Supplementary material: Training deep learning based denoisers without ground truth data

Shakarim Soltanayev Se Young Chun Department of Electrical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan, Republic of Korea {shakarim,sychun}@unist.ac.kr

Table S1: Results of denoising methods on both BSD68 and Set12 datasets combined (performance in dB). For the DnCNN-BM3D method, the network was trained by optimizing the MSE between BM3D-denoised images and the output images of DnCNN. This method achieved the worst performance among all denoisers.

Methods BM3D	DnCNN-BM3D	DnCNN-SURE	DnCNN-SURE-T	DnCNN-MSE-GT
$\sigma = 25 28.77 \\ \sigma = 50 25.78$	28.70 25.56	29.14 26.04	29.17 26.06	29.38 26.35
$\sigma = 75 \qquad 23.76$ $\sigma = 75 \qquad 24.30$	24.17	24.37	24.44	24.76

Table S2: Results of denoising methods at low noise levels on the Set12 dataset (performance in dB).

Methods	BM3D	DnCNN-SURE	DnCNN-MSE-GT
$\sigma = 5$	38.03	38.16	38.23
$\sigma = 10$	34.37	34.58	34.72
$\sigma = 15$	32.36	32.36	32.78

Table S3: Results of denoising methods at low noise levels on the BSD68 dataset (performance in dB).

Methods	BM3D	DnCNN-SURE	DnCNN-MSE-GT
$\sigma = 5$	37.56	37.81	37.87
$\sigma = 10$	33.38	33.72	33.82
$\sigma = 15$	31.07	31.34	31.66

(a) Noisy image / 20.19dB

(b) BM3D / 29.16dB

(c) DnCNN-BM3D / 29.23dB

(d) DnCNN-SURE / 29.68dB

(e) DnCNN-SURE-T / 29.69dB

(f) DnCNN-MSE-G / 29.81dB

Figure S1: Denoising results of an image from the BSD68 dataset at σ =25. Deep learning based methods yielded sharper images compared to BM3D.

(a) Noisy image / 14.76dB

(b) BM3D / 27.19dB

(c) DnCNN-BM3D / 25.30dB

(d) DnCNN-SURE / 24.86dB

(e) DnCNN-SURE-T / 25.23dB

(f) DnCNN-MSE-G / 26.17dB

Figure S2: Denoising results of "Barbara" image at σ =50. BM3D yielded exceptionally good performance on this image owing to many repeated patterns. It even outperformed DnCNN-MSE-G for this special case.

(a) Noisy image / 14.15dB

(b) BM3D / 25.78dB

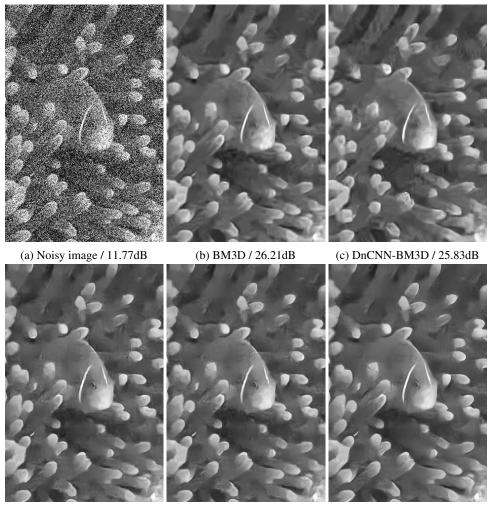
(c) DnCNN-BM3D / 25.66dB

(d) DnCNN-SURE / 26.50dB

(e) DnCNN-SURE-T / 26.53dB

(f) DnCNN-MSE-G / 26.95dB

Figure S3: Denoising results of "Monarch" image at σ =50. Deep learning based methods yielded sharper images compared to the BM3D.



(d) DnCNN-SURE / 26.64dB (e) DnCNN-SURE-T / 26.67dB (f) DnCNN-MSE-G / 27.10dB

Figure S4: Denoising results of an image from the BSD68 dataset at σ =75. Deep learning based methods yielded sharper images compared to the BM3D.