.7 (4.5) 39.3 (3.2) 45.3 (4.5) 47.7 (3.2) 48.7 (3.2) 49.0 (2.6)
M-Walk (Beam) 18.0 (1.7) 46.0 (7.0) 60.3 (7.8) 67.0 (7.0) 69.0 (6.2) 69.3 (6.4) 71.7 (4.5)
M-Walk (MCTS) 18.0 (1.7) 63.3 (5.0) 84.3 (3.1) 90.7 (2.5) 95.0 (2.6) 96.3 (1.5) 99.0 (1.0)

Table 8: BFS, DFS and M-Walk on Three Glass Puzzle.
Method Average # Steps Max # Steps

BFS 264.7 1030
DFS 192.2 1453

M-Walk 94.9 897

C Additional Experiments

C.1 The Three Glass Puzzle task in different settings

We now present more experiments on the Three Glass Puzzle task under different settings. First,
to see how fast M-Walk converges, we show in Figure 7 the learning curves of M-Walk and PG. It
shows that M-Walk converges much faster than PG and achieves better results on this task. In Table 7,
we report the test accuracy of M-Walk and vanilla policy gradient (REINFORCE/PG) with different
beam search sizes and different MCTS rollouts during testing. The number of MCTS simulations
for training M-Walk is fixed to be 32. We observe that M-Walk with MCTS achieves the best test
accuracy overall. In addition, with larger beam search sizes and MCTS rollouts, the test accuracy
improves substantially. Furthermore, replacing the MCTS in M-Walk by beam search at test time
degrades the performance greatly, which shows that MCTS is also very important for M-Walk at test
time.

As mentioned earlier, conventional graph traversal algorithms such as Breadth-First Search (BFS)
and Depth-First Search (DFS) cannot be applied to the graph walking problem, because the ground
truth target node is not known at test time. However, to understand how quickly M-Walk with MCTS
can find the correct target node, we compare it with BFS and DFS in the following cheating setup.
Specifically, we apply BFS and DFS to the test set of the Three Glass Puzzle task by disclosing the
target node to them. In Table 8, we report the average traversal steps and maximum steps to reach the
target node. The M-Walk with MCTS algorithm is able to find the target node more efficiently than
BFS or DFS.

C.1.1 Knowledge Graph Link Prediction

In this section, we first provide additional experimental results for the NELL995 and WN18RR
tasks to support our analysis. In Figure 8, we show the positive reward rate during training on
the NELL995 task. And in Figure 9, we provide more hyperparameter analysis (search horizon
and MCTS simulation number) and training-time analysis. Furthermore, in Table 9, we show the
HITS@K and MRR results on NELL995.

In addition, we conduct further experiments on the FB15k-237 dataset [29], which is a subset of FB15k
[2] with inverse relations being removed. We use the same data split and preprocessing protocol as in
[6] for FB15k-237. The results are reported in Table 10. We observe that M-Walk outperforms the
other RL-based method (MINERVA). However, it is still worse than the embedding-based methods.
In future work, we intend to combine the strength of embedding-based methods and our method to
further improve the performance of M-Walk.

C.2 The Reasoning (Traversal) Paths

In Table 11, we show the reasoning paths of M-Walk on the NELL995 dataset. Each reasoning path
is generated by following the edges on the MCTS tree with the highest visiting count N(s, a).

16

(a) TeamPlaySports (b) AthletePlaysInLeague (c) AthletePlaysSport

(d) OrganizationHeadquarterediInCity (e) PersonBornInLocation (f) AthleteHomeStadium

Figure 8: The positive reward rate during training (i.e., percentage of trajectories with positive reward
during training) on the NELL-995 task.

(a) HITS@3 (b) HITS@10 (c) Training time

Figure 9: M-Walk hyperparameter and error analysis on WN18RR.

Table 9: The HITS@K and MRR results on the NELL995 dataset.
Metric (%) M-Walk PG-Walk Q-Walk MINERVA ComplEx ConvE DistMult
HITS@1 68.4 66.7 66.8 66.3 61.2 67.2 61.0
HITS@3 81.0 77.5 77.3 77.3 76.1 80.8 73.3
MRR 75.4 74.8 74.5 72.5 69.4 74.7 68.0

Table 10: The results on the FB15k-237 dataset, in the form of “mean (standard deviation)”.
Metric (%) M-Walk PG-Walk Q-Walk MINERVA ComplEx ConvE DistMult NeuralLP
HITS@1 16.5(0.3) 14.8(0.2) 15.5(0.2) 14.1(0.2) 20.8(0.2) 23.3(0.4) 20.6(0.4) 18.2(0.6)
HITS@3 24.3(0.2) 23.3(0.3) 23.8(0.4) 23.2(0.4) 32.6(0.5) 33.8(0.3) 31.8(0.2) 27.2(0.3)
MRR 23.2(0.2) 21.3(0.1) 21.8(0.2) 20.5(0.3) 29.6(0.2) 30.8(0.2) 29.0(0.2) 24.9(0.2)

17

Table 11: Examples of paths found by M-Walk on the NELL-995 dataset.
(i) WorksFor:

journalist jerome holtzman
WorksFor�����!?

journalist jerome holtzman
JournalistWritesForPublication����������������! website chicago tribune, (True)

politician mufi hannemann
WorksFor�����!?

politician mufi hannemann
PersonHasResidenceInGeopoliticalLocation����������������������! city honolulu, (True)

ceo kumar birla
WorksFor�����!?

ceo kumar birla
PersonLeadsOrganization�������������! company hindalco, (True)

professor chad deaton
WorksFor�����!?

professor chad deaton
PersonLeadsOrganization�������������! BiotechCompany baker hughes, (False)

(ii) TeamPlaySport:

SportsTeam arizona dismond backs
TeamPlaySport��������!?

SportsTeam arizona dismond backs
TeamHomeStadium����������! StadiumOrEventVenue chase field

SportUsesStadium�1

�����������! sport baseball, (True)

SportsTeam l_a kings
TeamPlaySport��������!?

SportsTeam l_a kings
TeamPlaysAgainstTeam�1

��������������! SportsTeam red wings
TeamWonTrophy���������! AwardTrophyTournament stanley cup

ChampionshipGameOfTheNationalSport���������������������! sport hockey, (True)

SportsTeam cleveland browns
TeamPlaySport��������!?

SportsTeam cleveland browns
TeamPlaysAgainsTteam�1

��������������! SportsTeam yankees
TeamHomeStadium����������! AwardTrophyTournament yankee stadium

SportUsesStadium�1

�����������! sport baseball, (False)

18

	Introduction
	Graph Walking as a Markov Decision Process
	The M-Walk Agent
	The neural architecture for jointly modeling and Q
	The training algorithm
	The prediction algorithm
	The RNN state encoder

	Experiments
	Performance of M-Walk
	Analysis of M-Walk

	Related Work
	Conclusion and Discussion
	Derivation of the recursion for qt
	Algorithm Implementation Details
	MCTS implementation
	Experiment details
	Three Glass Puzzle
	Knowledge Base Completion

	Additional Experiments
	The Three Glass Puzzle task in different settings
	Knowledge Graph Link Prediction

	The Reasoning (Traversal) Paths

