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Abstract

Gaussian processes provide a flexible framework for forecasting, removing noise,
and interpreting long temporal datasets. State space modelling (Kalman filtering)
enables these non-parametric models to be deployed on long datasets by reducing
the complexity to linear in the number of data points. The complexity is still
cubic in the state dimension m which is an impediment to practical application. In
certain special cases (Gaussian likelihood, regular spacing) the GP posterior will
reach a steady posterior state when the data are very long. We leverage this and
formulate an inference scheme for GPs with general likelihoods, where inference is
based on single-sweep EP (assumed density filtering). The infinite-horizon model
tackles the cubic cost in the state dimensionality and reduces the cost in the state
dimension m to O(m2) per data point. The model is extended to online-learning
of hyperparameters. We show examples for large finite-length modelling problems,
and present how the method runs in real-time on a smartphone on a continuous
data stream updated at 100 Hz.

1 Introduction

Gaussian process (GP, [25]) models provide a plug & play interpretable approach to probabilistic
modelling, and would perhaps be more widely applied if not for their associated computational
complexity: naïve implementations of GPs require the construction and decomposition of a kernel
matrix at cost O(n3), where n is the number of data. In this work, we consider GP time series
(i.e. GPs with one input dimension). In this case, construction of the kernel matrix can be avoided
by exploiting the (approximate) Markov structure of the process and re-writing the model as a
linear Gaussian state space model, which can then be solved using Kalman filtering (see, e.g., [27]).
The Kalman filter costs O(m3n), where m is the dimension of the state space. We propose the
Infinite-Horizon GP approximation (IHGP), which reduces the cost to O(m2n).

As m grows with the number of kernel components in the GP prior, this cost saving can be significant
for many GP models where m can reach hundreds. For example, the automatic statistician [6]
searches for kernels (on 1D datasets) using sums and products of kernels. The summing of two
kernels results in the concatenation of the state space (sum of the ms) and a product of kernels results
in the Kronecker sum of their statespaces (product of ms). This quickly results in very high state
dimensions; we show results with a similarly constructed kernel in our experiments.

We are concerned with real-time processing of long (or streaming) time-series with short and long
length-scale components, and non-Gaussian noise/likelihood and potential non-stationary structure.
We show how the IHGP can be applied in the streaming setting, including efficient estimation of the
marginal likelihood and associated gradients, enabling on-line learning of hyper (kernel) parameters.
We demonstrate this by applying our approach to a streaming dataset of two million points, as well as
providing an implementation of the method on an iPhone, allowing on-line learning of a GP model of
the phone’s acceleration.

∗This work was undertaken whilst AS was a Visiting Research Fellow with University of Cambridge.
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Figure 1: (Left) GP regression with n = 100 observations and a Matérn covariance function. The
IHGP is close to exact far from boundaries, where the constant marginal variance assumption shows.
(Right) Hyperparameters θ = (σ2

n, σ
2, ℓ) optimised independently for both models.

For data where a Gaussian noise assumption may not be appropriate, many approaches have been
proposed for approximation (see, e.g., [21] for an overview). Here we show how to combine Assumed
Density Filtering (ADF, a.k.a. single-sweep Expectation Propagation, EP [5, 12, 19]) with the IHGP.
We are motivated by the application to Log-Gaussian Cox Processes (LGCP, [20]). Usually the LGCP
model uses binning to avoid a doubly-intractable model; in this case it is desirable to have more bins
in order to capture short-lengthscale effects, leading to more time points. Additionally, the desire to
capture long-and-short-term effects means that the state space dimension m can be large. We show
that our approach is effective on standard benchmarks (coal-mining disasters) as well as a much
larger dataset (airline accidents).

The structure of the paper is as follows. Sec. 2 covers the necessary background and notation related to
GPs and state space solutions. Sec. 3 leverages the idea of steady-state filtering to derive IHGP. Sec. 4
illustrates the approach on several problems, and the supplementary material contains additional
examples and a nomenclature for easier reading. Code implementations in MATLAB/C++/Objective-C
and video examples of real-time operation are available at https://github.com/AaltoML/IHGP.

2 Background

We are concerned with GP models [25] admitting the form: f(t) ∼ GP(µ(t), κ(t, t′)) and y | f ∼∏n
i=1 p(yi | f(ti)), where the data D = {(ti, yi)}

n
i=1 are input–output pairs, µ(t) the mean function,

and κ(t, t′) the covariance function of the GP prior. The likelihood factorizes over the observations.
This family covers many standard modelling problems, including regression and classification tasks.
Without loss of generality, we present the methodology for zero-mean (µ(t) := 0) GP priors. We
approximate posteriors of the form (see [24] for an overview):

q(f | D) = N(f |Kα, (K−1 +W)−1), (1)

where Ki,j = κ(ti, tj) is the prior covariance matrix, α ∈ R
n, and the (likelihood precision) matrix

is diagonal, W = diag(w). Elements of w ∈ R
n are non negative for log-concave likelihoods. The

predictive mean and marginal variance for a test input t∗ is µf,∗ = kT

∗α and σ2
f,∗ = k∗∗ − kT

∗ (K+

W−1)−1k∗. A probabilistic way of learning the hyperparameters θ of the covariance function (such
as magnitude and scale) and the likelihood model (such as noise scale) is by maximizing the (log)
marginal likelihood function p(y |θ) [25].

Numerous methods have been proposed for dealing with the prohibitive computational complexity
of the matrix inverse in dealing with the latent function in Eq. (1). While general-purpose methods
such as inducing input [4, 23, 30, 33], basis function projection [11, 17, 32], interpolation approaches
[37], or stochastic approximations [10, 14] do not pose restrictions to the input dimensionality, they
scale poorly in long time-series models by still needing to fill the extending domain (see discussion
in [3]). For certain problems tree-structured approximations [3] or band-structured matrices can
be leveraged. However, [8, 22, 26, 29] have shown that for one-dimensional GPs with high-order
Markovian structure, an optimal representation (without approximations) is rewriting the GP in terms
of a state space model and solving inference in linear time by sequential Kalman filtering methods.
We will therefore focus on building upon the state space methodology.
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2.1 State space GPs

In one-dimensional GPs (time-series) the data points feature the special property of having a natural
ordering. If the GP prior itself admits a Markovian structure, the GP model can be reformulated
as a state space model. Recent work has focused on showing how many widely used covariance
function can be either exactly (e.g., the half-integer Matérn class, polynomial, noise, constant) or
approximately (e.g., the squared-exponential/RBF, rational quadratic, periodic, etc.) converted into
state space models. In continuous time, a simple dynamical system able to represent these covariance
functions is given by the following linear time-invariant stochastic differential equation (see [28]):

ḟ(t) = F f(t) + Lw(t), yi ∼ p(yi |h
T f(ti)), (2)

where w(t) is an s-dimensional white noise process, and F ∈ R
m×m, L ∈ R

m×s, h ∈ R
m×1 are

the feedback, noise effect, and measurement matrices, respectively. The driving process w(t) ∈ R
s

is a multivariate white noise process with spectral density matrix Qc ∈ R
s×s. The initial state is

distributed according to f0 ∼ N(0,P0). For discrete input values ti, this translates into

fi ∼ N(Ai−1fi−1,Qi−1), yi ∼ p(yi |h
Tfi), (3)

with f0 ∼ N(0,P0). The discrete-time dynamical model is solved through a matrix exponential Ai =
exp(F∆ti), where ∆ti = ti+1−ti ≥ 0. For stationary covariance functions, κ(t, t′) = κ(t−t′), the

process noise covariance is given by Qi = P∞ −Ai P∞ AT

i . The stationary state (corresponding
to the initial state P0) is distributed by f∞ ∼ N(0,P∞) and the stationary covariance can be found

by solving the Lyapunov equation Ṗ∞ = FP∞ + P∞ FT + LQc L
T = 0. Appendix B shows

an example of representing the Matérn (ν = 3/2) covariance function as a state space model. Other
covariance functions have been listed in [31].

2.2 Bayesian filtering

The closed-form solution to the linear Bayesian filtering problem—Eq. (3) with a Gaussian likelihood
N(yi |h

Tfi, σ
2
n)—is known as the Kalman filter [27]. The interest is in the following marginal

distributions: p(fi | y1:i−1) = N(fi |m
p
i ,P

p
i ) (predictive distribution), p(fi | y1:i) = N(fi |m

f
i,P

f
i)

(filtering distribution), and p(yi | y1:i−1) = N(yi | vi, si) (decomposed marginal likelihood). The

predictive state mean and covariance are given by m
p
i = Ai m

f
i−1 and P

p
i = Ai P

f
i−1 A

T

i +Qi.
The so called ‘innovation’ mean and variances vi and si are

vi = yi − hTm
p
i and si = hTP

p
i h+ σ2

n. (4)

The log marginal likelihood can be evaluated during the filter update steps by log p(y) =
−
∑n

i=1
1
2 (log 2πsi + v2i /si). The filter mean and covariances are given by

ki = P
p
i h/si, mf

i = m
p
i−1 + ki vi, Pf

i = P
p
i − ki h

TP
p
i , (5)

where ki ∈ R
m represents the filter gain term. In batch inference, we are actually interested in the

so called smoothing solution, p(f | D) corresponding to marginals p(fi | y1:n) = N(fi |m
s
i ,P

s
i). The

smoother mean and covariance is solved by the backward recursion, from i = n− 1 backwards to 1:

ms
i = mf

i +Gi (m
s
i+1 −m

p
i+1), Ps

i = Pf
i +Gi (P

s
i+1 −P

p
i+1)G

T

i , (6)

where Gi = Pf
i A

T

i+1 [P
p
i+1]

−1 is the smoother gain at ti. The computational complexity is clearly
linear in the number of data n (recursion repetitions), and cubic in the state dimension m due to
matrix–matrix multiplications, and the matrix inverse in calculation of Gi.

3 Infinite-horizon Gaussian processes

We now tackle the cubic computational complexity in the state dimensionality by seeking infinite-
horizon approximations to the Gaussian process. In Sec. 3.1 we revisit traditional steady-state Kalman
filtering (for Gaussian likelihood, equidistant data) from quadratic filter design (see, e.g., [18] and
[7] for an introduction), and extend it to provide approximations to the marginal likelihood and its
gradients. Finally, we present an infinite-horizon framework for non-Gaussian likelihoods.
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Figure 2: (Left) Interpolation of Pp (dots solved, solid interpolated). The dashed lines show elements
in P∞ (prior stationary state covariance). (Right) The Kalman gain k evaluated for the Pps.

3.1 Steady-state Kalman filter for t → ∞

In steady-state Kalman filtering (see [7], Ch. 8.4, or [1], Ch. 4, for the traditional perspective) we
assume t ≫ ℓeff , where ℓeff is the longest time scale in the covariance function, and equidistant
observations in time (Ai := A and Qi := Q). After several ℓeff (as t → ∞), the filter gain converges
to the stationary limiting Kalman filter gain k. The resulting filter becomes time-invariant, which
introduces approximation errors near the boundaries (cf. Fig. 1).

In practice, we seek a stationary filter state covariance (corresponding to the stationary Kalman

gain) P̂f . Solving for this matrix thus corresponds to seeking a covariance that is equal between two
consecutive filter recursions. Directly from the Kalman filtering forward prediction and update steps
(in Eq. 5), we recover the recursion (by dropping dependency on the time step):

P̂p = AP̂p AT −AP̂p h (hTP̂p h+ σ2
n)

−1 hTP̂p AT +Q. (7)

This equation is of the form of a discrete algebraic Riccati equation (DARE, see, e.g., [15]), which
is a type of nonlinear matrix equation that often arises in the context of infinite-horizon optimal
control problems. Since σ2

n > 0, Q is P.S.D., and the associated state space model being both

stabilizable and observable, the DARE has a unique stabilising solution for P̂p that can be found
either by iterating the Riccati equation or by matrix decompositions. The Schur method by Laub [16]
solves the DARE in O(m3), is numerically stable, and widely available in matrix libraries (Python
scipy.linalg.solve_discrete_are, MATLAB Control System Toolbox DARE, see also SLICOT
routine SB02OD).

The corresponding stationary gain is k = P̂p h/(hTP̂p h+σ2
n). Re-deriving the filter recursion with

the stationary gain gives a simplified iteration for the filter mean (the covariance is now time-invariant):

m̂f
i = (A− khTA) m̂f

i−1 + k yi and P̂f = P̂p − khTP̂p, (8)

for all i = 1, 2, . . . , n. This recursive iteration has a computational cost associated with one m×m
matrix–vector multiplication, so the overall computational cost for the forward iteration is O(nm2)
(as opposed to the O(nm3) in the Kalman filter).

Marginal likelihood evaluation: The approximative log marginal likelihood comes out as a by-
product of the filter forward recursion: log p(y) ≈ −n

2 log 2πŝ−
∑n

i=1 v̂
2
i /(2 ŝ), where the stationary

innovation covariance is given by ŝ = hTP̂p h+σ2
n and the innovation mean by v̂i = yi−hTAm̂f

i−1.

Steady-state backward pass: To obtain the complete infinite-horizon solution, we formally derive

the solution corresponding to the smoothing distribution p(fi | y1:n) ≈ N(fi | m̂
s
i , P̂

s), where P̂ is
the stationary state covariance. Establishing the backward recursion does not require taking any
additional limits, as the smoother gain is only a function of consecutive filtering steps. Re-deriving the
backward pass in Equation (6) gives the time-invariant smoother gain and posterior state covariance

G = P̂f AT [AP̂f AT +Q]−1 and P̂s = GP̂s GT + P̂f −G (AP̂f AT +Q)GT, (9)

where P̂s is implicitly defined in terms of the solution to a DARE. The backward iteration for the
state mean: m̂s

i = m̂f
i +G (m̂s

i+1 −Am̂f
i). Even this recursion scales as O(nm2).
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Algorithm 1 Infinite-horizon Gaussian process (IHGP) inference. The GP prior is specified in terms
of a state space model. After the setup cost on line 2, all operations are at most O(m2).

1: Input: {yi}, {A,Q,h,P0}, p(y | f) targets, model, likelihood
2: Set up Pp(γ), Ps(γ), and G(γ) for γ1:K solve DAREs for a set of likelihood variances, cost O(Km3)

3: mf
0 ← 0; P

p
0 ← P0; γ0 =∞ initialize

4: for i = 1 to n do
5: Evaluate P

p
i ← Pp(γi−1) find predictive covariance

6: µ̃f,i ← hTAmf
i−1; σ̃2

f,i = hTP
p
i h latent

7: if Gaussian likelihood then
8: ηi ← yi; γi ← σ2

n,i if σ2
n,i := σ2

n, ki and Pf
i become time-invariant

9: else
10: Match exp(νi fi − τi f

2
i /2)N(fi | µ̃f,i, σ̃

2
f,i)

mom
= p(yi | fi)N(fi | µ̃f,i, σ̃

2
f,i) match moments

11: ηi ← νi/τi; γi ← τ−1
i equivalent update

12: end if
13: ki ← P

p
i h/(σ̃

2
f,i + γi) gain

14: mf
i ← (A− ki h

TA)mf
i−1 + ki ηi; Pf

i ← P
p
i − ki γi k

T

i mean and covariance
15: end for
16: ms

n ←mf
n; Ps

n ← Ps(γn) initialize backward pass
17: for i = n− 1 to 1 do
18: ms

i ←mf
i +G(γi) (m

s
i+1 −Amf

i); Ps
i ← Ps(γi) mean and covariance

19: end for
20: Return: µf,i = hTms

i, σ
2
f,i = hTPs

i h, log p(y) mean, variance, evidence

3.2 Infinite-horizon GPs for general likelihoods

In IHGP, instead of using the true predictive covariance for propagation, we use the one obtained
from the stationary state of a system with measurement noise fixed to the current measurement noise
and regular spacing. The Kalman filter iterations can be used in solving approximate posteriors for
models with general likelihoods in form of Eq. (1) by manipulating the innovation vi and si (see [22]).
We derive a generalization of the steady-state iteration allowing for time-dependent measurement
noise and non-Gaussian likelihoods.

We re-formulate the DARE in Eq. (7) as an implicit function P̂p : R+ → R
m×m of the likelihood

variance, ‘measurement noise’, γ ∈ R+:

Pp(γ) = APp(γ)AT −APp(γ)h (hTPp(γ)h+ γ)−1 hTPp(γ)AT +Q. (10)

The elements in Pp are smooth functions in γ, and we set up an interpolation scheme—inspired
by Wilson and Nickisch [37] who use cubic convolutional interpolation [13] in their KISS-GP

framework—over a log-spaced one-dimensional grid of K points in γ for evaluation of P̂p(γ). Fig. 2
shows results of K = 32 grid points (as dots) over γ = 10−2, . . . , 103 (this grid is used throughout
the experiments). In the limit of γ → ∞ the measurement has no effect, and the predictive covariance
returns to the stationary covariance of the GP prior (dashed). Similarly, the corresponding gain
terms k show the gains going to zero in the same limit. We set up a similar interpolation scheme for
evaluating G(γ) and Ps(γ) following Eq. (9). Now, solving the DAREs and the smoother gain has
been replaced by computationally cheap (one-dimensional) kernel interpolation.

Alg. 1 presents the recursion in IHGP inference by considering a locally steady-state GP model
derived from the previous section. As can be seen in Sec. 3.1, the predictive state on step i only
depends on γi−1. For non-Gaussian inference we set up an EP [5, 12, 19] scheme which only requires
one forward pass (assumed density filtering, see also unscented filtering [27]), and is thus well suited
for streaming applications. We match the first two moments of p(yi | fi) and exp(τ fi− ν f2

i /2) w.r.t.

latent values N(fi | µ̃f,i, σ̃
2
f,i) (denoted by •

mom
= •, implemented by quadrature). The steps of the

backward pass are also only dependent on the local steady-state model, thus evaluated in terms of γis.

Missing observations correspond to γi = ∞, and the model could be generalized to non-equidistant
time sampling by the scheme in Nickisch et al. [22] for calculating A(∆ti) and Q(∆ti).
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Table 1: Mean absolute error of IHGP w.r.t.
SS, negative log-likelihoods, and running times.
Mean over 10 repetitions reported; n = 1000.

Regression Count data Classification

Likelihood Gaussian Poisson Logit Probit

MAE E[f(t∗)] 0.0095 0.0415 0.0741 0.0351

MAE V[f(t∗)] 0.0008 0.0024 0.0115 0.0079

NLL-FULL 1452.5 2645.5 618.9 614.4

NLL-SS 1452.5 2693.5 617.5 613.9

NLL-IHGP 1456.0 2699.3 625.1 618.2

tfull 0.18 s 6.17 s 11.78 s 9.93 s

tss 0.04 s 0.13 s 0.13 s 0.11 s

tIHGP 0.01 s 0.14 s 0.13 s 0.10 s
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Figure 3: Empirical running time comparison
for GP regression on n = 10,000 data points.
Maximum RMSE in IHGP E[f(t∗)] < 0.001.

3.3 Online hyperparameter estimation

Even though IHGP can be used in a batch setting, it is especially well suited for continuous data
streams. In such applications, it is not practical to require several iterations over the data for optimising
the hyperparameters—as new data would arrive before the optimisation terminates. We propose a
practical extension of IHGP for online estimation of hyperparameters θ by leveraging that (i) new
batches of data are guaranteed to be available from the stream, (ii) IHGP only requires seeing each
data point once for evaluating the marginal likelihood and its gradient, (iii) data can be non-stationary,
requiring the hyperparameters to adapt.

We formulate the hyperparameter optimisation problem as an incremental gradient descent (e.g., [2])
resembling stochastic gradient descent, but without the assumption of finding a stationary optimum.

Starting from some initial set of hyperparameters θ0, for each new (mini) batch j of data y(j) in a
window of size nmb, iterate

θj = θj−1 + η∇ log p(y(j) |θj−1), (11)

where η is a learning-rate (step-size) parameter, and the gradient of the marginal likelihood is
evaluated by the IHGP forward recursion. In a vanilla GP the windowing would introduce boundary
effect due to growing marginal variance towards the boundaries, while in IHGP no edge effects are
present as the data stream is seen to continue beyond any boundaries (cf. Fig. 1).

4 Experiments

We provide extensive evaluation of the IHGP both in terms of simulated benchmarks and four
real-world experiments in batch and online modes.
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Figure 4: A small-scale comparison study on the coal mining accident data (191 accidents in n = 200
bins). The data set is sufficiently small that full EP with naïve handling of the latent function can be
conducted. Full EP is shown to work similarly as ADF (single-sweep EP) by state space modelling.
We then compare ADF on state space (exact handling of the latent function) to ADF with the IHGP.
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Figures below decompose the intensity into components:
log � ( t ) = f trend( t ) + f year( t ) + f week( t )
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Figure 5: Explanatory analysis of the aircraft accident data set (1210 accidents predicted inn =
35;959daily bins) between years 1919–2018 by a log-Gaussian Cox process (Poisson likelihood).

4.1 Experimental validation

In the toy examples, the data were simulated fromyi = sinc( x i � 6) + " i , " i � N(0; 0:1) (see Fig. 1
for a visualization). The same function with thresholding was used in the classi�cation examples in
the Appendix. Table 1 shows comparisons for different log-concave likelihoods over a simulated data
set withn = 1000. Example functions can be seen in Fig. 1 and Appendix E. The results are shown
for a Matérn (� = 3=2) with a full GP (naïve handling of latent, full EP as in [24]), state space (SS,
exact state space model, ADF as in [22]), and IHGP. Withm only 2, IHGP is not faster than SS, but
approximation errors remain small. Fig. 3 shows experimental results for the computational bene�ts
in a regression study, with state dimensionalitym = 2 ; : : : ; 100. Experiments run in Mathworks
MATLAB (R2017b) on an Apple MacBook Pro (2.3 GHz Intel Core i5, 16 Gb RAM). Both methods
have linear time complexity in the number of data points, so the number of data points is �xed to
n = 10;000. The GP prior is set up as an increasing-length sum of Matérn (� = 3=2) kernels with
different characteristic length-scales. The state space scheme followsO(m3) and IHGP isO(m2).

4.2 Log-Gaussian Cox processes

A log Gaussian Cox process is an inhomogeneous Poisson process model for count data. The
unknown intensity function� (t) is modelled with a log-Gaussian process such thatf (t) = log � (t).
The likelihood of the unknown functionf is p(f t j g j f ) = exp( �

R
exp(f (t)) d t +

P N
j =1 f (t j )) .

The likelihood requires non-trivial integration over the exponentiated GP, and thus instead the standard
approach [20] is to consider locally constant intensity in subregions by discretising the interval into
bins. This approximation corresponds to having a Poisson model for each bin. The likelihood
becomesp(f t j g j f ) �

Q n
i =1 Poisson(yi (f t j g) j exp(f (t̂ i ))) , wheret̂ i is the bin coordinate andyi

the number of data points in it. This model reaches posterior consistency in the limit of bin width
going to zero [34]. Thus it is expected that the accuracy improves with tighter binning.

Coal mining disasters dataset: The data (available,e.g., in [35]) contain the dates of 191 coal
mine explosions that killed ten or more people in Britain between years 1851–1962, which we
discretize inton = 200 bins. We use a GP prior with a Matérn (� = 5=2) covariance function that
has an exact state space representation (state dimensionalitym = 3) and thus no approximations
regarding handling the latent are required. We optimise the characteristic length-scale and magnitude
hyperparameters w.r.t. marginal likelihood in each model. Fig. 4 shows that full EP and state space
ADF produce almost equivalent results, and IHGP ADF and state space ADF produce similar results.
In IHGP the edge effects are clear around 1850–1860.
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