
A LQR and MPC Algorithms

Algorithm 1 LQRT (xinit;C, c, F, f) Solves Equation (2) as described in Levine [2017]

The state space is n-dimensional and the control space is m-dimensional.
T ∈ Z+ is the horizon length, the number of nominal timesteps to optimize for in the future.
xinit ∈ R

n is the initial state
C ∈ R

T×n+m×n+m and c ∈ R
T×n+m are the quadratic cost terms. Every Ct must be PSD.

F ∈ R
T×n×n+m f ∈ R

T×n are the affine cost terms.

⊲ Backward Recursion
VT = vT = 0
for t = T to 1 do

Qt = Ct + F⊤
t Vt+1Ft

qt = ct + F⊤
t Vt+1ft + F⊤

t vt+1

Kt = −Q−1
t,uuQt,ux

kt = −Q−1
t,uuqt,u

Vt = Qt,xx +Qt,xuKt +K⊤
t Qt,ux +K⊤

t Qt,uuKt

vt = qt,x +Qt,xukt +K⊤
t qt,u +K⊤

t Qt,uukt
end for

⊲ Forward Recursion
x1 = xinit

for t = 1 to T do
ut = Ktxt + kt

xt+1 = Ft

[

xt

ut

]

+ ft

end for

return x1:T , u1:T

13

Algorithm 2 MPCT,u,u(xinit, uinit;C, f) Solves Equation (10) as described in Tassa et al. [2014]

The state space is n-dimensional and the control space is m-dimensional.
T ∈ Z+ is the horizon length, the number of nominal timesteps to optimize for in the future.
u, u ∈ R

m are respectively the control lower- and upper-bounds.
xinit ∈ R

n, uinit ∈ R
T×m are respectively the initial state and nominal control sequence

C : Rn×m → R is the non-convex and twice-differentiable cost function.
F : Rn×m → R

n is the non-convex and once-differentiable dynamics function.

x1
1 = xinit

for t = 1 to T-1 do
x1
t+1 = f(xt, uinit,t)

end for
τ1 = [x1, uinit]

for i = 1 to [converged] do
for t = 1 to T do

⊲ Form the second-order Taylor expansion of the cost as in Equation (12)
Ci

t = ∇2

τ i

t

C(τ it)

cit = ∇τ i

t

C(τ it)− (Ci
t)

⊤τ it

⊲ Form the first-order Taylor expansion of the dynamics as in Equation (13)
F i
t = ∇τ i

t

f(τ it)

f i
t = f(τ it)− F i

t τ
i
t

end for
τ i+1

1:T = MPCstepT,u,u(xinit, C, f, τ
i
1:T , C

i, ci, F i, f i)
end for

function MPCstepT,u,u(xinit, C, f, τ1:T , C̃, c̃, F̃, f̃)

⊲ C, f are the true cost and dynamics functions. τ1:T is the current trajectory iterate.

⊲ C̃, c̃, F̃, f̃ are the approximate cost and dynamics terms around the current trajectory.

⊲ Backward Recursion: Over the linearized trajectory.
VT = vT = 0
for t = T to 1 do

Qt = C̃t + F̃⊤
t Vt+1F̃t

qt = c̃t + F̃⊤
t Vt+1f̃t + F̃⊤

t vt+1

kt = argminδu
1

2
δu⊤Qt,uuδu+Q⊤

x δu s.t. u ≤ u+ δu ≤ u
⊲ Can be solved with a Projected-Newton method as described in Tassa et al. [2014].
⊲ Let f, c respectively index the free and clamped dimensions of this optimization problem.

Kt,f = −Q−1

t,uu,fQt,ux

Kt,c = 0

Vt = Qt,xx +Qt,xuKt +K⊤
t Qt,ux +K⊤

t Qt,uuKt

vt = qt,x +Qt,xukt +K⊤
t qt,u +K⊤

t Qt,uukt
end for

⊲ Forward Recursion and Line Search: Over the true cost and dynamics.
repeat

x̂1 = τx1

for t = 1 to T do
ût = τut

+ αkt +Kt(x̂t − τxt
)

x̂t+1 = f(x̂t, ût)
end for
α = γα

until
∑

t C([x̂t, ût]) ≤
∑

t C(τt)

return x̂1:T , û1:T

end function

14

B Imitation learning experiment losses

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-9

10-7

10-5

10-3

10-1

101
Im

ita
tio

n
Lo

ss
Pendulum (#Train: 10)

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-9

10-7

10-5

10-3

10-1

101
Pendulum (#Train: 50)

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-9

10-7

10-5

10-3

10-1

101
Pendulum (#Train: 100)

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-4

10-3

10-2

10-1

100

101

102

Im
ita

tio
n

Lo
ss

Cartpole (#Train: 10)

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-4

10-3

10-2

10-1

100

101

102 Cartpole (#Train: 50)

nn sysid mpc.dx
mpc.cost

mpc.cost.dx

10-4

10-3

10-2

10-1

100

101

102 Cartpole (#Train: 100)

Train Val Test

Figure 6: Learning results on the (simple) pendulum and cartpole environments. We select the best
validation loss observed during the training run and report the corresponding train and test loss. Every
datapoint is averaged over four trials.

15

	A LQR and MPC Algorithms
	B Imitation learning experiment losses

