
A Semi-supervised learning methods, in more detail

There have been a wide variety of proposed SSL methods, including “transductive” [15] variants
of k-nearest neighbors [27] and support vector machines [26], graph-based methods [53, 5], and
algorithms based on learning features (frequently via generative modeling) from unlabeled data
[2, 33, 47, 8, 19, 30, 43, 41, 48].

A comprehensive overview is out of the scope of this paper; we instead refer interested readers to
[53, 6].

We now describe the methods we analyze in this paper (as described in section 3) in more detail.

A.1 Consistency Regularization

Consistency regularization describes a class of methods with following intuitive goal: Realistic
perturbations x ! x̂ of data points x 2 DUL should not significantly change the output of f✓(x).
Generally, this involves minimizing d(f✓(x), f✓(x̂)) where d(·, ·) measures a distance between the
prediction function’s outputs, e.g. mean squared error or Kullback-Leibler divergence. Typically the
gradient through this consistency term is only backpropagated through f✓(x̂). In the toy example of
fig. 1, this would ideally result in the classifier effectively separating the two class clusters due to
the fact that their members are all close together. Consistency regularization can be seen as a way of
leveraging the unlabeled data to find a smooth manifold on which the dataset lies [3]. This simple
principle has produced a series of approaches which are currently state-of-the-art for SSL.

A.1.1 Stochastic Perturbations/⇧-Model

The simplest setting in which to apply consistency regularization is when the prediction function
f✓(x) is itself stochastic, i.e. it can produce different outputs for the same input x. This is common
when f✓(x) is a neural network due to common regularization techniques such as data augmentation,
dropout, and adding noise. These regularization techniques themselves are typically designed in such
a way that they ideally should not cause the model’s prediction to change, and so are a natural fit for
consistency regularization.

The straightforward application of consistency regularization is thus minimizing d(f✓(x), f✓(x̂)) for
x 2 DUL where in this case d(·, ·) is chosen to be mean squared error. This distance term is added
to the classification loss as a regularizer, scaled by a weighting hyperparameter. This idea was first
proposed in [1] and later studied in [46] and [32], and has been referred to as “Pseudo-Ensembles”,
“Regularization With Stochastic Transformations and Perturbations” and the “⇧-Model” respectively.
We adopt the latter name for its conciseness. In fig. 1, the ⇧-Model successfully finds the correct
decision boundary.

A.1.2 Temporal Ensembling/Mean Teacher

A difficulty with the ⇧-model approach is that it relies on a potentially unstable “target” prediction,
namely the second stochastic network prediction which can rapidly change over the course of training.
As a result, [50] and [32] proposed two methods for obtaining a more stable target output f̄✓(x) for
x 2 DUL. “Temporal Ensembling” [32] uses an exponentially accumulated average of outputs of
f✓(x) for the consistency target. Inspired by this approach, “Mean Teacher” [50] instead proposes to
use a prediction function parametrized by an exponentially accumulated average of ✓ over training.
As with the ⇧-model, the mean squared error d(f✓(x), f̄✓(x)) is added as a regularization term with
a weighting hyperparameter. In practice, it was found that the Mean Teacher approach outperformed
Temporal Ensembling [50], so we will focus on it in our later experiments.

A.1.3 Virtual Adversarial Training

Instead of relying on the built-in stochasticity of f✓(x), Virtual Adversarial Training (VAT) [39]
directly approximates a tiny perturbation radv to add to x which would most significantly affect the
output of the prediction function. An approximation to this perturbation can be computed efficiently
as

r ⇠ N

0,

⇠p
dim(x)

I

!
(2)

13

g = rrd(f✓(x), f✓(x+ r)) (3)

radv = ✏
g

||g|| (4)

where ⇠ and ✏ are scalar hyperparameters. Consistency regularization is then applied to minimize
d(f✓(x), f✓(x + radv)) with respect to ✓, effectively using the “clean” output as a target given an
adversarially perturbed input. VAT is inspired by adversarial examples [49, 20], which are natural
datapoints x which have a virtually imperceptible perturbation added to them which causes a trained
model to misclassify the datapoint. Like the ⇧-Model, the perturbations caused by VAT find the
correct decision boundary in fig. 1.

A.2 Entropy-Based

A simple loss term which can be applied to unlabeled data is to encourage the network to make
“confident” (low-entropy) predictions for all examples, regardless of the actual class predicted.
Assuming a categorical output space with K possible classes (e.g. a K-dimensional softmax output),
this gives rise to the “entropy minimization” term [21]:

�
KX

k=1

f✓(x)k log f✓(x)k (5)

Ideally, entropy minimization will discourage the decision boundary from passing near data points
where it would otherwise be forced to produce a low-confidence prediction [21]. However, given
a high-capacity model, another valid low-entropy solution is simply to create a decision boundary
which has overfit to locally avoid a small number of data points, which is what appears to have
happened in the synthetic example of fig. 1 (see appendix E for further discussion). On its own,
entropy minimization has not been shown to produce competitive results compared to the other
methods described here [45]. However, entropy minimization was combined with VAT to obtain state-
of-the-art results by [39]. An alternative approach which is applicable to multi-label classification
was proposed by [45], but it performed similarly to entropy minimization on standard “one-hot”
classification tasks. Interestingly, entropy maximization was also proposed as a regularization strategy
for neural networks by [42].

A.3 Pseudo-Labeling

Pseudo-labeling [34] is a simple heuristic which is widely used in practice, likely because of its
simplicity and generality – all that it requires is that the model provides a probability value for each of
the possible labels. It proceeds by producing “pseudo-labels” for DUL using the prediction function
itself over the course of training. Pseudo-labels which have a corresponding class probability which
is larger than a predefined threshold are used as targets for a standard supervised loss function applied
to DUL. While intuitive, it can nevertheless produce incorrect results when the prediction function
produces unhelpful targets for DUL, as shown in fig. 1. Note that pseudo-labeling is quite similar
to entropy regularization, in the sense that it encourages the model to produce higher-confidence
(lower-entropy) predictions for data in DUL [34]. However, it differs in that it only enforces this
for data points which already had a low-entropy prediction due to the confidence thresholding.
Pseudo-labeling is also closely related to self-training [44, 37], which differs only in the heuristics
used to decide which pseudo-labels to retain. The Pseudo-labeling paper [34] also discusses using
unsupervised pre-training; we did not implement this in our experiments.

14

B Dataset details

Overall, we followed standard data normalization and augmentation practice. For SVHN, we
converted image data to floating point values in the range [-1, 1]. For data augmentation, we solely
used random translation by up to 2 pixels. We used the standard train/validation split, with 65,932
images for training and 7,325 for validation.

For any model which was to be used to classify CIFAR-10 (e.g. including the base ImageNet model
for the transfer learning experiment in section 4.3), we applied global contrast normalization and ZCA-
normalized the inputs using statistics calculated on the CIFAR-10 training set. ZCA normalization is
a widely-used and surprisingly important preprocessing step for CIFAR-10. Data augmentation on
CIFAR-10 included random horizontal flipping, random translation by up to 2 pixels, and Gaussian
input noise with standard deviation 0.15. We used the standard train/validation split, with 45,000
images for training and 5,000 for validation.

15

Table 4: Hyperparameter settings used in our experiments. All hyperparameters were tuned via large-scale
hyperparameter optimization and then distilled to sensible and unified defaults by hand. Adam’s �1, �2, and
✏ parameters were left to the defaults suggested by [29]. *Following [50], we ramped up the consistency
coefficient starting from 0 to its maximum value using a sigmoid schedule so that it achieved its maximum value
at 200,000 iterations. **We found that CIFAR-10 and SVHN required different values for ✏ in VAT (6.0 and 1.0
respectively), likely due to the difference in how the input is normalized in each dataset.

Shared
L1 regularization coefficient 0.001
L2 regularization coefficient 0.0001
Learning decayed by a factor of 0.2
at training iteration 400,000
Consistency coefficient rampup* 200,000

Supervised
Initial learning rate 0.003

⇧-Model
Initial learning rate 0.0003
Max consistency coefficient 20

Mean Teacher
Initial learning rate 0.0004
Max consistency coefficient 8
Exponential moving average decay 0.95

VAT
Initial learning rate 0.003
Max consistency coefficient 0.3
VAT ✏ 6.0 or 1.0**
VAT ⇠ 10�6

VAT + EM (as for VAT)

Entropy penalty multiplier 0.06

Pseudo-Label
Initial learning rate 0.003
Max consistency coefficient 1.0
Pseudo-label threshold 0.95

C Hyperparameters

In our hyperparameter search, for each SSL method, we always separately optimized algorithm-
agnostic hyperparameters such as the learning rate, its decay schedule and weight decay coefficients.
In addition, we optimized to those hyperparameters specific to different SSL approaches separately
for each approach. In keeping with our argument in section 4.6, we attempted to find hyperparameter
settings which were performant across datasets and SSL approaches so that we could avoid unrealistic
tweaking. After hand-tuning, we used the hyperparameter settings summarized in table 4, which lists
those settings which were shared and common to all SSL approaches.

We trained all networks for 500,000 updates with a batch size of 100. We did not use any form of
early stopping, but instead continuously monitored validation set performance and report test error at
the point of lowest validation error. All models were trained with a single worker on a single GPU
(i.e. no asynchronous training).

16

Table 5: Test error rates obtained by various SSL approaches on the standard benchmarks of CIFAR-10 with all
but 4,000 labels removed and SVHN with all but 1,000 labels removed. Top: Reported results in the literature;
Bottom: Using our proposed unified reimplementation. “Supervised” refers to using only 4,000 and 1,000
labeled datapoints from CIFAR-10 and SVHN respectively without any unlabeled data. VAT + EntMin refers
Virtual Adversarial Training with Entropy Minimization (see section 3). Note that the model used for results in
the bottom has roughly half as many parameters as most models in the top (see section 4.1).

CIFAR-10 SVHN
Method 4000 Labels 1000 Labels

⇧-Model [46] 11.29% –
⇧-Model [32] 12.36% 4.82%
Mean Teacher [50] 12.31% 3.95%
VAT [39] 11.36% 5.42%
VAT + EntMin [39] 10.55% 3.86%

Results above this line cannot be directly compared to those below

Supervised 20.26 ± 0.38% 12.83 ± 0.47%
⇧-Model 16.37 ± 0.63% 7.19 ± 0.27%
Mean Teacher 15.87 ± 0.28% 5.65 ± 0.47%
VAT 13.86 ± 0.27% 5.63 ± 0.20%
VAT + EntMin 13.13 ± 0.39% 5.35 ± 0.19%
Pseudo-Label 17.78 ± 0.57% 7.62 ± 0.29%

D Comparison of our results with reported results in the literature

In table 5, we show how our results compare to what has been reported in the literature. Our numbers
cannot be directly compared to those previously reported due to a lack of a shared underlying network
architecture. For example, our model has roughly half as many parameters as the one used in
[32, 39, 50], which may partially explain its somewhat worse performance. Our findings are generally
consistent with these; namely, that all of these SSL methods improve (to a varying degree) over the
baseline. Further, Virtual Adversarial Training and Mean Teacher both appear to work best, which is
consistent with their shared state-of-the-art status.

17

E Decision boundaries found by Entropy Minimization cut through the
unlabeled data

Why does Entropy Minimization not find good decision boundaries in the “two moons” figure (fig. 1)?
Even though a decision boundary that avoids both clusters of unlabeled data would achieve low
loss, so does any decision boundary that’s extremely confident and “wiggles” around each individual
unlabeled data point. The neural network easily overfits to such a decision boundary simply by
increasing the magnitude of its output logits. Figure 7 shows how training changes the decision
contours.

Figure 7: Predictions made by a model trained with Entropy Minimization, as made at initialization, and after
125 and 1000 training steps. Points where the model predicts “1” or “2” are shown in red or blue, respectively.
Color saturation corresponds to prediction confidence, and the decision boundary is the white line. Notice
that after 1000 steps of training the model is extremely confident at every point, which achieves close to zero
prediction entropy on unlabeled points.

18

F Classes in ImageNet which overlap with CIFAR-10

Table 6: Classes in ImageNet which are similar to one of the classes in CIFAR-10. For reference, the CIFAR-10
classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.

ID Description

7 cock
8 hen
9 ostrich
10 brambling
11 goldfinch
12 house finch
13 junco
14 indigo bunting
15 robin
16 bulbul
17 jay
18 magpie
19 chickadee
20 water ouzel
21 kite
22 bald eagle
23 vulture
24 great grey owl
30 bullfrog
31 tree frog
32 tailed frog
80 black grouse
81 ptarmigan
82 ruffed grouse
83 prairie chicken
84 peacock
85 quail
86 partridge
87 African grey
88 macaw
89 sulphur-crested cockatoo
90 lorikeet
91 coucal
92 bee eater
93 hornbill
94 hummingbird
95 jacamar
96 toucan
97 drake
98 red-breasted merganser
99 goose
100 black swan
127 white stork
128 black stork
129 spoonbill
130 flamingo
131 little blue heron
132 American egret
133 bittern
134 crane
135 limpkin
136 European gallinule
137 American coot
138 bustard
139 ruddy turnstone
140 red-backed sandpiper
141 redshank
142 dowitcher
143 oystercatcher
144 pelican
145 king penguin
146 albatross
151 Chihuahua

ID Description

152 Japanese spaniel
153 Maltese dog
154 Pekinese
155 Shih-Tzu
156 Blenheim spaniel
157 papillon
158 toy terrier
159 Rhodesian ridgeback
160 Afghan hound
161 basset
162 beagle
163 bloodhound
164 bluetick
165 black-and-tan coonhound
166 Walker hound
167 English foxhound
168 redbone
169 borzoi
170 Irish wolfhound
171 Italian greyhound
172 whippet
173 Ibizan hound
174 Norwegian elkhound
175 otterhound
176 Saluki
177 Scottish deerhound
178 Weimaraner
179 Staffordshire bullterrier
180 American Staffordshire terrier
181 Bedlington terrier
182 Border terrier
183 Kerry blue terrier
184 Irish terrier
185 Norfolk terrier
186 Norwich terrier
187 Yorkshire terrier
188 wire-haired fox terrier
189 Lakeland terrier
190 Sealyham terrier
191 Airedale
192 cairn
193 Australian terrier
194 Dandie Dinmont
195 Boston bull
196 miniature schnauzer
197 giant schnauzer
198 standard schnauzer
199 Scotch terrier
200 Tibetan terrier
201 silky terrier
202 soft-coated wheaten terrier
203 West Highland white terrier
204 Lhasa
205 flat-coated retriever
206 curly-coated retriever
207 golden retriever
208 Labrador retriever
209 Chesapeake Bay retriever
210 German short-haired pointer
211 vizsla
212 English setter
213 Irish setter
214 Gordon setter

ID Description

215 Brittany spaniel
216 clumber
217 English springer
218 Welsh springer spaniel
219 cocker spaniel
220 Sussex spaniel
221 Irish water spaniel
222 kuvasz
223 schipperke
224 groenendael
225 malinois
226 briard
227 kelpie
228 komondor
229 Old English sheepdog
230 Shetland sheepdog
231 collie
232 Border collie
233 Bouvier des Flandres
234 Rottweiler
235 German shepherd
236 Doberman
237 miniature pinscher
238 Greater Swiss Mountain dog
239 Bernese mountain dog
240 Appenzeller
241 EntleBucher
242 boxer
243 bull mastiff
244 Tibetan mastiff
245 French bulldog
246 Great Dane
247 Saint Bernard
248 Eskimo dog
249 malamute
250 Siberian husky
251 dalmatian
252 affenpinscher
253 basenji
254 pug
255 Leonberg
256 Newfoundland
257 Great Pyrenees
258 Samoyed
259 Pomeranian
260 chow
261 keeshond
262 Brabancon griffon
263 Pembroke
264 Cardigan
265 toy poodle
266 miniature poodle
267 standard poodle
268 Mexican hairless
269 timber wolf
270 white wolf
271 red wolf
272 coyote
273 dingo
274 dhole
275 African hunting dog
281 tabby
282 tiger cat

ID Description

283 Persian cat
284 Siamese cat
285 Egyptian cat
286 cougar
287 lynx
288 leopard
289 snow leopard
290 jaguar
291 lion
292 tiger
293 cheetah
403 aircraft carrier
404 airliner
405 airship
408 amphibian
436 beach wagon
466 bullet train
468 cab
472 canoe
479 car wheel
484 catamaran
510 container ship
511 convertible
554 fireboat
555 fire engine
569 garbage truck
573 go-kart
575 golfcart
581 grille
586 half track
595 harvester
609 jeep
612 jinrikisha
625 lifeboat
627 limousine
628 liner
654 minibus
656 minivan
661 Model T
675 moving van
694 paddlewheel
705 passenger car
717 pickup
724 pirate
734 police van
751 racer
757 recreational vehicle
779 school bus
780 schooner
803 snowplow
814 speedboat
817 sports car
829 streetcar
833 submarine
847 tank
864 tow truck
867 trailer truck
871 trimaran
874 trolleybus
895 warplane
908 wing
913 wreck
914 yawl

19

