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1 Notation

In this document, we refer to pointers in the main text using the prefix MT. For example, equation
MT-1 refers to equation 1 in the main text.

For matrices we use bold-faced upper case letters, for vectors we use bold-faced lower case letters,
and for scalars we use regular lower case letters. For example, X represents a matrix, x represents
a vector, and x represents a scalar number. In is the identity matrix of size n × n. ej is a vector
whose j-th element is non-zero and its other elements are zero. 1n1,n2

is the all one matrix of size
n1 × n2. When no confusion arises, we drop the subscripts. 1{x = y} is the indicator function
which is equal to one if x = y, otherwise it is zero. ReLU(x) = max(x, 0). Tr(X) and Xt represent
the trace and the transpose of the matrix X, respectively. ‖x‖2 = xtx is the second norm of the
vector x. When no confusion arises, we drop the subscript. ‖x‖1 is the l1 norm of the vector x.
‖X‖ is the operator (spectral) norm of the matrix X. ‖x‖0 is the number of non-zero elements
of the vector x. < x,y > is the inner product between vectors x and y. x ⊥ y indicates that
vectors x and y are orthogonal. θx,y is the angle between vectors x and y. N (µ,Γ) is the Gaussian
distribution with mean µ and the covariance Γ. f [A] is a matrix where the function f(.) is applied
to its components, i.e., f [A](i, j) = f(A(i, j)). A† is the pseudo inverse of the matrix A. The
eigen decomposition of the matrix A ∈ Rn×n is denoted by A =

∑n
i=1 λi(A)ui(A)ui(A)t, where

λi(A) is the i-th largest eigenvalue of the matrix A corresponding to the eigenvector ui(A). We
have λ1(A) ≥ λ2(A) ≥ · · · .

2 Related Work

To explain the success of neural networks, some references study their ability to approximate smooth
functions [1, 2, 3, 4, 5, 6, 7], while some other references focus on benefits of having more layers
[8, 9]. Over-parameterized networks where the number of parameters are larger than the number of
training samples have been studied in [10, 11]. However, such architectures can cause generalization
issues in practice [12].

References [13, 14, 15, 16] have studied the convergence of the local search algorithms such as
gradient descent methods to the global optimum of the neural network optimization with zero hidden
neurons and a single output. In this case, the loss function of the neural network optimization has a
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Figure 1: Examples of (a) scalar PNN, and (b) degree-one PNN structures.

single local optimizer which is the same as the global optimum. However, for neural networks with
hidden neurons, the landscape of the loss function is more complicated than the case with no hidden
neurons.

Several work has studied the risk landscape of neural network optimizations for more complex
structures under various model assumptions [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Reference
[17] shows that in the linear neural network optimization, the population risk landscape does not
have any bad local optima. Reference [18] extends these results and provides necessary and sufficient
conditions for a critical point of the loss function to be a global minimum. Reference [19] shows
that for a two-layer neural network with leaky activation functions, the gradient descent method on a
modified loss function converges to a global optimizer of the modified loss function which can be
different from the original global optimum. Under an independent activations assumption, reference
[20] simplifies the loss function of a neural network optimization to a polynomial and shows that
local optimizers obtain approximately the same objective values as the global ones. This result has
been extended by reference [17] to show that all local minima are global minima in a nonlinear
network. However, the underlying assumption of having independent activations at neurons usually
are not satisfied in practice.

References [21, 22, 23] consider a two-layer neural network with Gaussian inputs under a matched
(realizable) model where the output is generated from a network with planted weights. Moreover,
they assume the number of neurons in the hidden layer is smaller than the dimension of inputs.
This critical assumption makes the loss function positive-definite in a small neighborhood near the
global optimum. Then, reference [23] provides a tensor-based method to initialize the local search
algorithm in that neighborhood which guarantees its convergence to the global optimum. In our
problem formulation, the number of hidden neurons can be larger than the dimension of inputs as it is
often the case in practice. Moreover, we characterize risk landscapes for a certain family of neural
networks in all parameter regions, not just around the global optimizer. This can guide us towards
understanding the reason behind the success of local search methods in practice.

For a neural network with a single non-overlapping convolutional layer, reference [24] shows that
all local optimizers of the loss function are global optimizers as well. They also show that in the
overlapping case, the problem is NP-hard when inputs are not Gaussian. Moreover, reference [25]
studies this problem with non-standard activation functions, while reference [26] considers the case
where the weights from the hidden layer to the output are close to the identity. Other related works
include improper learning models using kernel based approaches [28, 29] and a method of moments
estimator using tensor decomposition [27].

3 PNN Examples Imposed by the Network Architecture

In some cases, the PNN constraint is imposed by the neural network architecture. For example,
consider the neural network depicted in Figure 1-a, which has a single input and k neurons. In this
network structure, wi’s are scalars. Thus, every realizable function with this neural network can
be realized using a PNN where L includes a single line. We refer to this family of neural networks
as scalar PNNs. Another example of porcupine neural networks is depicted in Figure 1-b. In this
case, the neural network has multiple inputs and multiple neurons. Each neuron in this network is
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connected to one input. Every realizable function with this neural network can be described using
a PNN whose lines are parallel to standard axes. We refer to this family of neural networks as
degree-one PNNs. Scalar PNNs are also degree-one PNNs. However, since their analysis is simpler,
we make such a distinction.

Below we characterize landscape properties of scalar and degree-one PNNs in the matched case.

3.1 Scalar PNNs

In this section, we consider a neural network structure with a single input and multiple neurons (i.e.,
d = 1, k > 1). Such neural networks are PNNs with L containing a single line. Thus, we refer to
them as scalar PNNs. An example of a scalar PNN is depicted in Figure 1-a. In this case, every
wi for 1 ≤ i ≤ k is a single scalar. We refer to that element by wi. We assume wi’s are non-zero,
otherwise the neural network structure can be reduced to another structure with fewer neurons.

Theorem 1 The loss function MT-(3) for a scalar PNN can be written as

L(W) =
1

4

(
k∑
i=1

wi −
k∑
i=1

w∗i

)2

+
1

4

(
k∑
i=1

|wi| −
k∑
i=1

|w∗i |

)2

. (1)

Since for a scalar PNN, the loss function L(W) can be written as sum of squared terms, we have the
following corollary:

Corollary 1 For a scalar PNN, W is the global optimizer of optimization MT-(6) if and only if

k∑
i=1

wi =

k∑
i=1

w∗i , (2)

k∑
i=1

|wi| =
k∑
i=1

|w∗i |.

Next, we characterize local optimizers of optimization MT-(6).

Let s(wi) be the sign variable of wi, i.e., s(wi) = 1 if wi > 0, otherwise s(wi) = −1. Let
s(W) , (s(w1), ..., s(wk))t. Let R(s) denote the space of all W where si = s(wi), i.e., R(s) ,
{(w1, ..., wk) : s(wi) = si}.

Theorem 2 If s(W∗) 6= ±1:

- In every regionR(s) whose s 6= ±1, optimization MT-(6) only has global optimizers without
any bad local optimizers.

- In two regions R(1) and R(−1), optimization MT-(6) does not have global optimizers and
only has bad local optimizers.

If s(W∗) = ±1:

- In regions R(s) where s 6= ±1 and in the region R(−s(W∗)), optimization MT-(6) neither
has global nor bad local optimizers.

- In the region R(s(W∗)), optimization MT-(6) only has global optimizers without any bad
local optimizers.

Theorem 2 indicates that optimization MT-(6) can have bad local optimizers. However, this can occur
only in two parameter regions, out of 2k regions, which can be checked separately (Figure 2). Thus,
a variant of the gradient descent method which checks these cases separately converges to a global
optimizer.

Next, we characterize the Hessian of the loss function:
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Figure 2: For the scalar PNN, parameter regions where s(W) = ±1 may include bad local optima.
In other regions, all local optima are global. This figure highlights regions where s(W) = ±1 for a
scalar PNN with two neurons.

Figure 3: The landscape of the loss function for a scalar PNN with two neurons. In panel (a), we
consider w∗1 = 6 and w∗2 = 4, while in panel (b), we have w∗1 = 6 and w∗2 = −4. According to
Theorem 2, in the case of panel (a), the loss function does not have bad local optimizers, while in the
case of panel (b), it has bad local optimizers in regions R ((−1,−1)) and R ((1, 1)).

Theorem 3 For a scalar PNN, in every region R(s), the Hessian matrix of the loss function L(W)
is positive semidefinite, i.e., in every region R(s), the loss function is convex. In regions R(s) where
s 6= ±1, the rank of the Hessian matrix is two, while in two regions R(±1), the rank of the Hessian
matrix is equal to one.

Finally, for a scalar PNN, we illustrate the landscape of the loss function with an example. Figure 3
considers the case with a single input and two neurons (i.e., d = 1, k = 2). In Figure 3-a, we assume
w∗1 = 6 and w∗2 = 4. According to Theorem 2, only the region R ((1, 1)) contains global optimizers
(all points in this region on the line w1 +w2 = 10 are global optimizers.). In Figure 3-b, we consider
w∗1 = 6 and w∗2 = −4. According to Theorem 2, regions R ((1,−1)) and R ((−1, 1)) have global
optimizers, while regions R ((1, 1)) and R ((−1,−1)) include bad local optimizers.

3.2 Degree-One PNNs

In this section, we consider a neural network structure with more than one input and multiple neurons
(d ≥ 1 and k ≥ 1) such that each neuron is connected to one input. Such neural networks are PNNs
whose lines are parallel to standard axes. Thus, we refer to them as degree-one PNNs.

Similar to the scalar PNN case, in the case of the degree-one PNN, every wi has one non-zero
element. We refer to that element by wi. Let Gr be the set of neurons that are connected to the
variable xr, i.e., Gr = {j : wj(r) 6= 0}. Therefore, we have G1 ∪ ... ∪ Gd = {1, ..., k}. Moreover,
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Figure 4: (a) An example of L in a two-dimensional space such that angles between adjacent lines
are equal to one another. (b) The minimum eigenvalue of the matrix ψ[KL] for different values of r.

we assume Gi 6= ∅ for 1 ≤ i ≤ d, i.e., there is at least one neuron connected to each input variable.
For every j ∈ Gr, we define the function g(.) such that g(j) = r 1.

Theorem 4 The loss function MT-(3) for a degree-one PNN can be written as

L(W) =
1

4
‖

k∑
i=1

wi −
k∑
i=1

w∗i ‖2 +
1

4
(q− q∗)tC(q− q∗), (3)

where

C =


1 2

π · · · 2
π

2
π 1 · · · 2

π
...

. . .
...

2
π · · · 1

 . (4)

Since C is a positive definite matrix, we have the following corollary:

Corollary 2 W∗ is a global optimizer of optimization MT-(6) for a degree-one PNN if and only if∑
i∈Gr

wi =
∑
i∈Gr

w∗i , 1 ≤ r ≤ d (5)

qi = q∗i , 1 ≤ r ≤ d.

Next, we characterize local optimizers of optimization MT-(6) for degree-one PNNs. The sign variable
assigned to the weight vector wj is defined as the sign of its non-zero element, i.e., s(wj) = s(wj)
where wj is the non-zero element of wj . Define R(s1, ..., sd) as the space of W where si is the sign
vector of weights wj connected to input xi (i.e., j ∈ Gi).

Theorem 5 For a degree-one PNN, in regions R(s1, ..., sd) where si 6= ±1 for 1 ≤ i ≤ d, every
local optimizer is a global optimizer. In other regions, we may have bad local optima.

In practice, if the gradient descent algorithm converges to a point in a region R(s1, ..., sd) where
signs of weight vectors connected to an input are all ones or minus ones, that point may be a bad
local optimizer. Thus, one may re-initialize the gradient descent algorithm in such cases. We show
this effect through simulations in Section 7.

4 Properties of the Kernel Function ψ(.)

Example 1 Let L = {L1, L2, ..., Lr} contain lines in R2 such that angles between adjacent lines
are equal to π/r (Figure 4-a). Thus, we have AL(i, j) = π|i − j|/r for 1 ≤ i, j ≤ r. Figure 4-b

1These definitions match with definitions of G and g(.) for a general PNN.
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shows the minimum eigenvalue of the matrix ψ[KL] for different values of r. As the number of
lines increases, the minimum eigenvalue of ψ[KL] decreases. However, for a finite value of r, the
minimum eigenvalue of ψ[KL] is positive. This highlights why considering a discretized neural
network function (i.e., finite r) facilities characterizing the landscape of the loss function.

5 Number of Bad Parameter Regions of PNNs

Consider a two-layer PNN with d inputs, r lines and k hidden neurons. Suppose every line corresponds
to t = k/r input weight vectors. If we generate weight vectors uniformly at random over their
corresponding lines, for every 1 ≤ i ≤ r, we have

P[si = ±1] = 21−t. (6)

As t increases, this probability decreases exponentially. According to Theorem MT-2, to be in the
parameter region without bad locals, the event si = ±1 should occur for at most r − d of the lines.
Thus, if we uniformly pick a parameter region, the probability of selecting a region without bad locals
is

1−
d−1∑
i=1

(
r

i

)
(1− 21−t)i2(1−t)(r−i) (7)

which goes to one exponentially as r →∞.

In practice the number of lines r is much larger than the number of inputs d (i.e., r � d). Thus, the
condition of Theorem MT-2 which requires d out of r variables si not to be equal to ±1 is likely to
be satisfied if we initialize the local search algorithm randomly.

6 PNN Perturbation Analysis

In this section, we show that if UL is a perturbed version of UL∗ , the loss in global optima of
the mismatched PNN optimization MT-(6) is small. This shows a continuity property of the PNN
optimization with respect to line perturbations.

Lemma 1 Let K is defined as in MT-(13) where r = r∗. Let Z := U −U∗ be the perturbation
matrix. Assume that λmin (ψ [KL∗ ]) ≥ δ. If

2
√
r‖Z‖F + ‖Z‖2F ≤

δ

2
,

then

‖ψ[K]/ψ[KL]‖2 ≤
(

1 +
2r

δ

)
‖Z‖2F + 4

√
r‖Z‖F .

7 The General PNN Approximation Error

In this section, we consider the case where the condition of Theorem MT-4 does not hold, i.e., the
local search algorithm converges to a point in a bad parameter region where more than r − d of
si variables are equal to ±1. To simplify notation, we assume that the local search method has
converged to a region where all si variables are equal to ±1. The analysis extends naturally to other
cases as well.

Let s = (s1, ..., sr). Let S be the diagonal matrix whose diagonal entries are equal to s, i.e.,
S = diag(s). Similar to the argument of Theorems MT-2 and MT-4, a necessary condition for a point
W to be a local optima of the PNN optimization is:

SUt
L

(
k∑
i=1

wi −
k∗∑
i=1

w∗i

)
+ ψ[KL]q− ψ[KL,L∗ ]q

∗ = 0. (8)
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Under the condition of Theorem MT-4, we have
∑k
i=1 wi −

∑k∗

i=1 w∗i = 0, which simplifies this
condition.

Using (8) in MT-(12), at local optima in bad parameter regions, we have

4L(W) = (q∗)
t
ψ[K]/ψ[KL]q∗ + zt

(
I + ULSψ[KL]−1SUt

L
)
z, (9)

where

z :=

k∑
i=1

wi −
k∗∑
i=1

w∗i . (10)

The first term of (9) is similar to the PNN loss under the condition of Theorem MT-4. The second
term is the price paid for converging to a point in a bad parameter region. In this section, we analyze
this term.

The second term of (9) depends on the norm of z. First, in the following lemma, we characterize z in
local optima.

Lemma 2 In the local optimum of the mismatched PNN optimization, we have

z = −
(
ULSStUt

L
)−1

ULS

[
ψ[KL]

(
SUt
LULS + ψ[KL]

)†
SUt
Lw0 (11)

+
(
ψ[KL]

(
SUt
LULS + ψ[KL]

)† − I
)
ψ[KL,L∗ ]q

∗
]
,

where

w0 ,
k∗∑
i=1

w∗i .

Replacing (11) in (9) gives us the loss function achieved at the local optimum. In order to simplify
the loss expression, without loss of generality, from now on we replace US with U (note that there is
essentially no difference between ULS and UL as the columns of ULS are the columns of UL with
adjusted orientations.). Moreover, to simplify the analysis of this section, we make the following
assumptions.

Assumption 1 Recall that we assume that all si for 1 ≤ i ≤ r are equal to ±1. Our analysis extends
naturally to other cases. Moreover, we assume that w0 = 0. This assumption has a negligible effect
on our estimate of the value of the loss function achieved in the local minimum in many cases. For
example, when w∗i are i.i.d. N (0, (1/d)I) random vectors, w0 is a N (0, (r∗/d)I) random vector
and therefore ‖w0‖2 = Θ(

√
r∗). On the other hand, ‖q∗‖2 = Θ(r∗). Hence, in the case where r∗ is

large, the value of the loss function in the local minimum is controlled by the terms involving ‖q∗‖22
in (9). Thus, we can ignore the terms involving w0 in this regime. Finally, we assume that ψ[KL]
(and consequently Ut

LUL + ψ[KL]) is invertible.

Theorem 6 Under assumptions 1, in a local minimum of the mismatched PNN optimization, we have

L(W) =
1

4
(q∗)t

(
ψ̃[K]/ψ[KL]

)
q∗, (12)

where

ψ̃[K] =

[
ψ[KL] + Ut

LUL ψ[KL,L∗ ]
ψ[KL,L∗ ]

t ψ[KL∗ ]

]
.

The matrix ψ̃[K] has an extra term of Ut
LUL (i.e., the linear kernel) compared to the matrix ψ[K].

The effect of this term is the price of converging to a local optimum in a bad region. In the following,
we analysis this effect in the asymptotic regime where r, d→∞ while r/d is fixed.

8



Theorem 7 Consider the asymptotic case where r = γd, r∗ > d + 1, γ > 1 and r, r∗, d → ∞.
Assume that k∗ = r∗ underlying weight vectors w∗i ∈ Rd are chosen uniformly at random in Rd
while the PNN is trained over r lines drawn uniformly at random in Rd. Under assumption 1, at
local optima, with probability 1− 2 exp(−µ2d), we have

L(W) ≤ 1

4

(
1− 2

π
+ (1 +

√
γ + µ)2

r∗

r

)
‖q∗‖22 ,

where µ > 1 is a constant.

Comparing asymptotic error bounds of Theorems MT-6 and 7, we observe that the extra PNN
approximation error because of the convergence to a local minimum at a bad parameter region is
reflected in the constant parameter µ, which is negligible if r∗ is significantly smaller than r.

8 A Minimax Analysis of the Naive Nearest Line Approximation Approach

In this section, we show that every realizable function by a two-layer neural network (i.e., every
f ∈ F) can be approximated arbitrarily closely using a function described by a two-layer PNN (i.e.,
f̂ ∈ FL,G). We start by the following lemma on the continuity of the ReLU function on the weight
parameter:

Lemma 3 For the ReLU function φ(.), we have the following property
|φ (〈w1,x〉)− φ (〈w2,x〉)| ≤ ‖w1 −w2‖2 ‖x‖2.

Recall that ui is the unit norm vector over the line i. Let U = {u1,u2, . . . ,ur} ⊆ Rd. Denote the
set U− = {−u1,−u2, . . . ,−ur}.

Definition 1 For δ ∈ [0, π/2], we call U an angular δ-net ofW if for every w ∈ W , there exists
u ∈ U ∪ U− such that θu,w ≤ δ.

The following lemma indicates the size required for U to be an angular δ-net of the unit Euclidean
sphere Sn−1.

Lemma 4 Let δ ∈ [0, π/2]. For the unit Euclidean sphere Sn−1, there exists an angular δ-net U ,
with

|U| ≤ 1

2

(
1 +

√
2√

1− cos δ

)n
.

The following is a corollary of the previous lemma.

Corollary 3 Consider a two-layer neural network with s-sparse weights (i.e.,W is the set of s-sparse
vectors.). In this case, using lemma 4, U is an angular δ-net ofW with

|U| = 1

2

(
d

s

)(
1 +

√
2√

1− cos δ

)s
.

Furthermore, if we know the sparsity patterns of k neurons in the network (i.e., if we know the network
architecture), Ũ is an angular δ-net ofW with

|Ũ | ≤ k

2

(
1 +

√
2√

1− cos δ

)s
.

In order to have a measure of how accurately a function in F can be approximated by a function in
FL, we have the following definition:

Definition 2 DefineR (F ,FL,G), the minimax risk of approximating a function in F by a function
in FL,G , as the following

R (FL,G ,F) := max
f∈F

min
f̂∈FL,G

E
∣∣∣f(x)− f̂(x)

∣∣∣ , (13)

where the expectation is over x ∼ N (0, I).
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The following theorem bounds this minimax risk where U is an angular δ-net ofW .

Theorem 8 Assume that for all w ∈ W , ‖w‖2 ≤M . Let U be an angular δ-net ofW . The minimax
risk of approximating a function in F with a function in FL,G defined in (13) can be written as

R (FL,G ,F) ≤ kM
√

2d(1− cos δ).

The following is a corollary of Theorem 8 and Corollary 3.

Corollary 4 Let F be the set of realizable functions by a two-layer neural network with s-sparse
weights. There exists a set L and a neuron-to-line mapping G such that

R (FL,G ,F) ≤ δ,
and

|L| ≤ 1

2

(
d

s

)(
1 +

2kM
√
d

δ

)s
.

Further, if we know the sparsity patterns of k neurons in the network (i.e., the network architecture),
then

|L| ≤ k

2

(
1 +

2kM
√
d

δ

)s
.

9 More Details On Numerical Experiments

All experiments were implemented in Python 2.7 using the TensorFlow package. We numerically
simulate random PNNs in the mismatched case as described in Section MT-5. To enforce the PNN
architecture, we project gradients along the directions of PNN lines before updating the weights.
For example, if we consider w

(0)
i as the initial set of d weights connecting hidden neuron i to the

d inputs, then the final set of weights w
(T )
i need to lie on the same line as w

(0)
i . To guarantee this,

before applying gradient updates to wi, we first project them along w
(0)
i .

For PNNs, we use 10 ≤ k ≤ 100 hidden neurons. For each value of k, we perform 25 trials of the
following:

1. Generate one set of true labels using a fully-connected two-layer network with d = 15
inputs and k∗ = 20 hidden neurons. Generate 10,000 ground-truth training samples and
10,000 test samples using a set of randomly chosen weights.

2. Initialize k/2 random d-dimensional unit-norm weight vectors.
3. Assign each weight vector to two hidden neurons. For the first neuron, scale the vector by

a random number sampled uniformly between 0 and 1. For the second neuron, scale the
vector by a random number sampled uniformly between -1 and 0.

4. Train the network via stochastic gradient descent using batches of size 100, 100 training
epochs, no momentum, and a learning rate of 10−3 which decays every epoch at a rate of
0.95 every 390 epochs.

5. Check to make sure that final weights lie along the same lines as initial weights. Ignore
results if this is not the case due to numerical errors.

6. Repeat steps 2-5 10 times. Return the normalized MSE (i.e., MSE normalized by the L2

norm of y) in the test set over different initializations.

10 Proofs

10.1 Preliminary Lemmas

Lemma 5 Let x ∼ N (0, I). We have

E
[
1{wt

1x > 0,wt
2x > 0}xxt

]
=
π − θw1,w2

2π
I +

sin (θw1,w1
)

2π
M(w1,w2), (14)

10



where

M(w1,w2) ,
1

sin (θw1,w2
)
2 (w1,w2)

(
− cos (θw1,w2

) 1
1 − cos (θw1,w2

)

)
(w1,w2)t. (15)

Note that M(w1,w2)w1 = ‖w1‖
‖w2‖w2, M(w1,w2)w2 = ‖w2‖

‖w1‖w1, and M(w1,w2)v = 0 for every
vector v ⊥ span(w1,w2).

Lemma 6 Let x ∼ N (0, 1). We have

E
[
1{w1x > 0, w2x > 0}x2

]
=

1 + s(wi)s(wj)

4
. (16)

Lemma 7 Consider

M =

[
A A + ∆1

At + ∆t
1 A + ∆2

]
� 0

where ‖∆1‖2 ≤ σ1, ‖∆2‖2 ≤ σ2 and λmin (A) ≥ δ. Then

‖M/A‖2 ≤
σ2
1

δ
+ 2σ1 + σ2.

Proof 1 Note that

M/A = A + ∆2 −
(
A + ∆t

1

)
A−1 (A + ∆1)

= A + ∆2 −A−∆t
1 −∆1 −∆t

1A
−1∆1

= ∆2 −∆t
1 −∆1 −∆t

1A
−1∆1.

Hence,

‖M/A‖2 = ‖∆2 −∆t
1 −∆1 −∆t

1A
−1∆1‖2

≤ ‖∆t
1‖2‖A−1‖2‖∆1‖2 + 2‖∆1‖2 + ‖∆2‖2

≤ σ2
1

δ
+ 2σ1 + σ2.

Lemma 8 Suppose λmin(A) ≥ c > 0 for some c. Then, for sufficiently small ‖∆‖, we have

(A + ∆)−1 −A−1 = A−1∆̃A−1 (17)

where ‖∆̃‖ ≤ 2‖∆‖.

Proof 2 From [30], we have

(A + ∆)−1 = A−1 −A−1∆(I + A−1∆)−1A−1. (18)

Let

∆̃ := −∆(I + A−1∆)−1. (19)

Thus, we have

‖∆̃‖ ≤ ‖∆‖‖(I + A−1∆)−1‖ (20)

= ‖∆‖ 1

λmin(I + A−1∆)
.

Moreover, if ‖∆‖ ≤ c/2, we have

λmin(I + A−1∆) ≥ 1− ‖A−1∆‖ (21)

≥ 1− ‖∆‖
λmin(A)

≥ 1

2
. (22)

Using (20) and (21), for ‖∆‖ ≤ c/2, we have ‖∆̃‖ ≤ 2‖∆‖. This completes the proof.

11



Lemma 9 Let A = α1In + β11n. Then
A−1 = α2In + β21n, (23)

where

α2 =
1

α1
(24)

β2 = − −β1
α2
1 + α1β1n

.

10.2 Proof of Theorem 1

In this case, we can re-write L(W) as follows:

L(W) = E

( k∑
i=1

1{wix > 0}wix−
k∑
i=1

1{w∗i x > 0}w∗i x

)2
 (25)

= E

( k∑
i=1

1{wix > 0}wix

)2
+ E

( k∑
i=1

1{w∗i x > 0}w∗i x

)2


− E

∑
i,j

1{wix > 0, w∗jx > 0}wiw∗jx2
 .

The first term of (25) can be simplified as follows:

E

( k∑
i=1

1{wix > 0}wix

)2
 =

1

2

k∑
i=1

w2
i +

1

4

∑
i6=j

wiwj (s(wi)s(wj) + 1) (26)

=
1

4

 k∑
i=1

w2
i +

∑
i 6=j

wiwj

+
1

4

 k∑
i=1

s(wi)w
2
i +

∑
i 6=j

s(wi)s(wj)wiwj


=

1

4

(
k∑
i=1

wi

)2

+
1

4

(
k∑
i=1

s(wi)wi

)2

,

where the first step follows from Lemma 6. The second term of (25) can be simplified similarly. The
third term of (25) can be re-written as

E

∑
i,j

1{wix > 0, w∗jx > 0}wiw∗jx2
 =

1

4

∑
i,j

wiw
∗
j (s(wi)s(w

∗
j ) + 1) (27)

=
1

4

∑
i,j

wiw
∗
j

+
1

4

∑
i,j

s(wi)s(w
∗
j )wiw

∗
j

 . (28)

Substituting (26) and (27) in (25), we have

L(W) =
1

4

(

k∑
i=1

wi)
2 + (

k∑
i=1

w∗i )2 − (
∑
i,j

wiw
∗
j )

2

(29)

+
1

4

(

k∑
i=1

s(wi)wi)
2 + (

k∑
i=1

s(w∗i )w∗i )2 − (
∑
i,j

s(wi)s(w
∗
j )wiw

∗
j )

2

=
1

4

(
k∑
i=1

wi −
k∑
i=1

w∗i

)2

+
1

4

(
k∑
i=1

s(wi)wi −
k∑
i=1

s(w∗i )w∗i

)2

. (30)

Therefore, L(W) = 0 if and only if
∑k
i=1 wi =

∑k
i=1 w

∗
i and

∑k
i=1 s(wi)wi =

∑k
i=1 s(w

∗
i )w∗i .

This completes the proof.
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10.3 Proof of Theorem 2

First, we characterize the gradient of the loss function with respect to wj :

5wjL(W) = 2E

[(
k∑
i=1

1{wix > 0}wix−
k∑
i=1

1{w∗i x > 0}w∗i x

)
(1{wjx > 0}x)

]
(31)

=
1

2

k∑
i=1

wiwj (1 + s(wi)s(wj))−
1

2

k∑
i=1

w∗iwj (1 + s(w∗i )s(wj))

=
1

2

(
k∑
i=1

wi −
k∑
i=1

w∗i

)
+
s(wj)

2

(
k∑
i=1

s(wi)wi −
k∑
i=1

s(w∗i )w∗i

)
, (32)

where the first step follows from Lemma 6. A necessary condition to have W as a local optimizer is
5wj

L(w) = 0 for every j.

Consider a region R(s) where s 6= ±1. Thus, there are two indices j1 and j2 such that s(wj1) > 0
and s(wj2) < 0. To have a local optimizer in this region, we need to have

(
k∑
i=1

wi −
k∑
i=1

w∗i

)
+ s(wj1)

(
k∑
i=1

s(wi)wi −
k∑
i=1

s(w∗i )w∗i

)
= 0, (33)(

k∑
i=1

wi −
k∑
i=1

w∗i

)
+ s(wj2)

(
k∑
i=1

s(wi)wi −
k∑
i=1

s(w∗i )w∗i

)
= 0.

Summing these two equations leads to the following conditions:

k∑
i=1

wi −
k∑
i=1

w∗i = 0, (34)

k∑
i=1

s(wi)wi −
k∑
i=1

s(w∗i )w∗i = 0.

On the other hand, Theorem 1 indicates that if W satisfies these conditions, its loss value is equal to
zero. Thus, such local optimizers are global optimizers. In regions R(±1), to have5wj

L(W) = 0

for every j, we only need to have the condition
∑k
i=1 wi −

∑k
i=1 w

∗
i = 0. In this case, if s(W∗) 6=

±1, we will have bad local optimizers. This completes the proof.

10.4 Proof of Theorem 3

For every 1 ≤ i, j ≤ k, we have

52
wi,wj

L(W) = 2E[1{wix > 0, wjx > 0}x2] =
s(wi)s(wj)

2
(35)

Let H be the Hessian matrix where H(i, j) = 52
wi,wj

L(W). Thus, in the region R(s), we have

H =
1

2
1 +

1

2
sst. (36)

Note that H is positive semidefinite and its rank is equal to two except when s = ±1 in which case
its rank is equal to one.

13



10.5 Proof of Theorem 4

We can re-write L(W) as follows:

L(W) = E

( k∑
i=1

1{wt
ix > 0}wt

ix−
k∑
i=1

1{(w∗i )tx > 0}(w∗i )tx

)2
 (37)

= E

( k∑
i=1

1{wt
ix > 0}wt

ix

)2
+ E

( k∑
i=1

1{(w∗i )tx > 0}(w∗i )tx

)2


− 2E

∑
i,j

1{wt
ix > 0, (w∗j )

tx > 0}(wt
ix)((w∗j )

tx)

 .
The first term can be re-written as

E

( k∑
i=1

1{wt
ix > 0}wt

ix

)2
 =

1

2

k∑
i=1

w2
i +

1

4

∑
i 6=j

g(i)=g(j)

(wiwj + |wi||wj |) (38)

+
1

2π

∑
i,j

g(i) 6=g(j)

|wi||wj |

where the first step follows from Lemma 5. A similar equation can be written for the second term of
(37). The third term of (37) can be re-written as

−2E

∑
i,j

1{wt
ix > 0, (w∗j )

tx > 0}(wt
ix)
(
(w∗j )

tx
) =− 1

2

∑
i,j

g(i)=g(j)

(
wiw

∗
j + |wi||w∗j |

)
(39)

− 1

π

∑
i,j

g(i)6=g(j)

|wi||w∗j |

Substituting (38) and (39) in (37) we have

4L(W) =

d∑
r=1

(∑
i∈Gr

wi − w∗i

)2

+

d∑
r=1

(qr − q∗r )2 +
2

π

∑
r 6=t

(qr − q∗r )(qt − q∗t ). (40)

This completes the proof.

10.6 Proof of Theorem 5

First, we characterize the gradient of the loss function with respect to wj :

5wj
L(W) = 2E

[(
1{wt

jx > 0}x
)( k∑

i=1

1{wt
ix > 0}wt

ix−
k∑
i=1

1{(w∗i )tx > 0}(w∗i )tx

)]
(41)

=
1

2

∑
i

g(i)=g(j)

(1 + s(wi)s(wj)) wi +
1

2

∑
i

g(i)6=g(j)

(
wi +

2‖wi‖
π‖wj‖

wj

)

− 1

2

∑
i

g(i)=g(j)

(1 + s(w∗i )s(wj)) w∗i −
1

2

∑
i

g(i)6=g(j)

(
w∗i +

2‖w∗i ‖
π‖wj‖

wj

)

=
1

2

(
k∑
i=1

wi −w∗i

)
+
s(wj)

2

(qg(j) − q∗g(j)) +
2

π

∑
r 6=g(j)

(qr − q∗r )

 eg(j)
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where the first step follows from Lemma 5. A necessary condition to have W as a local optimizer of
optimization MT-(6) is that the projection gradient is zero for every j, i.e., < 5wjL(W), eg(j) >= 0
for every j.

Under the condition of Theorem 5, for every 1 ≤ r ≤ d, there exists j1 6= j2 ∈ Gr such that
s(wj1)s(wj2) = −1. Thus, summing up (41) for j1 and j2, we have

etr

(
k∑
i=1

wi −w∗i

)
= 0. (42)

Since this is true for every 1 ≤ r ≤ d, we have
∑k
i=1 wi −w∗i = 0. The second term of (41) is a

vector with a non-zero element at its g(j) component. Having the first term of (41) equal to zero, the
second term should be zero in local optimizers. This leads to the set of equations

C(q− q∗) = 0 (43)

where C is defined in (4). On the other hand, using Theorem 4, having these conditions lead to
L(W) = 0. In other words, under the conditions of Theorem 5, every local optimizer is a global
optimizer for a one-degree PNN. This completes the proof.

10.7 Proof of Theorem MT-1

First, we decompose L(W) to three terms similar to (37). Then the first term can be re-written as
follows:

E

( k∑
i=1

1{wt
ix > 0}wt

ix

)2
 (44)

=
1

2

k∑
i=1

‖wi‖2 +

r∑
l=1

∑
i 6=j
i,j∈Gl

1 + s(wi)s(wj)

4
‖wi‖‖wj‖

+
∑
l 6=l′

∑
i∈Gl
j∈Gl′

(
(π − θwi,wj cos(θwi,wj )) + sin(θwi,wj )

2π

)
‖wi‖‖wj‖

=
1

2

k∑
i=1

‖wi‖2 +

r∑
l=1

∑
i 6=j
i,j∈Gl

1 + s(wi)s(wj)

4
‖wi‖‖wj‖

+
1

2π

∑
l 6=l′

∑
i∈Gl
j∈Gl′

(
s(wi)s(wj) cos(AL(l, l′))

(π
2
−
(
AL(l, l′)− π

2

)
s(wi)s(wj)

)
+ sin(AL(l, l′))

)
‖wi‖‖wj‖

=
1

4

 k∑
i=1

‖wi‖2 +
∑
i 6=j

< wi,wj >

+
1

4

 k∑
i=1

‖wi‖2 +
∑
i 6=j

AL(g(i), g(j))‖wi‖‖wj‖


where the first step follows from Lemma 5, and in the second step, we use

θwi,wj
=
π

2
+ (ag(i),g(j) −

π

2
)s(wi)s(wj). (45)
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A similar argument can be mentioned for the second term of (37). The third term of (37) can be
re-written as

−2E

∑
i,j

1{wt
ix > 0, (w∗j )

tx > 0}(wt
ix)
(
(w∗j )

tx
) =− 1

2

r∑
l=1

∑
i,j

i,j∈Gl

(1 + s(wi)s(w
∗
j ))‖wi‖‖wj‖

(46)

+
∑
l 6=l′

∑
i∈Gl
j∈Gl′

< wi,w
∗
j > +AL(l, l′)‖wi‖‖w∗j‖

= −1

2

∑
i,j

< wi,w
∗
j > +AL(g(i), g(j))‖wi‖‖w∗j‖

where we use Lemma 5 and equation (37). Substituting (44) and (46) in (37) completes the proof.

10.8 Proof of Lemma MT-1

Note that the matrix K = cos[AL] is a covariance matrix and thus is positive semidefinite. For the
function ψ(.) defined as in MT-(8), we have

∂jψ

∂xj
=

{
0, if j is odd
2/π

∏j−2
i=1 (2i−1)
2j−2 , if j is even

(47)

Thus, for every j ≥ 1, we have ∂jψ
∂xj ≥ 0. Using Theorem 4.1 (i) of reference [31] completes the

proof.

10.9 Proof of Theorem MT-2

We characterize the gradient of the loss function with respect to wj :

5wjL(w) = 2E

[(
1{wt

jx > 0}x
)( k∑

i=1

1{wt
ix > 0}wt

ix−
k∑
i=1

1{(w∗i )tx > 0}(w∗i )tx

)]
(48)

=

r∑
l=1

(∑
i∈Gl

(
π − θwi,wj

2π
I +

sin(θwi,wj
)

2π
M(wi,wj)

)
wi

−
(
π − θw∗i ,wj

2π
I +

sin(θw∗i ,wj )

2π
M(w∗i ,wj)

)
w∗i

)

=
1

4

k∑
i=1

(wi −w∗i ) + s(wj)

(
r∑
l=1

∑
i∈Gl

(π/2−AL(l, g(j)))(‖wi‖ − ‖w∗i ‖)
2π

ul

+
sin(AL(l, g(j)))(‖wi‖ − ‖w∗i ‖)

2π
ug(i)

)
where the first step follows from Lemma 5, and in the second step, we use (45).

A necessary condition to have W as a local optimizer is that the projected gradient is zero for every
j, i.e., utg(j) 5wj

L(W) = 0 for every j. Under the conditions of Theorem MT-2, over d distinct
lines, there exists j1 6= j2 ∈ Gr such that s(wj1)s(wj2) = −1. Thus, summing up (48) for j1 and j2,
we have

utr

(
k∑
i=1

wi −w∗i

)
= 0. (49)
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Since this is true for d distinct and thus linearly independent lines, we have
∑
i wi − w∗i = 0.

Therefore, the inner product of the second term of (48) with ug(j) should be zero in local optimizers.
This leads to the following equation:

r∑
k=1

∑
i∈Gl

ψ[KL] (l, g(j)) (‖wi‖ − ‖w∗i ‖) =

l∑
r=1

ψ[KL] (l, g(j)) (ql − q∗l ) = 0. (50)

Since this should hold for every j, a necessary condition for W to be a local optimizer is ψ[KL](q−
q∗) = 0. On the other hand, using Theorem MT-1, such conditions lead to having L(W) = 0.
Therefore, such local optimizers are global optimizers. This completes the proof.

10.10 Proof of Theorem MT-3

The proof is similar to the one of Theorem MT-1.

10.11 Proof of Theorem MT-4

A necessary condition for a point to be a local optimizer is that utg(j) 5wj L(W) = 0 for every
j. Similarly to the proof of Theorem MT-2, under the condition of Theorem MT-4, we have∑k
i=1 wi −

∑k∗

i=1 w∗i = 0. This leads to the following equation in local optimizers:
ψ[KL]q = ψ[KL,L∗ ]q

∗. (51)
Replacing this equation in the loss function completes the proof.

10.12 Proof of Lemma 1

To simplify notations, define

D = ψ[K] =

[
D11 D12

Dt
12 D22

]
� 0

Note that since ψ(.) has Lipschitz constant L ≤ 1, we have∣∣∣(D22 −D11)ij

∣∣∣ ≤ ∣∣∣∣((U∗)
t
U∗ −UtU

)
ij

∣∣∣∣
=
∣∣∣((U + Z)t(U + Z)−UtU

)
ij

∣∣∣ =
∣∣∣(UtZ + ZtU + ZtZ

)
ij

∣∣∣
≤ ‖U.,i‖2 ‖Z.,j‖2 + ‖U.,j‖2 ‖Z.,i‖2 + ‖Z.,i‖2 ‖Z.,j‖2
≤ ‖Z.,j‖2 + ‖Z.,i‖2 + ‖Z.,i‖2 ‖Z.,j‖2 ,

where the last step follows from the fact that ‖U.,i‖ = 1. Hence,

‖D22 −D11‖2 ≤ ‖D22 −D11‖F ≤ 2
√
r‖Z‖F + ‖Z‖2F . (52)

Similarly, ∣∣∣(D12 −D11)ij

∣∣∣ ≤ ∣∣∣(UtU∗ −UtU
)
ij

∣∣∣
=
∣∣∣(Ut(U + Z)−UtU

)
ij

∣∣∣ =
∣∣∣(UtZ

)
ij

∣∣∣
≤ ‖U.,i‖2 ‖Z.,j‖2 ≤ ‖Z.,j‖2 .

Thus,
‖D12 −D11‖2 ≤ ‖D12 −D11‖F ≤

√
r‖Z‖F . (53)

Further, note that using (52),

λmin(D11) ≥ λmin(D22)− ‖D22 −D11‖2 ≥ δ − 2
√
r‖Z‖F − ‖Z‖2F ≥

δ

2
, (54)

under the assumptions of the Lemma. Hence, combining (52), (53), (54), using Lemma 7, we have

‖D/D11‖2 ≤
2 ‖D12 −D11‖22

δ
+ 2 ‖D12 −D11‖2 + ‖D22 −D11‖2

≤
(

1 +
2r

δ

)
‖Z‖2F + 4

√
r‖Z‖F .
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10.13 Proof of Theorem MT-5

To simplify notations, we define

D = ψ[Knew] = ψ

 1 z1 z2
zt1 KL KL,L∗
zt2 Kt

L,L∗ KL∗

 =

 1 ζt1 ζt2
ζ1 D11 D12

ζ2 Dt
12 D22


and

R1 = D22 −Dt
12D

−1
11 D12 ,

R2 = D

/[
1 ζt1
ζ1 D11

]
.

Note that since D is positive semidefinite (Lemma MT-1), we have[
1 ζt1
ζ1 D11

]
� 0.

Hence [
1 ζt1
ζ1 D11

]/
D11 = 1−

〈
ζ1,D

−1
11 ζ1

〉
≥ 0.

We have

R2 = D22 −
[
ζ2 Dt

12

] [ 1 ζt1
ζ1 D11

]−1 [
ζt2

D12

]
= D11 −

[
ζ2 Dt

12

] [ (
1−

〈
ζ1,D

−1
11 ζ1

〉)−1 −ζt1D−111

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1
−D−111 ζ1

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1
(D11 − ζ1ζt1)

−1

] [
ζt2

D12

]

= D22 −
[
ζ2 Dt

12

] [ (
1−

〈
ζ1,D

−1
11 ζ1

〉)−1 (
ζt1 − ζt1D−111 D12

)
−
(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1
D−111 ζ1ζ

t
2 + (D11 − ζ1ζt1)

−1
D12

]
= D22 +

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1 [−ζ2ζt2 + ζ2ζ
t
1D
−1
11 D12 + Dt

12D
−1
11 ζ1ζ

t
2

]
−Dt

12

(
D11 − ζ1ζt1

)−1
D12.

Using the Sherman-Morisson formula, we have(
D11 − ζ1ζt1

)−1
= D−111 +

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1
D−111 ζ1ζ

t
1D
−1
11 .

Hence,

R2 = D22 −Dt
12D

−1
11 D12 −

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1 [
ζ2ζ

t
2 − ζ2ζt1D−111 D12 −Dt

12D
−1
11 ζ1ζ

t
2 + Dt

12D
−1
11 ζ1ζ

t
1D
−1
11 D12

]
= R1 −

(
1−

〈
ζ1,D

−1
11 ζ1

〉)−1 [(
ζ2 −Dt

12D
−1
11 ζ1

) (
ζ2 −Dt

12D
−1
11 ζ1

)t]
= R1 − αvvt

where α ≥ 0, v are defined in the theorem. Hence, R1 � R2 and ‖R1‖2 ≥ ‖R2‖2. This completes
the proof.

10.14 Proof of Theorem MT-6

To simplify notations, define

D = ψ[K] =

[
D11 D12

Dt
12 D22

]
� 0.

Moreover, let

R =

[
R11 R12

Rt
12 R22

]
,
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where

R11 = αIr1 + β1r1 (55)
R22 = αIr2 + β1r2
R12 = β1r1×r2 ,

such that

α = 1− 2

π

β =
2

π
+

1

πd
.

Let

∆ = D−R =

[
∆11 ∆12

∆t
12 ∆22

]
.

Note that to simplify notations, we make the dependency of these matrices to d, r1 and r2 implicit.
Using Theorem 2.1 of reference [32], under the assumptions of the theorem, as d, r1 →∞, we have
‖∆11‖ → 0, ‖∆22‖ → 0 and ‖∆12‖ → 0 in probability. Moreover, we have

D/D11 = D22 −Dt
12D

−1
11 D12 (56)

= (R22 + ∆22)− (R12 + ∆12)t(R11 + ∆11)−1(R12 + ∆12).

Since λmin(R11) = 1− 2/π, using Lemma 8, we have

(R11 + ∆11)−1 = R−111 + R−111 ∆̃11R
−1
11 , (57)

where ‖∆̃‖ → 0 in probability. Using this equation in (56), we have

D/D11 = Z1 + Z2 (58)

where

Z1 = R22 −Rt
12R

−1
11 R12 (59)

and

Z2 = ∆22 −∆t
12R

−1
11 R12 −∆t

12R
−1
11 ∆12 (60)

−∆t
12R

−1
11 ∆̃11R

−1
11 R12 −∆t

12R
−1
11 ∆̃11R

−1
11 ∆12

−Rt
12R

−1
11 ∆12 −Rt

12R
−1
11 ∆̃11R

−1
11 R12 −Rt

12R
−1
11 ∆̃11R

−1
11 ∆12.

First, we show that as d, r1 →∞, ‖Z2‖ → 0 in probability. Note that using Lemma 9, we have

R−111 =
1

α
Ir1 −

β

α2 + αβr1
1r1 . (61)

Therefore, we have

1r2×r1R
−1
11 =

1

α+ βr1
1r2×r1 . (62)

Thus, we have

‖1r2×r1R−111 ‖ ≤ c1 (63)

for sufficiently large r1. Similarly, we have

‖R−111 ‖ ≤ c2, (64)

for sufficiently large r1. Using (63) and (64) in (60), it is straightforward to show that as d, r1 →∞,
‖Z2‖ → 0 in probability.
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Next, we characterize ‖Z1‖. We have

Z1 = αIr2 + β1r2 − β21r2×r1R
−1
11 1r1×r2 (65)

= αIr2 +
αβ

α+ βr1
1r2 .

Therefore, we have

‖Z1‖ = α

(
1 +

βr2
α+ βr1

)
(66)

=

(
1− 2

π

)(
1 +

(
1− π − 2

γ + π − 2 + 2r1

)
r2
r1

)
=

(
1− 2

π

)(
1 +

r2
r1

)
,

as r1 →∞. This completes the proof.

10.15 Proof of Proposition MT-1

Since q∗ is a vector in Rr∗ whose components are non-negative, we can write

q∗ =
‖q∗‖1
r∗

1r∗×1 + q∗2, (67)

where q∗2 is orthogonal to the vector 1r∗×1. Therefore, we have

L(W = 0) =
1

4
‖
r∗∑
i=1

w∗i ‖2 +
1

4
(q∗)

t
ψ[KL∗ ]q

∗ (68)

≥ 1

4
(q∗)

t

(
(1− 2

π
)Ir∗ + (

2

π
+

1

πd
)1r∗×r∗

)
q∗

=
1

4
(1− 2

π
)‖q∗‖2 +

1

2π
‖q∗‖21

≥ 1

4
‖q∗‖2,

where the first step follows from Theorem MT-3, the second step follows from (69), the third step
follows from (67) and the fact that d→∞, and the last step follows from the fact that ‖q∗‖1 ≥ ‖q∗‖.
Using (68) in Theorem MT-6 completes the proof.

10.16 Proof of Lemma 2

To simplify notations, define

D = ψ[K] =

[
D11 D12

Dt
12 D22

]
� 0

We also use U instead of UL.

Let w+
j =

∑
i:wi=‖wi‖uj

‖wi‖ and w−j =
∑
i:wi=−‖wi‖uj

‖wi‖. Thus, we have

w+
j −w−j = sjqj .

Hence,
k∑
i=1

wi =

r1∑
j=1

(
w+
j −w−j

)
uj =

r1∑
j=1

sjqjuj = USq.

Therefore, equation (8) implies that

SUt (USq−w0) + D11q−D12q
∗ = 0.
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Thus,

q =
(
SUtUS + D11

)† (
SUtw0 + D12q

∗)
and

−SUtz = D11q−D12q
∗

= D11

(
SUtUS + D11

)†
SUtw0 +

(
D11

(
SUtUS + D11

)† − I
)

D12q
∗.

Thus,

z = −
(
USStUt

)−1
US

[
D11

(
SUtUS + D11

)†
SUtw0 +

(
D11

(
SUtUS + D11

)† − I
)

D12q
∗
]
.

10.17 Proof of Theorem 6

To simplify notations, define

D = ψ[K] =

[
D11 D12

Dt
12 D22

]
� 0

We also use U instead of UL.

Under assumptions 1, (11) simplifies to

z = −
(
UUt

)−1
UD11

(
D11

(
UtU + D11

)−1 − I
)

D12q
∗.

Using the Woodbury matrix identity,(
D11 + UtU

)−1
= D−111 −D−111 Ut

(
I + UD−111 Ut

)−1
UD−111 .

Hence,

z =
(
I + UD−111 Ut

)−1
UD−111 D12q

∗.

Therefore,〈
z,
(
I + UD−111 Ut

)
z
〉

=
〈
q∗,Dt

12D
−1
11 Ut

(
I + UD−111 Ut

)−1
UD−111 D12q

∗
〉
.

Replacing this in (9), we get

L(W) =
1

4

〈
q∗,
(
D22 −Dt

12D
−1/2
11

(
I−D

−1/2
11 Ut

(
I + UD−111 Ut

)−1
UD−111

)
D
−1/2
11 D12

)
q∗
〉
.

Note that we can write

D22 −Dt
12D

−1/2
11

(
I−D

−1/2
11 Ut

(
I + UD−111 Ut

)−1
UD−111

)
D
−1/2
11 D12 = D̃/D11,

where

D̃ =

[
D̃11 D12

Dt
12 D22

]
,

D̃11 = D
1/2
11

(
I−D

−1/2
11 Ut

(
I + UD−111 Ut

)−1
UD−111

)−1
D

1/2
11 .

Using the Woodbury matrix identity one more time leads to(
I−D

−1/2
11 Ut

(
I + UD−111 Ut

)−1
UD−111

)−1
= I−D

−1/2
11 Ut

(
−I−UD−111 Ut + UDt

11U
t
)
UD

−1/2
11

= I + D
−1/2
11 UtUD

−1/2
11 .

Thus,

D̃11 = D11 + UtU, D̃ =

[
D11 + UtU D12

Dt
12 D22

]
,

and

L(W) =
1

4

〈
q∗,
(
D̃/D22

)
q∗
〉
.

This completes the proof.
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10.18 Proof of Theorem 7

To simplify notations, we use U instead of the UL. Moreover, we define

ψ[K] =

[
D11 D12

Dt
12 D22

]
,

and

D̃11 = D11 + UtU, D̃ =

[
D11 + UtU D12

Dt
12 D22

]
.

Moreover, let

R =

[
R11 R12

Rt
12 R22

]
,

where

R11 = αIr1 + β1r1 + UtU (69)
R22 = αIr2 + β1r2
R12 = β1r1×r2 ,

such that

α = 1− 2

π

β =
2

π
+

1

πd
.

Let

∆ = R− D̃ =

[
∆11 ∆12

∆t
12 ∆22

]
.

Using the result of Theorem 6, we have

L (W) =
1

4

〈
q∗,
(
D̃/D22

)
q∗
〉
≤ 1

4

∥∥∥(D̃/D22

)∥∥∥
2
‖q∗‖22 .

Similar to the proof of Theorem MT-6, the ∆ matrix and the 1/d term of β have negligible effects in
the asymptotic regime. Hence, it is sufficient to bound ‖R/R11‖2. We have

R/R11 = (β1r2 + αIr2)− β2
(
β1r1 + αIr1 + UtU

)−1
1r1×r2 . (70)

Note that if u ∈ Rr2 where ‖u‖ = 1 and < u,1 >= 0, we have

(R/R11) u = αu (71)

which leads to ‖(R/R11)u‖ = α and < u, (R/R11u) >= α. Moreover, we have

lim
d→∞

1

r2
〈1, (R/R11)1〉 = lim

d→∞

1

r2
〈1r2 , (R/R11)〉 . (72)

Using the Woodbury matrix identity and Lemma 9, we have(
2

π
1r1 + αIr1 + UtU

)−1
=

(
2

π
+ αIr1

)−1
(73)

−
(

2

π
+ αIr1

)−1
Ut

(
I + U

(
2

π
1r1 + αIr1

)−1
Ut

)−1
U

(
2

π
+ αIr1

)−1
=

(
1

α
Ir1 −

2

α(πα+ 2r1)
1r1

)
−
(

1

α
Ir1 −

2

α(πα+ 2r1)
1r1

)
Ut

(
I + U

(
1

α
Ir1 −

2

α(πα+ 2r1)
1r1

)
Ut

)−1
U

(
1

α
Ir1 −

2

α(πα+ 2r1)
1r1

)
.
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Letting

A := Ut

(
I + U

(
1

α
Ir1 −

2

α(πα+ 2r1)
1r1

)
Ut

)−1
U, (74)

we have

4

π2
1r2×r1

(
2

π
1r1 + αIr1 + UtU

)−1
1r1×r2 =

4

π2

(
r1

2/πr1 + α
1r2 −

1

(2/πr1 + α)2
〈1r1 ,A〉1r2

)
.

(75)

Therefore, using (70), we have

1

r2
〈1,R/R11〉 =

2r2
π

+ α− (4/π2)r1r2
2/πr1 + α

+
(4/π2) 〈1r1 ,A〉 r2

(2r1/π + α)2
. (76)

Therefore, we have

lim
d→∞

1

r2
〈1,R/R11〉 = α+ 〈1r1 ,A〉

r2
r21
. (77)

On the other hand, since the matrix 1/αI− 2/(α(πα+ 2r1))1r1 is positive semidefinite, we have

〈1r1 ,A〉 ≤
〈
1r1 ,U

tU
〉

= ‖U1r1‖2. (78)

Since columns of U are randomly generated (e.g., using a Gaussian distribution), we have ‖U‖ ≤
1 +
√
γ + µ with probability 1− 2 exp(−µ2d). Thus, ‖U1‖2 ≤ r(1 +

√
γ + µ)2 with probability

1− 2 exp(−µ2d). Thus, with high probability,

lim
d→∞

1

r2
〈1,R/R11〉 ≤ 1− 2

π
+ (1 +

√
γ + µ)2

r2
r1
. (79)

This along with (71) lead to

‖R/R11‖ ≤ 1− 2

π
+ (1 +

√
γ + µ)2

r2
r1

(80)

with probability 1− 2 exp(−µ2d). Replacing this in (12) completes the proof.

10.19 Proof of Lemma 3

We consider four different cases for signs of 〈w1,x〉, 〈w2,x〉.

1. 〈w1,x〉 ≤ 0, 〈w2,x〉 ≤ 0: In this case, φ (〈w1,x〉) = φ (〈w2,x〉) = 0. Hence, the lemma
statement is trivial.

2. 〈w1,x〉 ≥ 0, 〈w2,x〉 ≥ 0: We have

φ (〈w1,x〉)− φ (〈w2,x〉) = 〈w1,x〉 − 〈w2,x〉 = 〈w1 −w2,x〉 ≤ ‖w1 −w2‖2 ‖x‖2.

3. 〈w1,x〉 ≥ 0, 〈w2,x〉 ≤ 0: In this case we have

φ (〈w1,x〉)− φ (〈w2,x〉) = 〈w1,x〉 = 〈w1 −w2,x〉+ 〈w2,x〉 ≤ 〈w1 −w2,x〉 ≤ ‖w1 −w2‖2 ‖x‖2.

4. 〈w1,x〉 ≤ 0, 〈w2,x〉 ≥ 0: After switching the roles of w1,w2, the proof is the same as it
was in case (3).

Therefore, the lemma statement holds in all four cases for signs of 〈w1,x〉, 〈w2,x〉. This completes
the proof.

10.20 Proof of Lemma 4

We use the result of Lemma 5.2 in [33]. Let |U| be an ε-net of Hn−1, an arbitrary unit hemisphere in
n-dimensions, where

ε =
√

2− 2 cos δ.
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Using Lemma 5.2 in [33],

|U| ≤ 1

2

(
1 +

√
2√

1− cos δ

)n
.

Now we show that U is an angular δ-net of Sn−1. Let v ∈ Rn be an arbitrary vector in Sn−1. Note
that U ∪ U− is an ε-net for the unit sphere Sn−1. Hence, there exists a vector u ∈ U ∪ U−, such that

‖u− v‖22 ≤ ε2 = 2− 2 cos δ. (81)

Thus,

‖u‖22 + ‖v‖22 − 2‖u‖‖v‖ cos θu,v = 2− 2 cos θu,v ≤ 2− 2 cos δ.

Therefore,

cos θu,v ≥ cos δ ⇒ θu,v ≤ δ.

Hence, for every vector v ∈ Sn−1, there exists u ∈ U ∪ U−, such that

θu,v ≤ δ.

This completes the proof.

10.21 Proof of Theorem 8

Let f∗(x) = h(x; w∗1,w
∗
2, . . . ,w

∗
k), for a set of weights w∗i ∈ W , be an arbitrary member of F .

Since U is an angular δ-net ofW , for i = 1, 2, . . . , k, we can take ũi ∈ U ∪U− such that θũi,w∗i
≤ δ.

For i = 1, 2, . . . , k, take w̃i ∈ WU as

w̃i =
‖w∗i ‖
‖ũi‖

ũi.

Note that we have

‖w∗i − w̃i‖22 = ‖w∗i ‖22 + ‖w̃i‖22 − 2‖w̃i‖2‖w∗i ‖2 cos θũi,w∗i

= 2‖w∗i ‖22(1− cos θũi,w∗i
) ≤ 2‖w∗i ‖22(1− cos δ). (82)

Taking f̃(x) = h(x; w̃1, w̃2, . . . , w̃k) ∈ FL, we have

min
f̂∈FL

E
∣∣∣f(x)− f̂(x)

∣∣∣ ≤ E|f(x)− f̃(x)| ≤ E|h(x; w∗1,w
∗
2, . . . ,w

∗
k)− h(x; w̃1, w̃2, . . . , w̃

∗
k)|

≤ E

∣∣∣∣∣
k∑
i=1

φ (〈w∗i ,x〉)−
k∑
i=1

φ (〈w̃i,x〉)

∣∣∣∣∣
≤ E

k∑
i=1

|φ (〈w∗i ,x〉)− φ (〈w̃i,x〉)| .

Using Lemma 3, we get

min
f̂∈FL

E
∣∣∣f(x)− f̂(x)

∣∣∣ ≤ ( k∑
i=1

‖w∗i − w̃i‖2

)
E‖x‖2 =

√
d

k∑
i=1

‖w∗i − w̃i‖2

Hence, by (82)

min
f̂∈FL

E
∣∣∣f(x)− f̂(x)

∣∣∣ ≤√2d(1− cos δ)

k∑
i=1

‖w∗i ‖2 ≤ kM
√

2d(1− cos δ). (83)

Thus,

R (FL,F) = max
f∈F

min
f̂∈FV

E
∣∣∣f(x)− f̂(x)

∣∣∣ ≤ kM√2d(1− cos δ).
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