A Semi-supervised learning methods, in more detail

There have been a wide variety of proposed SSL methods, including "transductive" [15] variants of k-nearest neighbors [27] and support vector machines [26], graph-based methods [53, 5], and algorithms based on learning features (frequently via generative modeling) from unlabeled data [2, 33, 47, 8, 19, 30, 43, 41, 48].

A comprehensive overview is out of the scope of this paper; we instead refer interested readers to [53, 6].

We now describe the methods we analyze in this paper (as described in section 3) in more detail.

A.1 Consistency Regularization

Consistency regularization describes a class of methods with following intuitive goal: Realistic perturbations $x \to \hat{x}$ of data points $x \in \mathcal{D}_{UL}$ should not significantly change the output of $f_{\theta}(x)$. Generally, this involves minimizing $d(f_{\theta}(x), f_{\theta}(\hat{x}))$ where $d(\cdot, \cdot)$ measures a distance between the prediction function's outputs, e.g. mean squared error or Kullback-Leibler divergence. Typically the gradient through this consistency term is only backpropagated through $f_{\theta}(\hat{x})$. In the toy example of fig. 1, this would ideally result in the classifier effectively separating the two class clusters due to the fact that their members are all close together. Consistency regularization can be seen as a way of leveraging the unlabeled data to find a smooth manifold on which the dataset lies [3]. This simple principle has produced a series of approaches which are currently state-of-the-art for SSL.

A.1.1 Stochastic Perturbations/II-Model

The simplest setting in which to apply consistency regularization is when the prediction function $f_{\theta}(x)$ is itself stochastic, i.e. it can produce different outputs for the same input x. This is common when $f_{\theta}(x)$ is a neural network due to common regularization techniques such as data augmentation, dropout, and adding noise. These regularization techniques themselves are typically designed in such a way that they ideally should not cause the model's prediction to change, and so are a natural fit for consistency regularization.

The straightforward application of consistency regularization is thus minimizing $d(f_{\theta}(x), f_{\theta}(\hat{x}))$ for $x \in \mathcal{D}_{UL}$ where in this case $d(\cdot, \cdot)$ is chosen to be mean squared error. This distance term is added to the classification loss as a regularizer, scaled by a weighting hyperparameter. This idea was first proposed in [1] and later studied in [46] and [32], and has been referred to as "Pseudo-Ensembles", "Regularization With Stochastic Transformations and Perturbations" and the "II-Model" respectively. We adopt the latter name for its conciseness. In fig. 1, the II-Model successfully finds the correct decision boundary.

A.1.2 Temporal Ensembling/Mean Teacher

A difficulty with the Π -model approach is that it relies on a potentially unstable "target" prediction, namely the second stochastic network prediction which can rapidly change over the course of training. As a result, [50] and [32] proposed two methods for obtaining a more stable target output $\bar{f}_{\theta}(x)$ for $x \in \mathcal{D}_{UL}$. "Temporal Ensembling" [32] uses an exponentially accumulated average of outputs of $f_{\theta}(x)$ for the consistency target. Inspired by this approach, "Mean Teacher" [50] instead proposes to use a prediction function parametrized by an exponentially accumulated average of θ over training. As with the Π -model, the mean squared error $d(f_{\theta}(x), \bar{f}_{\theta}(x))$ is added as a regularization term with a weighting hyperparameter. In practice, it was found that the Mean Teacher approach outperformed Temporal Ensembling [50], so we will focus on it in our later experiments.

A.1.3 Virtual Adversarial Training

Instead of relying on the built-in stochasticity of $f_{\theta}(x)$, Virtual Adversarial Training (VAT) [39] directly approximates a tiny perturbation r_{adv} to add to x which would most significantly affect the output of the prediction function. An approximation to this perturbation can be computed efficiently as

$$r \sim \mathcal{N}\left(0, \frac{\xi}{\sqrt{\dim(x)}}I\right)$$
 (2)

$$g = \nabla_r d(f_\theta(x), f_\theta(x+r)) \tag{3}$$

$$r_{adv} = \epsilon \frac{g}{||g||} \tag{4}$$

where ξ and ϵ are scalar hyperparameters. Consistency regularization is then applied to minimize $d(f_{\theta}(x), f_{\theta}(x + r_{adv}))$ with respect to θ , effectively using the "clean" output as a target given an adversarially perturbed input. VAT is inspired by adversarial examples [49, 20], which are natural datapoints x which have a virtually imperceptible perturbation added to them which causes a trained model to misclassify the datapoint. Like the Π -Model, the perturbations caused by VAT find the correct decision boundary in fig. 1.

A.2 Entropy-Based

A simple loss term which can be applied to unlabeled data is to encourage the network to make "confident" (low-entropy) predictions for all examples, regardless of the actual class predicted. Assuming a categorical output space with K possible classes (e.g. a K-dimensional softmax output), this gives rise to the "entropy minimization" term [21]:

$$-\sum_{k=1}^{K} f_{\theta}(x)_k \log f_{\theta}(x)_k \tag{5}$$

Ideally, entropy minimization will discourage the decision boundary from passing near data points where it would otherwise be forced to produce a low-confidence prediction [21]. However, given a high-capacity model, another valid low-entropy solution is simply to create a decision boundary which has overfit to locally avoid a small number of data points, which is what appears to have happened in the synthetic example of fig. 1 (see appendix E for further discussion). On its own, entropy minimization has not been shown to produce competitive results compared to the other methods described here [45]. However, entropy minimization was combined with VAT to obtain state-of-the-art results by [39]. An alternative approach which is applicable to multi-label classification was proposed by [45], but it performed similarly to entropy minimization on standard "one-hot" classification tasks. Interestingly, entropy *maximization* was also proposed as a regularization strategy for neural networks by [42].

A.3 Pseudo-Labeling

Pseudo-labeling [34] is a simple heuristic which is widely used in practice, likely because of its simplicity and generality – all that it requires is that the model provides a probability value for each of the possible labels. It proceeds by producing "pseudo-labels" for \mathcal{D}_{UL} using the prediction function itself over the course of training. Pseudo-labels which have a corresponding class probability which is larger than a predefined threshold are used as targets for a standard supervised loss function applied to \mathcal{D}_{UL} . While intuitive, it can nevertheless produce incorrect results when the prediction function produces unhelpful targets for \mathcal{D}_{UL} , as shown in fig. 1. Note that pseudo-labeling is quite similar to entropy regularization, in the sense that it encourages the model to produce higher-confidence (lower-entropy) predictions for data in \mathcal{D}_{UL} [34]. However, it differs in that it only enforces this for data points which already had a low-entropy prediction due to the confidence thresholding. Pseudo-labeling is also closely related to self-training [44, 37], which differs only in the heuristics used to decide which pseudo-labels to retain. The Pseudo-labeling paper [34] also discusses using unsupervised pre-training; we did not implement this in our experiments.

B Dataset details

Overall, we followed standard data normalization and augmentation practice. For SVHN, we converted image data to floating point values in the range [-1, 1]. For data augmentation, we solely used random translation by up to 2 pixels. We used the standard train/validation split, with 65,932 images for training and 7,325 for validation.

For any model which was to be used to classify CIFAR-10 (e.g. including the base ImageNet model for the transfer learning experiment in section 4.3), we applied global contrast normalization and ZCA-normalized the inputs using statistics calculated on the CIFAR-10 training set. ZCA normalization is a widely-used and surprisingly important preprocessing step for CIFAR-10. Data augmentation on CIFAR-10 included random horizontal flipping, random translation by up to 2 pixels, and Gaussian input noise with standard deviation 0.15. We used the standard train/validation split, with 45,000 images for training and 5,000 for validation.

Table 4: Hyperparameter settings used in our experiments. All hyperparameters were tuned via large-scale hyperparameter optimization and then distilled to sensible and unified defaults by hand. Adam's β_1 , β_2 , and ϵ parameters were left to the defaults suggested by [29]. *Following [50], we ramped up the consistency coefficient starting from 0 to its maximum value using a sigmoid schedule so that it achieved its maximum value at 200,000 iterations. **We found that CIFAR-10 and SVHN required different values for ϵ in VAT (6.0 and 1.0 respectively), likely due to the difference in how the input is normalized in each dataset.

Shared	
L1 regularization coefficient	0.001
L2 regularization coefficient	0.0001
Learning decayed by a factor of	0.2
at training iteration	400,000
Consistency coefficient rampup*	200,000
Supervised	
Initial learning rate	0.003
Π -Model	
Initial learning rate	0.0003
Max consistency coefficient	20
Mean Teacher	
Initial learning rate	0.0004
Max consistency coefficient	8
Exponential moving average decay	0.95
VAT	
Initial learning rate	0.003
Max consistency coefficient	0.3
VAT ϵ	6.0 or 1.0**
VAT ξ	10^{-6}
VAT + EM (as for VAT	Γ)
Entropy penalty multiplier	0.06
Pseudo-Label	
Initial learning rate	0.003
Max consistency coefficient	1.0
Pseudo-label threshold	0.95

C Hyperparameters

In our hyperparameter search, for each SSL method, we always separately optimized algorithmagnostic hyperparameters such as the learning rate, its decay schedule and weight decay coefficients. In addition, we optimized to those hyperparameters specific to different SSL approaches separately for each approach. In keeping with our argument in section 4.6, we attempted to find hyperparameter settings which were performant across datasets and SSL approaches so that we could avoid unrealistic tweaking. After hand-tuning, we used the hyperparameter settings summarized in table 4, which lists those settings which were shared and common to all SSL approaches.

We trained all networks for 500,000 updates with a batch size of 100. We did not use any form of early stopping, but instead continuously monitored validation set performance and report test error at the point of lowest validation error. All models were trained with a single worker on a single GPU (i.e. no asynchronous training).

Table 5: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10 with all but 4,000 labels removed and SVHN with all but 1,000 labels removed. Top: Reported results in the literature; Bottom: Using our proposed unified reimplementation. "Supervised" refers to using only 4,000 and 1,000 labeled datapoints from CIFAR-10 and SVHN respectively without any unlabeled data. VAT + EntMin refers Virtual Adversarial Training with Entropy Minimization (see section 3). Note that the model used for results in the bottom has roughly half as many parameters as most models in the top (see section 4.1).

Method	CIFAR-10 4000 Labels	SVHN 1000 Labels
П-Model [46]	11.29%	_
Π-Model [32]	12.36%	4.82%
Mean Teacher [50]	12.31%	3.95%
VAT [39]	11.36%	5.42%
VAT + EntMin [39]	10.55%	3.86%
Results above this lin	e cannot be directly	compared to those below
Supervised	$20.26 \pm 0.38\%$	$12.83 \pm 0.47\%$
Π-Model	$16.37 \pm 0.63\%$	$7.19 \pm 0.27\%$
Mean Teacher	$15.87 \pm 0.28\%$	$5.65 \pm 0.47\%$
VAT	$13.86 \pm 0.27\%$	$5.63\pm0.20\%$
VAT + EntMin	$13.13 \pm 0.39\%$	$5.35 \pm 0.19\%$
Pseudo-Label	$17.78 \pm 0.57\%$	$7.62 \pm 0.29\%$

D Comparison of our results with reported results in the literature

In table 5, we show how our results compare to what has been reported in the literature. Our numbers cannot be directly compared to those previously reported due to a lack of a shared underlying network architecture. For example, our model has roughly half as many parameters as the one used in [32, 39, 50], which may partially explain its somewhat worse performance. Our findings are generally consistent with these; namely, that all of these SSL methods improve (to a varying degree) over the baseline. Further, Virtual Adversarial Training and Mean Teacher both appear to work best, which is consistent with their shared state-of-the-art status.

E Decision boundaries found by Entropy Minimization cut through the unlabeled data

Why does Entropy Minimization not find good decision boundaries in the "two moons" figure (fig. 1)? Even though a decision boundary that avoids both clusters of unlabeled data would achieve low loss, so does any decision boundary that's extremely confident and "wiggles" around each individual unlabeled data point. The neural network easily overfits to such a decision boundary simply by increasing the magnitude of its output logits. Figure 7 shows how training changes the decision contours.

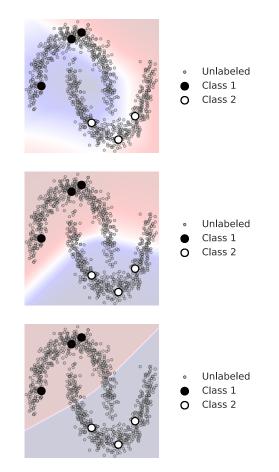


Figure 7: Predictions made by a model trained with Entropy Minimization, as made at initialization, and after 125 and 1000 training steps. Points where the model predicts "1" or "2" are shown in red or blue, respectively. Color saturation corresponds to prediction confidence, and the decision boundary is the white line. Notice that after 1000 steps of training the model is extremely confident at every point, which achieves close to zero prediction entropy on unlabeled points.

F Classes in ImageNet which overlap with CIFAR-10

ID	Description	ID	Description	ID	Description	ID	Description
7	cock	152	Japanese spaniel	215	Brittany spaniel	283	Persian cat
8	hen	153	Maltese dog	216	clumber	284	Siamese cat
9	ostrich	154	Pekinese	217	English springer	285	Egyptian cat
10	brambling	155	Shih-Tzu	218	Welsh springer spaniel	286	cougar
11	goldfinch	156	Blenheim spaniel	219	cocker spaniel	287	lynx
12	house finch	157	papillon	220	Sussex spaniel	288	leopard
13	junco	158	toy terrier	221	Irish water spaniel	289	snow leopard
14	indigo bunting	159	Rhodesian ridgeback	222	kuvasz	290	jaguar
15	robin	160	Afghan hound	223	schipperke	291	lion
16	bulbul	161	basset	224	groenendael	292	tiger
17	jay	162	beagle	225	malinois	293	cheetah
18	magpie	163	bloodhound	226	briard	403	aircraft carrier
19	chickadee	164	bluetick	227	kelpie	404	airliner
20	water ouzel	165	black-and-tan coonhound	228	komondor	405	airship
21	kite	166	Walker hound	229	Old English sheepdog	408	amphibian
22	bald eagle	167	English foxhound	230	Shetland sheepdog	436	beach wagon
23	vulture	168	redbone	231	collie	466	bullet train
24	great grey owl	169	borzoi	232	Border collie	468	cab
30	bullfrog	170	Irish wolfhound	233	Bouvier des Flandres	472	canoe
31	tree frog	171	Italian greyhound	234	Rottweiler	479	car wheel
32	tailed frog	172	whippet	235	German shepherd	484	catamaran
80	black grouse	173	Ibizan hound	236	Doberman	510	container ship
81	ptarmigan	174	Norwegian elkhound	237	miniature pinscher	511	convertible
82	ruffed grouse	175	otterhound	238	Greater Swiss Mountain dog	554	fireboat
83	prairie chicken	175	Saluki	239	Bernese mountain dog	555	fire engine
84	peacock	170	Scottish deerhound	240	Appenzeller	569	garbage truck
85	quail	178	Weimaraner	240	EntleBucher	573	go-kart
86	partridge	178	Staffordshire bullterrier	241	boxer	575	golfcart
87	African grey	180	American Staffordshire terrier	242	bull mastiff	581	grille
87 88	macaw	180	Bedlington terrier	243	Tibetan mastiff	586	half track
89	sulphur-crested cockatoo	181	Border terrier	244 245	French bulldog	595	harvester
89 90	lorikeet	182	Kerry blue terrier	243 246	Great Dane	609	
90 91	coucal	185	Irish terrier	246 247	Saint Bernard	612	jeep
91 92	bee eater	184	Norfolk terrier	247			jinrikisha lifeboat
92 93					Eskimo dog	625	
	hornbill	186	Norwich terrier	249	malamute	627	limousine
94	hummingbird	187	Yorkshire terrier	250	Siberian husky	628	liner
95	jacamar	188	wire-haired fox terrier	251	dalmatian	654	minibus
96	toucan	189	Lakeland terrier	252	affenpinscher	656	minivan
97	drake	190	Sealyham terrier	253	basenji	661	Model T
98	red-breasted merganser	191	Airedale	254	pug	675	moving van
99	goose	192	cairn	255	Leonberg	694	paddlewheel
100	black swan	193	Australian terrier	256	Newfoundland	705	passenger car
127	white stork	194	Dandie Dinmont	257	Great Pyrenees	717	pickup
128	black stork	195	Boston bull	258	Samoyed	724	pirate
129	spoonbill	196	miniature schnauzer	259	Pomeranian	734	police van
130	flamingo	197	giant schnauzer	260	chow	751	racer
131	little blue heron	198	standard schnauzer	261	keeshond	757	recreational vehicle
132	American egret	199	Scotch terrier	262	Brabancon griffon	779	school bus
133	bittern	200	Tibetan terrier	263	Pembroke	780	schooner
134	crane	201	silky terrier	264	Cardigan	803	snowplow
135	limpkin	202	soft-coated wheaten terrier	265	toy poodle	814	speedboat
136	European gallinule	203	West Highland white terrier	266	miniature poodle	817	sports car
137	American coot	204	Lhasa	267	standard poodle	829	streetcar
138	bustard	205	flat-coated retriever	268	Mexican hairless	833	submarine
139	ruddy turnstone	206	curly-coated retriever	269	timber wolf	847	tank
140	red-backed sandpiper	207	golden retriever	270	white wolf	864	tow truck
141	redshank	208	Labrador retriever	271	red wolf	867	trailer truck
142	dowitcher	200	Chesapeake Bay retriever	272	coyote	871	trimaran
143	oystercatcher	210	German short-haired pointer	273	dingo	874	trolleybus
143	pelican	210	vizsla	273	dhole	895	warplane
	king penguin	211	English setter	274	African hunting dog	908	wing
	KINE DEIIEUIII	212	Lugush Setter	215	Arrican nunung uog	200	willg
145 146	albatross	213	Irish setter	281	tabby	913	wreck

Table 6: Classes in ImageNet which are similar to one of the classes in CIFAR-10. For reference, the CIFAR-10 classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.