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1 Proof of Theorem 3.1

Note that R = ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2 asymptotically converges to (C>f Cf )−1/2 as N increases.
Therefore, L(h) can be approximated by

L′(h) =
1

N

N∑
i=1

φ(Cyi(C
>
f Cf )−1/2h) =

1

N

N∑
i=1

φ(CxiCf (C>f Cf )−1/2h).

Since Cf (C>f Cf )−1/2 is an orthogonal matrix, one can study the following objective function by
rotating on the sphere h′ = Cf (C>f Cf )−1/2h:

L′′(h′) =
1

N

N∑
i=1

φ(Cxih
′).

Our analysis consists of three parts: (1) geometric structure of EL′′, (2) deviation of L′′ (or its rotated
version L′) from its expectation EL′′, and (3) difference between L and L′.

Geometric structure of EL′′. By the Bernoulli-Rademacher model (A1), the Riemannian gradient
for h ∈ Sn−1 is computed as

E∇̂L′′(h) = Ph⊥E∇L′′(h) = nθ(1− 3θ)(‖h‖44 · h− h�3). (1)

We use x�k to denote the entrywise k-th power of x. The Riemannian Hessian is

EĤL′′(h) = Ph⊥EHL′′(h)Ph⊥ − h>E∇L′′(h) · Ph⊥
= nθ(1− 3θ)

[
‖h‖44 · I + 2‖h‖44 · hh> − 3 · diag(h�2)

]
. (2)

Details of the derivation of (1) and (2) can be found in Appendix B.

At a stationary point of EL′′(h) on Sn−1, the Riemannian gradient is zero. Since

‖E∇̂L′′(h)‖ = nθ(1− 3θ)
√
‖h‖66 − ‖h‖84

= nθ(1− 3θ)

√ ∑
1≤j<k≤n

h2
(j)h

2
(k)(h

2
(j) − h

2
(k))

2, (3)

all nonzero entries of a stationary point h0 have the same absolute value. Equivalently, h0(j) =

±1/
√
r if j ∈ Ω and h0(j) = 0 if j /∈ Ω, for some r ∈ [n] and Ω ⊂ [n] such that |Ω| = r. Without
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loss of generality (as justified below), we focus on stationary points that satisfy h0(j) = 1/
√
r if

j ∈ {1, 2, . . . , r} and h0(j) = 0 if j ∈ {r + 1, . . . , n}. The Riemannian Hessian at these stationary
points is

EĤL′′(h0) =
nθ(1− 3θ)

r

[
2
r1r×r − 2Ir 0r×(n−r)
0(n−r)×r In−r

]
. (4)

When r = 1, h0 = [1, 0, 0, . . . , 0]>, we have EĤL′′(h0) = nθ(1 − 3θ)Ph⊥0 . This Riemannian
Hessian is positive definite on the tangent space,

min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z = nθ(1− 3θ) > 0. (5)

Therefore, stationary points with one nonzero entry are local minima.

When r > 1, the Riemannian Hessian has at least one strictly negative eigenvalue:

min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z = −2nθ(1− 3θ)

r
< 0. (6)

Therefore, stationary points with more than one nonzero entry are strict saddle points, which, by
definition, have at least one negative curvature direction on Sn−1. One such negative curvature
direction satisfies z(1) = (r − 1)/

√
r(r − 1), z(j) = −1/

√
r(r − 1) for j ∈ {2, 3, . . . , r}, and

z(j) = 0 for j ∈ {r + 1, . . . , n}.
The Riemannian Hessian at other stationary points (different from the above stationary points by
permutations and sign changes) can be computed similarly. By (2), a permutation and sign changes
of the entries in h0 has no effect on the bounds in (5) and (6), because the eigenvector z that attains
the minimum undergoes the same permutation and sign changes as h0.

Next, in Lemma 1.2, we show that the properties of positive definiteness and negative curvature not
only hold at the stationary points, but also hold in their neighborhoods defined as follows.
Definition 1.1. We say that a point h is in the (ρ, r)-neighborhood of a stationary point h0 of EL′′(h)
with r nonzero entries, if ‖h�2 − h�2

0 ‖∞ ≤
ρ
r . We define three sets:

H′′1 := {Points in the (ρ, 1)-neighborhoods of stationary points with 1 nonzero entry},
H′′2 := {Points in the (ρ, r)-neighborhoods of stationary points with r > 1 nonzero entries},
H′′3 := Sn−1\(H′′1 ∪H′′2 ).

Clearly,H1 ∩H2 = ∅ for ρ < 1/3, henceH′′1 ,H′′2 , andH′′3 form a partition of Sn−1.
Lemma 1.2. Assume that positive constants θ < 1/3, and ρ < 10−3. Then

◦ For h ∈ H′′1 ,

min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z ≥ nθ(1− 3θ)(1− 24
√
ρ) > 0. (7)

◦ For h ∈ H′′2 ,

min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z ≤ −
nθ(1− 3θ)(2− 24

√
ρ)

r
< 0. (8)

◦ For h ∈ H′′3 ,

‖E∇̂L′′(h)‖ ≥ θ(1− 3θ)ρ2

n
> 0. (9)

Lemma 1.2, and all other lemmas, are proved in the Appendix.

Deviation of L′′ from EL′′. As the number N of channels increases, the objective function L′′
asymptotically converges to its expected value EL′′. Therefore, we can establish the geometric
structure of L′′ based on its similarity to EL′′. To this end, we give the following result.
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Lemma 1.3. Suppose that θ < 1/3. There exist constants c1, c′1 > 0 (depending only on θ), such
that: if N > c1n

9

ρ4 log n
ρ , then with probability at least 1− n−c′1 ,

sup
h∈Sn−1

‖∇̂L′′(h)− E∇̂L′′(h)‖ ≤ θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

‖ĤL′′(h)− EĤL′′(h)‖ ≤ θ(1− 3θ)ρ2

n
.

By Lemma 1.3, the deviations from the corresponding expected values of the Riemannian gradient
and Hessian due to a finite number of random xi’s are small compared to the bounds in Lemma 1.2.
Therefore, the Rimannian Hessian of L′′ is still positive definite in the neighborhood of local minima,
and has at least one strictly negative eigenvalue in the neighborhood of strict saddle points; and the
Riemannian gradient of L′′ is nonzero for all other points on the sphere. Since L′ and L′′ differ only
by an orthogonal matrix transformation of their argument, the geometric structure of L′ is identical to
that of L′′ up to a rotation on the sphere.

Difference between L and L′. Recall that L asymptotically converges to L′ as N increases. The
following result bounds the difference for a finite N .
Lemma 1.4. Suppose that 1

n ≤ θ <
1
3 . There exist constants c2, c′2 > 0 (depending only on θ), such

that: if N > c2κ
8n8

ρ4 log n, then with probability at least 1− n−c′2 ,

sup
h∈Sn−1

‖∇̂L(h)− ∇̂L′(h)‖ ≤ θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

‖ĤL(h)− ĤL′(h)‖ ≤ θ(1− 3θ)ρ2

n
.

We use (C>f Cf )1/2C−1
f H = {(C>f Cf )1/2C−1

f h : h ∈ H} to denote the rotation of a set H by the
orthogonal matrix (C>f Cf )1/2C−1

f . Define the rotations ofH′′1 ,H′′2 , andH′′3 :

H1 := (C>f Cf )1/2C−1
f H

′′
1 , H2 := (C>f Cf )1/2C−1

f H
′′
2 , H3 := (C>f Cf )1/2C−1

f H
′′
3 . (10)

Combining Lemmas 1.2, 1.3, and 1.4, and the rotation relation between L′ and L′′, we have:

◦ For h ∈ H1, the Riemannian Hessian is positive definite:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≥ nθ(1− 3θ)(1− 24
√
ρ− 2ρ2

n2
) > 0.

◦ For h ∈ H2, the Riemannian Hessian has a strictly negative eigenvalue:

min
z:‖z‖=1
z⊥h

z>ĤL(h)z ≤ −
nθ(1− 3θ)(2− 24

√
ρ− 2rρ2/n2)

r
< 0.

◦ For h ∈ H3, the Riemannian gradient is nonzero:

‖∇̂L(h)‖ ≥ θ(1− 3θ)ρ2

2n
> 0.

Clearly, all the local minima of L(h) on Sn−1 belong toH1, and all the other stationary points are
strict saddle points and belong toH2. The bounds in Theorem 3.1 on the Riemannian Hessian and
the Riemannian gradient follows by setting

c(n, θ, ρ) :=
θ(1− 3θ)ρ2

2n
. (11)

We complete the proof of Theorem 3.1 by giving the following result aboutH1.
Lemma 1.5. If h∗ ∈ H1, then for some j ∈ [n],

‖CfRh∗ ± ej‖ ≤ 2κ
√
ρ.
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2 Proof of Theorem 4.1

We first establish that after T steps, the iterate h(T ) ∈ H1 ∪ H2, by applying [1, Theorem 4]. To
this end, one needs to show that (C1) L(h) has a finite lower bound, and that (C2) the function
L̂(z) := L( h+z

‖h+z‖ ) (defined on {z : z ⊥ h}) is well approximated by its first-order Taylor expansion
at z = 0. We verify conditions (C1) and (C2) in the following lemmas.
Lemma 2.1. For all h ∈ Sn−1, −4n3 ≤ L(h) ≤ 0, ‖∇L(h)‖ ≤ 16n3, ‖HL(h)‖ ≤ 48n3.

Lemma 2.2. Let L̂(z) := L( h+z
‖h+z‖ ). Then for all z ⊥ h,∣∣L̂(z)− L̂(0)− 〈z,∇L̂(0)〉

∣∣ ≤ 64n3‖z‖2.

By [1, Theorem 4] and Lemmas 2.1 and 2.2, manifold gradient decent with a fixed step size
γ = 1/(2 × 64n3) achieves ‖∇̂L(h(t))‖ < τ after t = 2[L(h(0)) − minh∈Sn−1 L(h)]/(γτ2)
iterations. Setting τ = θ(1− 3θ)ρ2/(2n) and T = 4096n8/[θ2(1− 3θ)2ρ4], it follows that

‖∇̂L(h(t))‖ < θ(1− 3θ)ρ2

2n
= c(n, θ, ρ)

after t ≥ T iterations. By Theorem 3.1, we have {h(t)}t≥T ⊂ H1 ∪ H2. Since the distance
between every pair of points h1 ∈ H1 and h2 ∈ H2 satisfies ‖h1 − h2‖ � γ‖∇̂L(h(t))‖, the iterates
{h(t)}t≥T all belong toH1 or all belong toH2, and cannot jump from one set to the other.

Next, we show that if the initialization h(0) follows a random distribution on Sn−1, then h(T ) ∈ H1

almost surely, by applying [2, Theorem 2]. To this end, we verify that (C3) the strict saddle points
are unstable fixed points of manifold gradient descent, and that (C4) the differential of A(·) (defined
in (2) in the paper) is invertible.

Let h′ = h− γ∇̂L(h). The differential DA(h), as defined in [2, Definition 4], is

DA(h) = Ph′⊥Ph⊥ [I − γĤL(h)]Ph⊥ . (12)

At strict saddle points ∇̂L(h) = 0 and h′ = h. Because, as we have shown, ĤL(h) has a strictly
negative eigenvalue, it follows from [2, Proposition 8] that DA(h) has at least one eigenvalue larger
than 1. Therefore, strict saddle points are unstable fixed points of manifold gradient descent (see [2,
Definition 5]), i.e., (C3) is satisfied.

We verify (C4) in the following lemma.
Lemma 2.3. For step size γ = 1

128n3 , and all h ∈ Sn−1, we have det(DA(h)) 6= 0.

Since conditions (C3) and (C4) are satisfied, by [2, Theorem 2], the set of initial points that converge
to strict saddle points have measure 0. Therefore, a random h(0) uniformly distributed on Sn−1

converges to a local minimum almost surely. Hence {h(t)}t≥T ⊂ H1. By Lemma 1.5,

‖CfRh(T ) ± ej‖ ≤ 2κ
√
ρ,

for some j ∈ [n].

3 Other Numerical Experiments

3.1 2D Deconvolution

Next, we run a numerical experiment with blind image deconvolution. Suppose the circular convo-
lutions {yi}Ni=1 (Figure 1(c)) of an unknown image f (Figure 1(a)) and unknown sparse channels
{xi}Ni=1 (Figure 1(b)) are observed. The recovered image f̂ (Figure 1(d)) is computed as follows:

f̂ = F−1
[
F(Rh(T ))�−1

]
,

where F denotes the 2D DFT, and h(T ) is the output of manifold gradient descent, with a random
initialization h(0) that is uniformly distributed on the sphere.
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Figure 1 shows that, although the sparse channels are completely unknown and the convolutional
observations have corrupted the image beyond recognition, manifold gradient descent is capable
of recovering a shifted version of the (negative) image, starting from a random point on the sphere
(see the image recovered using a random initialization in Figure 1(d), and then corrected with the
true sign and shift in Figure 1(e)). In this example, all images and channels are of size 64× 64, the
number of channels is N = 256, and the sparsity level is θ = 0.01. We run T = 100 iterations of

manifold gradient descent with a fixed step size γ = 0.05. The accuracy ‖CfRh
(t)‖∞

‖CfRh(t)‖ as a function of
iteration number t is shown in Figure 1(f), and exhibits a sharp transition at a modest number (≈ 80)
of iterations.

(a) (b) (c)

(d) (e)

0 50 100

0.2

0.4

0.6

0.8

1

t

‖C
f
R
h
(
t
)
‖ ∞

‖C
f
R
h
(
t
)
‖

(f)

Figure 1: Multichannel blind image deconvolution. (a) True image. (b) Sparse channels. (c)
Observations. (d) Recovered image using manifold gradient descent. (e) Recovered image with sign
and shift correction. (f) The accuracy as a function of iteration number. All images and channels in
this figure are of the same size (64× 64).

3.2 MSBD with a Linear Convolution Model

In this section, we empirically study MSBD with a linear convolution model. Suppose the observations
yi = x′i ∗ f ′ ∈ Rn (i = 1, 2, . . . , N ) are linear convolutions of s-sparse channels x′i ∈ Rm and a
signal f ′ ∈ Rn−m+1. Let xi ∈ Rn and f ∈ Rn denote the zero-padded versions of x′i and f . Then

yi = x′i ∗ f ′ = xi ~ f.

In this section, we show that one can solve for f and xi using the optimization formulation (P1) and
the manifold gradient descent algorithm, without knowledge of the length m of the channels.

We compare our approach to the subspace method based on cross convolution [3], which solves
for the concatenation of the channels as a null vector of a structured matrix. For fairness, we also
compare to an alternative method that takes advantage of the sparsity of the channels, and finds a
sparse null vector of the same structured matrix as in [3], using truncated power iteration [4, 5].1

In our experiments, we synthesize f ′ using a random Gaussian vector following
N(0(n−m+1)×1, In−m+1). We synthesize s-sparse channels xi such that the support is chosen
uniformly at random, and the nonzero entries are independent following N(0, 1). We denote the
zero-padded versions of the true signal and the recovered signal by f and f̂ , and declare success if the
accuracy (the cosine of the angle between the true signal and the recovered signal) is greater than 0.7.
We study the empirical success rates of our method and the competing methods in three experiments:

1For an example of finding sparse null vectors using truncated power iteration, we refer the readers to our
previous paper [5, Section II].
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◦ N versus s, given that n = 128 and m = 64.
◦ N versus m, given that n = 128 and s = 4.
◦ N versus n, given that m = 64 and s = 4.

The phase transitions in Figure 2 show that our manifold gradient descent method consistently has
higher success rates than the competing methods based on cross convolution. The subspace method
and the truncated power iteration method are only successful when m is small compared to n, while
our method is successful for a large range of m and n. The sparsity prior exploited by truncated
power iteration improves the success rate over the subspace method, but only when the sparsity
level s is small compared to m. In comparison, our method, given a sufficiently large number N of
channels, can recover channels with a much larger s.
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(c)

16 32 48 64
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(d)

16 32 48 64

16

32

48

64

m

N

(e)
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80 96 112 128

16
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N

(h)
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16

32

48

64

n

N

(i)

Figure 2: Empirical phase transition of MSBD with a linear convolution model. The first row shows
the phase transitions of N versus s. The second row shows the phase transitions of N versus m.
The third row shows the phase transitions of N versus n. The first column shows the results for
manifold gradient descent. The second column shows the results for the subspace method [3]. The
third column shows are the results for truncated power iteration.

A Proof of Corollary 4.2

Since ‖CfRĥ± ej‖ ≤ 2κ
√
ρ for some j ∈ [n], by the Cauchy-Schwarz inequality

‖F(f)�F(Rĥ)−F(∓ej)‖∞ ≤
√
n‖CfRĥ± ej‖ ≤ 2κ

√
ρn, (13)
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where x� y denotes the entrywise product between x and y. Equivalently, the circular convolution
operators satisfy

‖CfCRĥ − C∓ej‖ ≤ 2κ
√
ρn.

It follows that
‖x̂i ± Sj(xi)‖ = ‖CyiRĥ± Sj(xi)‖
= ‖CfCRĥxi − C∓ejxi‖ ≤ ‖CfCRĥ − C∓ej‖ · ‖xi‖
≤ 2κ

√
ρn · ‖xi‖.

The smallest singular value σn(CRĥ) of CRĥ equals the smallest magnitude of the DFT F(Rĥ). The
largest singular value of Cf equals the largest DFT magnitude ‖F(f)‖∞ ≤

√
n‖f‖. Therefore, it

follows from (13) that

σn(CRĥ) ≥
1− 2κ

√
ρn

‖F(f)‖∞
≥

1− 2κ
√
ρn

√
n‖f‖

.

Combining the above bound with the following
‖CRĥ(f ± Sj(f̂))‖ = ‖CfRĥ± ej‖ ≤ 2κ

√
ρ,

we have
‖f̂ ± S−j(f)‖ = ‖f ± Sj(f̂)‖

=
‖CRĥ(f ± Sj(f̂))‖

σn(CRĥ)
≤ 2κ

√
ρ×

√
n‖f‖

1− 2κ
√
ρn

=
2κ
√
ρn

1− 2κ
√
ρn
· ‖f‖,

B Derivation of (1) and (2)

Recall that

∇L′′(h) =
1

N

N∑
i=1

∇′′i ,

HL′′(h) =
1

N

N∑
i=1

H ′′i ,

where ∇′′i := C>xi∇φ(Cxih), and H ′′i = C>xiHφ(Cxih)Cxi .

For the Bernoulli-Rademacher model in (A1), we have

E∇′′i(j) = −E
n∑
s=1

xi(1+s−j)

( n∑
t=1

xi(1+s−t)h(t)

)3

= −n
(
θh3

(j) + 3θ2h(j)

∑
6̀=j

h2
(`)

)
= −nθ(1− 3θ)h3

(j) − 3nθ2h(j),

where the last line uses the fact that
∑n
j=1 h

2
(j) = ‖h‖ = 1. Therefore, the gradient and the

Riemannian gradient are
E∇L′′(h) = −nθ(1− 3θ)h�3 − 3nθ2h,

E∇̂L′′(h) = Ph⊥E∇L′′(h) = nθ(1− 3θ)(‖h‖44 · h− h�3).

Similarly, we have

EH ′′i(jk) = −3E
n∑
s=1

xi(1+s−j)xi(1+s−k)

( n∑
t=1

xi(1+s−t)h(t)

)2

= −3n×

{
θh2

(j) + θ2
∑
` 6=j h

2
(`) if j = k

2θ2h(j)h(k) if j 6= k

= −3n
[
θ2δjk + θ(1− 3θ)h2

(j)δjk + 2θ2h(j)h(k)

]
.
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The Hessian and the Riemannian Hessian are

EHL′′(h) = −3n
[
θ2I + θ(1− 3θ)diag(h�2) + 2θ2hh>

]
,

EĤL′′(h) = Ph⊥EHL′′(h)Ph⊥ − h>E∇L′′(h) · Ph⊥
= nθ(1− 3θ)

[
‖h‖44 · I + 2‖h‖44 · hh> − 3 · diag(h�2)

]
.

C Proofs of Lemmas 1.2 – 1.5

Proof of Lemma 1.2. We first investigate the Riemannian Hessian at points in H′′1 and H′′2 . With-
out loss of generality, we consider points close to the representative stationary point h0 =
[1/
√
r, . . . , 1/

√
r, 0, . . . , 0]. We have

|h2
(j) − 1/r| ≤ ρ/r, ∀j ∈ {1, 2, . . . , r},

h2
(j) ≤ ρ/r, ∀j ∈ {r + 1, . . . , n},
n∑

j=r+1

h2
(j) = 1−

r∑
j=1

h2
(j) ≤ ρ.

Therefore,

‖h− h0‖ ≤

√
r ×

(1−
√

1− ρ√
r

)2
+ ρ ≤

√
2ρ, (14)

∥∥∥∥diag(h�2)− 1

r

[
Ir

0(n−r)×(n−r)

]∥∥∥∥ ≤ ρ

r
, (15)

and ∥∥∥∥hh> − 1

r

[
1r×r

0(n−r)×(n−r)

]∥∥∥∥ ≤ 2‖h− h0‖ ≤ 2
√

2ρ. (16)

We also bound ‖h‖44 as follows:

‖h‖44 ≤ r ×
(1 + ρ)2

r2
+ min

{
(n− r)× ρ2

r2
,

ρ2

n− r

}
≤ 1 + 2ρ+ 2ρ2

r
,

‖h‖44 ≥ r ×
(1− ρ)2

r2
≥ 1− 2ρ+ ρ2

r
.

Since ρ < 10−3 < 1/2, ∣∣∣‖h‖44 − 1

r

∣∣∣ ≤ 3ρ

r
. (17)

Next we obtain bounds on the Riemannian curvature of EL′′ at points h ∈ H′′1 or h ∈ H′′2 by
bounding its deviation from the Riemannian curvature at a corresponding stationary point h0. By
(15), (16), (17), and the expressions in (2), (4):

‖EĤL′′(h)− EĤL′′(h0)‖

≤ nθ(1− 3θ)
[3ρ

r
+ 2× 3ρ+ 2

√
2ρ

r
+ 3× ρ

r

]
=
nθ(1− 3θ)

r
(12ρ+ 4

√
2ρ). (18)
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It follows that∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z − min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z
∣∣∣

≤
∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h)z − min
z:‖z‖=1
z⊥h

z>EĤL′′(h0)z
∣∣∣

+
∣∣∣ min
z:‖z‖=1
z⊥h

z>EĤL′′(h0)z − min
z:‖z‖=1
z⊥h0

z>EĤL′′(h0)z
∣∣∣

≤ ‖V >EĤL′′(h)V − V >EĤL′′(h0)V ‖+ ‖V >EĤL′′(h0)V − V >0 EĤL′′(h0)V0‖
≤ ‖EĤL′′(h)− EĤL′′(h0)‖+ 2‖EĤL′′(h0)‖ · ‖V − V0‖

≤ nθ(1− 3θ)

r
(12ρ+ 4

√
2ρ) + 2× 2nθ(1− 3θ)

r
×
√

2ρ

=
nθ(1− 3θ)

r
(12ρ+ 8

√
2ρ)

≤
nθ(1− 3θ)(24

√
ρ)

r
, (19)

where V, V0 ∈ Rn×(n−1) satisfy: (I) the columns of V (resp. V0) form an orthonormal basis for the
tangent space at h (resp. h0); (II) ‖V − V0‖ ≤

√
2ρ. We construct V and V0 as follows, for the non-

trivial case where h 6= h0. Suppose the columns of V∩ ∈ Rn×(n−2) form an orthonormal basis for the
intersection of the tangent spaces at h and at h0. Let c := 〈h, h0〉 < 1, and let h′ := 1√

1−c2 (h0 − ch)

and h′0 := 1√
1−c2 (ch0 − h). It is easy to verify that V := [V∩, h

′] and V0 := [V∩, h
′
0] satisfy (I). To

verify (II), we have ‖V − V0‖ = ‖h′ − h′0‖ = 1−c√
1−c2 ‖h+ h0‖ = ‖h− h0‖ ≤

√
2ρ.

Positive definiteness (7) follows from (5) and (19). Negative curvature (8) follows from (6) and (19).

Next, we prove contrapositive of (9), i.e., suppose ‖E∇̂L′′(h)‖ < θ(1− 3θ)ρ2/n for some h ∈ Sn−1,
then we show h ∈ H′′1 ∪H′′2 . First, it follows from ‖E∇̂L′′(h)‖ < θ(1− 3θ)ρ2/n, and the expression
in (3), that for all j, k ∈ [n],

h2
(j)h

2
(k)(h

2
(j) − h

2
(k))

2 <
ρ4

n4
.

As a result, |h2
(j) − h

2
(k)| < ρ/n if h2

(j) ≥ ρ/n and h2
(k) ≥ ρ/n.

Let Ω := {j : h2
(j) ≥ ρ/n} ⊂ [n], and r := |Ω|. Then

h2
(j) < ρ/n ≤ ρ/r, ∀j /∈ Ω, (20)

and

1− (n− r) · ρ
n
<
∑
j∈Ω

h2
(j) ≤ 1. (21)

In addition, |h2
(j) − h

2
(k)| < ρ/n for j, k ∈ Ω. Therefore, for k ∈ Ω, h2

(k) is close to the average
1
r

∑
j∈Ω h

2
(j): ∣∣∣h2

(k) −
1

r

∑
j∈Ω

h2
(j)

∣∣∣ < ρ/n, ∀k ∈ Ω (22)

By (21) and (22), for k ∈ Ω:

h2
(k) ≤

1

r
+
ρ

n
≤ 1 + ρ

r
,

h2
(k) ≥

1− (n− r) · ρn
r

− ρ

n
=

1− ρ
r

.
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Therefore, ∣∣∣h2
(k) −

1

r

∣∣∣ ≤ ρ

r
∀k ∈ Ω, (23)

It follows from (20) and (23) that h is in the (ρ, r)-neighborhood of a stationary point h0, where
h0(j) = 1/

√
r if j ∈ Ω and h0(j) = 0 if j /∈ Ω. Clearly, such an h belongs to H′′1 ∪ H′′2 . By

contraposition, any point h ∈ H′′3 = Sn−1\(H′′1 ∪H′′2 ) satisfies (9).

Proof of Lemma 1.3. For any given h ∈ Sn−1 one can bound the deviation of the gradient (or
Hessian) from its mean using matrix Bernstein inequality [6]. Let Sε be an ε-net of Sn−1. Then
|Sε| ≤ (3/ε)n [7, Lemma 9.5]. We can then bound the deviation over Sn−1 by a union bound over
Sε.

Define∇′′i := C>xi∇φ(Cxih), and H ′′i = C>xiHφ(Cxih)Cxi . For the Bernoulli-Rademacher model
in (A1), we have |xi(j)| ≤ 1. Therefore,

∣∣∇′′i(j)∣∣ =
∣∣∣ n∑
s=1

xi(1+s−j)

( n∑
t=1

xi(1+s−t)h(t)

)3∣∣∣
≤ n

( n∑
t=1

|h(t)|
)3

≤ n2
√
n,

∣∣H ′′i(jk)

∣∣ =
∣∣∣3 n∑
s=1

xi(1+s−j)xi(1+s−k)

( n∑
t=1

xi(1+s−t)h(t)

)2∣∣∣
≤ 3n

( n∑
t=1

|h(t)|
)2

≤ 3n2.

It follows that ‖∇′′i ‖ ≤ n3, and ‖H ′′i ‖ ≤ ‖H ′′i ‖F ≤ 3n3.

Our goal is to bound the following average of independent random terms with zero mean:

∇L′′(h)− E∇L′′(h) =
1

N

N∑
i=1

(
∇′′i − E∇′′i

)
.

HL′′(h)− EHL′′(h) =
1

N

N∑
i=1

(
H ′′i − EH ′′i

)
.

Since ‖∇′′i ‖ ≤ n3, we have

‖∇′′i − E∇′′i ‖ ≤ 2n3,

N∑
i=1

E‖∇′′i − E∇′′i ‖2 ≤ N(E‖∇′′i ‖2 − ‖E∇′′i ‖2) ≤ 2Nn6,

∥∥∥ N∑
i=1

E(∇′′i − E∇′′i )(∇′′i − E∇′′i )>
∥∥∥ ≤ N(E‖∇′′i ‖2 + ‖E∇′′i ‖2) ≤ 2Nn6.

By the rectangular version of the matrix Bernstein inequality [6, Theorem 1.6], and a union bound
over Sε,

P
[

sup
h∈Sε

‖∇L′′(h)− E∇L′′(h)‖ ≤ τ
]

≥ 1−
(3

ε

)n
(n+ 1) exp

( −N2τ2/2

2Nn6 + 2n3Nτ/3

)
(24)
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Similarly, since ‖H ′′i ‖ ≤ 3n3, we have

‖H ′′i − EH ′′i ‖ ≤ 6n3,∥∥∥ N∑
i=1

E(H ′′i − EH ′′i )2
∥∥∥ ≤ N‖EH ′′2i − (EH ′′i )2‖ ≤ 2N(3n3)2 = 18Nn6.

By the symmetric version of the matrix Bernstein inequality [6, Theorem 1.4], and a union bound
over Sε,

P
[

sup
h∈Sε

‖HL′′(h)− EHL′′(h)‖ ≤ τ
]

≥ 1−
(3

ε

)n
(2n) exp

( −N2τ2/2

18Nn6 + 6n3Nτ/3

)
(25)

Choose τ = θ(1−3θ)ρ2

8n , and ε = τ
6n3 = θ(1−3θ)ρ2

48n4 . By (24) and (25), there exist constants c1, c′1 > 0

(depending only on θ), such that: if N > c1n
9

ρ4 log n
ρ , then with probability at least 1− n−c′1 ,

sup
h∈Sε

‖∇L′′(h)− E∇L′′(h)‖ ≤ τ =
θ(1− 3θ)ρ2

8n
,

sup
h∈Sε

‖HL′′(h)− EHL′′(h)‖ ≤ τ =
θ(1− 3θ)ρ2

8n
.

To finish the proof, we extrapolate the concentration bounds over Sε to all points in Sn−1. For
any h ∈ Sn−1, there exists h′ ∈ Sε such that ‖h− h′‖ ≤ ε. Furthermore, thanks to the Lipschitz
continuity of the gradient and the Hessian,

‖∇′′i (h)−∇′′i (h′)‖
≤ ‖Cxi‖ ·

√
n(3‖xi‖2) · ‖xi‖‖h− h′‖

≤ 3n3ε,

‖H ′′i (h)−H ′′i (h′)‖
≤ ‖Cxi‖2 · (6‖xi‖) · ‖xi‖‖h− h′‖
≤ 6n3ε,

where 3‖xi‖2 and 6‖xi‖ are the Lipschitz constants of (·)3 and 3(·)2 on the interval [−‖xi‖, ‖xi‖].
We also use the fact that |xi(j)| < 1, hence ‖xi‖ ≤

√
n and ‖Cxi‖ ≤ n. As a consequence,

sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ sup
h∈Sε

‖∇L′′(h)− E∇L′′(h)‖+ 2 max
i∈[n]

sup
‖h−h′‖≤ε

‖∇′′i (h)−∇′′i (h′)‖

≤ τ + 6n3ε = 2τ =
θ(1− 3θ)ρ2

4n
,

sup
h∈Sn−1

‖∇̂L′′(h)− E∇̂L′′(h)‖

≤ sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ θ(1− 3θ)ρ2

4n
.

Similarly,

sup
h∈Sn−1

‖HL′′(h)− EHL′′(h)‖

≤ sup
h∈Sε

‖HL′′(h)− EHL′′(h)‖+ 2 max
i∈[n]

sup
‖h−h′‖≤ε

‖H ′′i (h)−H ′′i (h′)‖

≤ τ + 12n3ε = 3τ =
3θ(1− 3θ)ρ2

8n
,
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sup
h∈Sn−1

‖ĤL′′(h)− EĤL′′(h)‖

≤ sup
h∈Sn−1

‖HL′′(h)− EHL′′(h)‖+ sup
h∈Sn−1

‖∇L′′(h)− E∇L′′(h)‖

≤ θ(1− 3θ)ρ2

n
.

Proof of Lemma 1.4. We have E 1
θnN

∑N
i=1 C

>
xiCxi = I . We first bound ‖ 1

θnN

∑N
i=1 C

>
xiCxi − I‖

using the matrix Bernstein inequality. To this end, we bound the spectral norm of E(C>xiCxi)
2, the

singular values of which can be computed using the DFT of xi. The singular value corresponding to
the t-th frequency satisfies

E
[( N∑

k=1

e−
√
−1(k−1)t/nxi(k)

)( N∑
k=1

e
√
−1(k−1)t/nxi(k)

)]2
= E

( N∑
k=1

x2
i(k) +

∑
1≤k<j≤n

2 cos((j − k)t/n)xi(j)xi(k)

)2

≤ nθ +
n(n− 1)

2
× 4θ2 + n(n− 1)θ2

= nθ + 3n(n− 1)θ2.

Therefore,

∥∥∥ N∑
i=1

E
( 1

θn
C>xiCxi − I

)2∥∥∥
= N

∥∥∥ 1

θ2n2
E(C>xiCxi)

2 − I
∥∥∥

≤ N

θ2n2
‖E(C>xiCxi)

2‖+N

≤ N

θ2n2
(nθ + 3n(n− 1)θ2) +N

≤ N

θn
+ 3N +N

≤ 5N.

We also have

‖ 1

θn
C>xiCxi − I‖ ≤

1

θn
‖Cxi‖2 + 1 ≤ n2

θn
+ 1 ≤ n2 + 1.

By the matrix Bernstein inequality [6, Theorem 1.4],

P
[∥∥∥ 1

θnN

N∑
i=1

C>xiCxi − I
∣∣∣ ≤ τ] ≥ 1− 2n exp

( −N2τ2/2

5N + (n2 + 1)Nτ/3

)
.

Set τ = θ(1−3θ)ρ2

200n4κ4 . Then there exist constants c2, c′2 > 0 (depending only on θ) such that: if
N > c2n

8κ8

ρ4 log n, then with probability at least 1− n−c′2 ,

∥∥∥ 1

θnN

N∑
i=1

C>xiCxi − I
∥∥∥ ≤ θ(1− 3θ)ρ2

200n4κ4
. (26)
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Next, we bound ‖CfR− Cf (C>f Cf )−1/2‖ by following the proofs of [8, Lemma 15] and [9, Lemma
B.2]. Define Q := 1

θnN

∑N
i=1 C

>
xiCxi .

‖CfR− Cf (C>f Cf )−1/2‖

= ‖Cf (C>f QCf )−1/2 − Cf (C>f Cf )−1/2‖

≤ σ1(Cf ) · ‖(C>f QCf )−1/2 − (C>f Cf )−1/2‖

≤ σ1(Cf )
‖(C>f QCf )−1 − (C>f Cf )−1‖

σn
(
(C>f Cf )−1/2

) (27)

= σ2
1(Cf )‖(C>f QCf )−1 − (C>f Cf )−1‖

≤ σ2
1(Cf )

σ2
n(Cf )

‖(C>f Cf )(C>f QCf )−1 − I‖

= κ2
∥∥∥[I + (C>f (Q− I)Cf )(C>f Cf )−1

]−1

− I
∥∥∥

≤ κ2
‖C>f (Q− I)Cf‖‖(C>f Cf )−1‖

1− ‖C>f (Q− I)Cf‖‖(C>f Cf )−1‖
(28)

≤ κ4 ‖Q− I‖
1− 1/2

≤ θ(1− 3θ)ρ2

100n4
. (29)

The inequality (27) follows from the fact that, for positive definite A and B,

‖A−1/2 −B−1/2‖ ≤ ‖A−1 −B−1‖
σn(A−1/2 +B−1/2)

≤ ‖A
−1 −B−1‖
σn(B−1/2)

,

which in turn follows from the identity

(A−1/2 −B−1/2)(A−1/2 +B−1/2) + (A−1/2 +B−1/2)(A−1/2 −B−1/2) = 2(A−1 −B−1).

The inequality (28) is due to the fact that ‖(I +A)−1 − I‖ ≤ ‖(I +A)−1‖‖A‖ ≤ ‖A‖
1−‖A‖ for

‖A‖ < 1. The last line (29) follows from (26) and ‖C>f (Q− I)Cf‖‖(C>f Cf )−1‖ ≤ κ2‖Q− I‖ <
1
2 .

The rest of Lemma 1.4 follows from the Lipschitz continuity of the objective function. Define
U := CfR, and U ′ := Cf (C>f Cf )−1/2, which is an orthogonal matrix. We have

‖CfR‖ = ‖U‖ ≤ ‖U ′‖+ ‖U − U ′‖ < 2. (30)

Recall that for the Bernoulli-Rademacher model, ‖xi‖ ≤
√
n and ‖Cxi‖ ≤ n. Then the difference of

the gradients of L(h) = 1
N

∑N
i=1 φ(CxiUh) and L′(h) = 1

N

∑N
i=1 φ(CxiU

′h) can be bounded as
follows:

‖∇L(h)−∇L′(h)‖
≤ max

i∈[n]
‖U>C>xi∇φ(CxiUh)− U ′>C>xi∇φ(CxiU

′h)‖

≤ max
i∈[n]
‖U>C>xi∇φ(CxiUh)− U>C>xi∇φ(CxiU

′h)‖

+ max
i∈[n]
‖U>C>xi∇φ(CxiU

′h)− U ′>C>xi∇φ(CxiU
′h)‖

≤ max
i∈[n]
‖U‖‖Cxi‖ ·

√
n[3(‖U‖‖xi‖)2] · ‖U − U ′‖‖xi‖

+ max
i∈[n]
‖U − U ′‖‖Cxi‖ ·

√
n‖xi‖3

≤ 25
√
n ·max

i∈[n]
‖Cxi‖‖xi‖3‖U − U ′‖

≤ 25n3‖U − U ′‖,
where the third inequality follows from the fact that∇φ(·) is Lipschitz continous and bounded on com-
pact sets – the Lipschitz constant of (·)3 on the interval [−‖U‖‖xi‖)2, ‖U‖‖xi‖)2] is 3(‖U‖‖xi‖)2,
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and the upper bound of |(·)3| on the interval [−‖xi‖, ‖xi‖] is ‖xi‖3. Similarly the difference of the
Hessians can be bounded as follows:

‖HL(h)−HL′(h)‖
≤ max

i∈[n]
‖U>C>xiHφ(CxiUh)CxiU − U ′>C>xiHφ(CxiU

′h)CxiU
′‖

≤ max
i∈[n]
‖U>C>xiHφ(CxiUh)CxiU − U>C>xiHφ(CxiU

′h)CxiU‖

+ max
i∈[n]
‖U>C>xiHφ(CxiU

′h)CxiU − U ′>C>xiHφ(CxiU
′h)CxiU‖

+ max
i∈[n]
‖U ′>C>xiHφ(CxiU

′h)CxiU − U ′>C>xiHφ(CxiU
′h)CxiU

′‖

≤ max
i∈[n]
‖U‖2‖Cxi‖2 · [6(‖U‖‖xi‖)] · ‖U − U ′‖‖xi‖

+ max
i∈[n]
‖U − U ′‖‖U‖‖Cxi‖2 · [3‖xi‖2]

+ max
i∈[n]
‖U − U ′‖‖Cxi‖2 · [3‖xi‖2]

≤ 57 ·max
i∈[n]
‖Cxi‖2‖xi‖2‖U − U ′‖

≤ 57n3‖U − U ′‖,

where the third inequality uses the Lipschitz constant and upper bound of 3(·)2.

It follows from (29) and the above bounds that

sup
h∈Sn−1

‖∇̂L(h)− ∇̂L′(h)‖

≤ sup
h∈Sn−1

‖∇L(h)−∇L′(h)‖

≤ 25n3‖U − U ′‖ ≤ θ(1− 3θ)ρ2

4n
.

sup
h∈Sn−1

‖ĤL(h)− ĤL′(h)‖

≤ sup
h∈Sn−1

‖HL(h)−HL′(h)‖+ sup
h∈Sn−1

‖∇L(h)−∇L′(h)‖

≤ 100n3‖U − U ′‖ ≤ θ(1− 3θ)ρ2

n
.

Proof of Lemma 1.5. The set H′′1 equals the union of (ρ, 1)-neighborhoods of {±ej}nj=1, and the
columns of C−1

f = Cg are the shifted versions of the inverse filter g. Therefore, by (14), every point
h∗ ∈ (C>f Cf )1/2C−1

f H′′1 satisfies

‖h∗ ± (C>f Cf )1/2Sj(g)‖ ≤
√

2ρ,

for some j ∈ [n]. It follows that

‖Rh∗ ± Sj(g)‖
≤ ‖Rh∗ − (C>f Cf )−1/2h∗‖+ ‖(C>f Cf )−1/2h∗ ± Sj(g)‖

≤ ‖R− (C>f Cf )−1/2‖+ ‖(C>f Cf )−1/2‖‖h∗ ± (C>f Cf )1/2Sj(g)‖

≤ θ(1− 3θ)ρ2

100n4σn(Cf )
+

√
2ρ

σn(Cf )

≤
2
√
ρ

σn(Cf )
,
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where the second to last line follows from (29), and the last line follows from θ(1−3θ)ρ2/(100n4) <

(2−
√

2)
√
ρ. Therefore,

‖CfRh∗ ± ej‖ = ‖Cf (Rh∗ ± Sj(g))‖ ≤ ‖Cf‖‖Rh∗ ± Sj(g)‖

≤ σ1(Cf ) ·
2
√
ρ

σn(Cf )
= 2κ

√
ρ.

D Proofs of Lemmas 2.1 – 2.3

Proof of Lemma 2.1. Clearly, L(h) ≤ 0 for all h ∈ Sn−1. For the Bernoulli-Rademacher model in
(A1), we have ‖xi‖ ≤

√
n and ‖Cxi‖ ≤ n. Therefore,

φ(CyiRh) = −1

4
‖CxiCfRh‖44

≥ −n
4

(‖xi‖‖CfRh‖)4

≥ −4n3,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
follows from ‖CfRh‖ ≤ ‖CfR‖ ≤ 2 (see (30)). Then L(h) = 1

N

∑N
i=1 Li ≥ −4n3.

We can bound the the norm of∇L(h) and HL(h) similarly. To bound ‖∇L(h)‖, we observe that∣∣(C>xi∇φ(CyiRh))(j)

∣∣ ≤ ‖xi‖‖∇φ(CyiRh)‖
≤ ‖xi‖ ×

√
n(‖xi‖‖CfRh‖)3

≤
√
n‖xi‖4‖CfR‖3

≤ 8n2
√
n,

and hence

‖∇L(h)‖ = ‖ 1

N

N∑
i=1

R>C>yi∇φ(CyiRh)‖

≤ ‖R>C>f ‖‖
1

N

N∑
i=1

C>xi∇φ(CyiRh)‖

≤ ‖R>C>f ‖ ×
√
n max
i∈[N ], j∈[n]

∣∣(C>xi∇φ(CyiRh))(j)

∣∣
≤ 16n3.

To bound ‖HL(h)‖, we have∣∣(C>xiHφ(CyiRh)Cxi)(jk)

∣∣ ≤ ‖xi‖2‖Hφ(CyiRh)‖
≤ ‖xi‖2 × 3(‖xi‖‖CfRh‖)2

≤ 3‖xi‖4‖CfR‖2

≤ 12n2,

and hence

‖HL(h)‖ = ‖ 1

N

N∑
i=1

R>C>yiHφ(CyiRh)CyiR‖

≤ ‖R>C>f ‖‖
1

N

N∑
i=1

C>xiHφ(CyiRh)Cxi‖‖CfR‖

≤ ‖CfR‖2 × n max
i∈[N ], j∈[n], k∈[n]

∣∣(C>xiHφ(CyiRh)Cxi)(jk)

∣∣
≤ 48n3.
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Proof of Lemma 2.2. For z ⊥ h, and h′ = h+z
‖h+z‖ = h+z√

1+‖z‖2
, L̂(z) = L(h′), L̂(0) = L(h), and

∇L̂(0) = ∇̂L(h). By the mean value theorem, there exists a convex combination h′′ of h and h′
such that L(h′)−L(h) = 〈h′ − h,∇L(h′′)〉, and a convex combination of h′′′ of h and h′′ such that
∇L(h′′)−∇L(h) = HL(h′′′)(h′′ − h). It follows that∣∣L(h′)− L(h)− 〈z, ∇̂L(h)〉

∣∣
=
∣∣〈h′ − h,∇L(h′′)〉 − 〈z,∇L(h)〉

∣∣
≤
∣∣〈h′ − h− z,∇L(h′′)〉

∣∣+
∣∣〈z,∇L(h′′)−∇L(h)〉

∣∣
≤ ‖z‖2

1 +
√

1 + ‖z‖2
‖∇L(h′′)‖+ ‖z‖‖HL(h′′′)‖‖h′′ − h‖

≤ ‖z‖
2

2
× 16n3 + 48n3‖z‖‖h− h′‖

≤ 64n3‖z‖2,
where the third inequality follows from Lemma 2.1, and the last inequality follows from the fact that
‖h− h′‖ ≤ ‖z‖.

Proof of Lemma 2.3. Suppose the columns of orthogonal matrices V, V ′ ∈ Rn×(n−1) form bases for
the tangent spaces at h and h′. Then a matrix representation of DA(h) in (12) as a mapping from the
tangent space of h to the tangent space at h′ is V ′>V (In−1 − γV >ĤL(h)V ).

Since 〈h, h′〉 = ‖h‖2 = 1, we have |det(V ′>V )| = 〈h, h′/‖h′‖〉 = 1/‖h′‖ > 0.

By Lemma 2.1, for all h ∈ Sn−1,

‖ĤL(h)‖ ≤ ‖HL(h)‖+ ‖∇L(h)‖
≤ 48n3 + 16n3 = 64n3.

Therefore In−1 − γV >ĤL(h)V is strictly positive definite for γ < 1/(64n3).

It follows that
|det(DA(h))| = |det(V ′>V )| · |det

(
In−1 − γV >HL(h)V

)
| > 0.
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