
The Lingering of Gradients:
How to Reuse Gradients over Time

Zeyuan Allen-Zhu∗
Microsoft Research AI
Redmond, WA 98052

zeyuan@csail.mit.edu

David Simchi-Levi∗
MIT

Cambridge, MA 02139
dslevi@mit.edu

Xinshang Wang∗
MIT

Cambridge, MA 02139
xinshang@mit.edu

Abstract

Classically, the time complexity of a first-order method is estimated by its number
of gradient computations. In this paper, we study a more refined complexity by
taking into account the “lingering” of gradients: once a gradient is computed at
xk, the additional time to compute gradients at xk+1, xk+2, . . . may be reduced.
We show how this improves the running time of gradient descent and SVRG. For
instance, if the “additional time” scales linearly with respect to the traveled dis-
tance, then the “convergence rate” of gradient descent can be improved from 1/T
to exp(−T 1/3). On the empirical side, we solve a hypothetical revenue manage-
ment problem on the Yahoo! Front Page Today Module application with 4.6m
users to 10−6 error (or 10−12 dual error) using 6 passes of the dataset.

1 Introduction

First-order methods play a fundamental role in large-scale machine learning and optimization tasks.
In most scenarios, the performance of a first-order method is represented by its convergence rate:
the relationship between ε (the optimization error) versus T (the number of gradient computations).
This is meaningful because in most applications, the time complexities for evaluating gradients at
different points are of the same magnitude. In other words, the worse-case time complexities of
first-order methods are usually proportional to a fixed parameter times T .

In large-scale settings, however, if we have already spent time computing the (full) gradient at x,
perhaps we can use such information to reduce the time complexity to compute full gradients at
other points near x. We call this the “lingering” of gradients, because the gradient at x may be
partially reused for future consideration, but will eventually fade away once we are far from x.

Formally, consider the (finite-sum) stochastic convex minimization problem:

minx∈Rd
{
f(x)

def
= 1

n

∑n
i=1 fi(x)

}
. (1.1)

Then, could it be possible that whenever x is sufficiently close to y, for at least a large fraction of
indices i ∈ [n], we have ∇fi(x) ≈ ∇fi(y)? In other words, if ∇f1(x), . . . ,∇fn(x) are already
calculated at some point x, can we reuse a large fraction of them to approximate∇f(y)?

Example 1. In classification problems, fi(x) represents the loss value for “how well training
sample i is classified under predictor x”. For any sample i that has a large margin under predictor x,
its gradient∇fi(x) may stay close to∇fi(y) whenever x is close to y.

Formally, let fi(x) = max{0, 1−〈x, ai〉} be the hinge loss (or its smoothed variant if needed) with
respect to the i-th sample ai ∈ Rd. If the margin |1 − 〈x, ai〉| is sufficiently large, then moving
∗Authors sorted in alphabetical order. Full version of this paper (containing additional theoretical results,

additional experiments, and missing proofs) available at https://arxiv.org/abs/1901.02871.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

mailto:zeyuan@csail.mit.edu
mailto:dslevi@mit.edu
mailto:xinshang@mit.edu
https://arxiv.org/abs/1901.02871

from x to a nearby point y should not affect the sign of 1−〈x, ai〉, and thus not change the gradient.
Therefore, if samples a1, . . . , an are sufficiently spread out in the space, then a large fraction of them
should incur large margins, and thus have the same gradients when x changes by a small amount.

Example 2. In revenue management problems, fi(x) represents the marginal profit of the i-th
customer under bid-price strategy x ∈ Rd+ over d items. In many applications (see Section 2.2),
∇fi(x) only depends on customer i’s preferences under x.

If the bid-price vector x ∈ Rd+ changes by a small amount to y, then for a large fraction of customers
i, their most profitable items may not change, and thus ∇fi(x) ≈ ∇fi(y). (Indeed, imagine if one
of the items is Xbox, and its price drops by 5%, perhaps 90% of the customers will not change their
minds about buying or not. We shall demonstrate this using real-life data.)

1.1 Our Results

We assume in this paper that, given any point x ∈ Rd and index i ∈ [n], one can efficiently evaluate
a “lingering radius” δ(x, i). The radius satisfies the condition that for every point y that is within
distance δ(x, i) from x, the stochastic gradient∇fi(y) is equal to ∇fi(x). We make two remarks:

• We use “equal to” for the purpose of proving theoretical results. In practice and in our experi-
ments, it suffices to use approximate equality such as ‖∇fi(x)−∇fi(y)‖ ≤ 10−10.

• By “efficient” we mean δ(x, i) is computable in the same complexity as evaluating∇fi(x). This
is reasonable because when ∇fi(x) is an explicit function of x, it is usually easy to tell how
sensitive it is to the input x. (We shall include such an example in our experiments.)

If we denote by B(x, r) the set of indices j satisfying δ(x, j) < r, and if we travel to some point y
that is at most distance r from x, then we only need to re-evaluate the (stochastic) gradients∇fj(y)
for j ∈ B(x, r). Intuitively, one should expect |B(x, r)| to grow as a function of r, and this is indeed
the case – for instance, for the revenue management problem (see Section 5).

Theory. To present the simplest theoretical result, we modify gradient descent (GD) to take into
account the lingering of gradients. At a high level, we run GD, but during its execution, we maintain
a decomposition of the indices Λ0 ∪ · · · ∪ Λt = {1, 2, . . . , n} where t is logarithmic in n. Now,
whenever we need∇fi(xk) for some i ∈ Λp, we approximate it by∇fi(xk′) for a point k′ that was
visited at most 2p steps ago. Our algorithm makes sure that such∇fi(xk′) is available in memory.

We prove that the performance of our algorithm depends on how |B(x, r)| grows in r. Formally, let
T be the total number of stochastic gradient computations divided by n, and suppose |B(x, r)| ≤
O(r), i.e., it linearly scales in the radius r. Then, our algorithm finds a point x with f(x)− f(x∗) ≤
2−Ω(T 1/3). In contrast, traditional GD satisfies f(x)− f(x∗) ≤ O(T−1).

In the full version of this paper, we also study the case when |B(x, r)| ≤ O(rβ) for an arbitrary
constant β ∈ (0, 1].

Practice. We also design an algorithm that practically maximizes the use of gradient lingering. We
take the SVRG method [19, 36] as the prototype because it is widely applied in large-scale settings.
Recall that SVRG uses gradient estimator∇f(x̃)−∇fi(x̃) +∇fi(xk) to estimate the full gradient
∇f(xk), where x̃ is the so-called snapshot point (which was visited at most n steps ago) and i is a
random index. At a high level, we modify SVRG so that the index i is only generated from those
whose stochastic gradients need to be recomputed, and ignore those such that ∇fi(xk) = ∇fi(x̃).
This can further reduce the variance of the gradient estimator, and improve the running time.

1.2 Related Work

Variance Reduction. The SVRG method was independently proposed by Johnson and Zhang
[19], Zhang et al. [36], and belong to the class of stochastic methods using the so-called variance-
reduction technique [4, 8, 19, 23, 27–30, 35, 36]. The common idea behind these methods is to use
some full gradient of the past to approximate future, but they do not distinguish which ∇fi(x) can
“linger longer in time” among all indices i ∈ [n] for different x.

2

Arguably the two most widely applied variance-reduction methods are SVRG and SAGA [8]. They
have complementary performance depending on the internal structural of the dataset [5], so we
compare to both in our experiments.

Reuse Gradients. Some researchers have exploited the internal structure of the dataset to speed up
first-order methods. That is, they use ∇fi(x) to approximate ∇fj(x) when the two data samples i
and j are sufficiently close. This is orthogonal to our setting because we use∇fi(x) to approximate
∇fi(y) when x and y are sufficiently close. In the extreme case when all the data samples are
identical, they have ∇fi(x) = ∇fj(x) for every i, j and thus stochastic gradient methods converge
as fast as full gradient ones. For this problem, Hofmann et al. [16] introduced a variant of SAGA,
Allen-Zhu et al. [5] introduced a variant of SVRG and a variant of accelerated coordinate descent.

Other authors study how to reduce gradient computations at the snapshot points of SVRG [15, 20].
This is also orthogonal to the idea of this paper, and can be added to our algorithms for even better
performance (see Section 5).

2 Notions and Problem Formulation

We denote by ‖ · ‖ the Euclidean norm, and ‖ · ‖∞ the infinity norm. Recall the notion of Lipschitz
smoothness (it has other equivalent definitions, see textbook [25]).
Definition 2.1. A function f : Rd → R is L-Lipschitz smooth (or L-smooth for short) if

∀x, y ∈ Rd : ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ .

We also introduce the notion of “lowbit sequence” for a positive integer.

Definition 2.2. For positive integer k, let lowbit(k)
def
= 2i where i ≥ 0 is the maximum integer such

that k is integral multiple of 2i. For instance, lowbit(34) = 2, lowbit(12) = 4, and lowbit(8) = 8.

Given positive integer k, let the lowbit sequence of k be (k0, k1, . . . , kt) where
0 = k0 < k1 < · · · < kt = k and ki−1 = ki − lowbit(ki) .

For instance, the lowbit sequence of 45 is (0, 32, 40, 44, 45).

2.1 Our Model

We propose the following model to capture the lingering of gradients. For every x ∈ Rd and index
i ∈ [n], let δ(x, i) ≥ 0 be the lingering radius of ∇fi(x), meaning that2

∀y ∈ Rd with ‖y − x‖ ≤ δ(x, i) it satisfies ∇fi(x) = ∇fi(y) .

In other words, as long as we travel within distance δ(x, i) from x, the gradient ∇fi(x) can be
reused to represent∇fi(y). Accordingly, for every x ∈ Rd and r ≥ 0, we denote by B(x, r) the set
of indices j satisfying δ(x, j) < r. That is, B(x, r)

def
=
{
j ∈ [n]

∣∣ δ(x, j) < r
}
.

Our main assumption of this paper is that
Assumption 1. Each δ(x, i) can be computed in the same time complexity as∇fi(x).

Under Assumption 1, if at some point x we have already computed ∇fi(x) for all i ∈ [n], then we
can compute δ(x, i) as well for every i ∈ [n], and sort the indices i ∈ [n] in the increasing order of
δ(x, i). In the future, if we arrive at any point y, we can calculate r = ‖x− y‖ and use

∇′ = 1
n

(∑
i6∈B(x,r)∇fi(x) +

∑
i∈B(x,r)∇fi(y)

)
to represent∇f(y). We stress that the time to compute∇′ is only proportional to |B(x, r)|.
We denote by Ttime the gradient complexity, which equals how many times ∇fi(x) and δ(x, i) are
calculated, divided by n. In computing ∇′ above, the gradient complexity is |B(x, r)|/n. If we
always set δ(x, i) = 0 then |B(x, r)| = n and the gradient complexity for computing ∇′ remains
1. However, if the underlying Problem (1.1) is nice enough so that |B(x, r)| becomes an increasing
function of r (see Figure 2), then we can hope to design faster algorithms.

2Recall that, in practice, one should replace the exact equality with, for instance, ‖∇fi(x) − ∇fi(y)‖ ≤
10−10. To present the simplest statements, we do not introduce such an extra parameter.

3

2.2 Revenue Management Problem

As a motivating example, consider a canonical revenue management problem of selling d resources
to n customers. Let bj ≥ 0 be the capacity of resource j ∈ [d]; let pi,j ∈ [0, 1] be the probability that
customer i ∈ [n] will purchase a unit of resource j if offered resource j; and let rj be the revenue
for each unit of resource j. We want to offer each customer one and only one candidate resource,
and let yi,j be the probability we offer customer i resource j. The following is an LP relaxation for
this problem:

max
y≥0

{ ∑
i∈[n],j∈[d]

rjpi,jyi,j

∣∣∣∣∀j ∈ [d],
∑
i∈[n]

pi,jyi,j ≤ bj
∧
∀i ∈ [n],

∑
j∈[d]

yi,j = 1

}
(2.1)

This LP (2.1) and its variants have repeatedly found many applications, including adwords/ad al-
location problems [3, 10, 11, 14, 17, 24, 34, 37], and revenue management for airline and service
industries [7, 13, 18, 26, 31, 33]. Some authors also study the online version of solving such LPs
[1, 2, 9, 12].

A standard way to reduce (2.1) to convex optimization is by regularization (cf. [37]). Let us subtract
the maximization objective by R(x)

def
= µ

∑
i∈[n] pi

∑
j∈[d] yi,j log yi,j , where pi

def
= maxi∈[n] pi,j

and µ > 0 is some small regularization weight. Then, after transforming to the dual, we have

min
x≥0

{
µ

n∑
i=1

pi · logZi +

d∑
j=1

xjbj

}
where Zi =

d∑
j=1

exp
((rj − xj)pi,j

piµ

)
. (2.2)

Any solution x (usually known as the bid price in operations management [32]) to (2.2) naturally
gives back a solution y for the primal (2.1), by setting

yi,j = exp
((rj−xj)pi,j

piµ

)
/Zi. (2.3)

If we let fi(x)
def
= µnpi · logZi + 〈x, b〉, then (2.2) reduces to Problem (1.1). We conduct empirical

studies on this revenue management problem in Section 5.

3 Our Modification to Gradient Descent

In this section, we consider a convex function f(x) = 1
n

∑n
i=1 fi(x) that is L-smooth. Recall from

textbooks (e.g., [25]) that if gradient descent (GD) is applied for T iterations, starting at x0 ∈ Rd,
then we can arrive at a point x with f(x)− f(x∗) ≤ O

(‖x0−x∗‖2
T

)
. This is the 1

T convergence rate.

To improve on this theoretical rate, we make the following assumption on B(x, r):

Assumption 2. There exists α ∈ [0, 1], C > 0 such that,

∀x ∈ Rd, r ≥ 0:
|B(x, r)|

n
≤ ψ(r)

def
= max{α, r/C} .

It says that |B(n, r)| is a growing function in r, and the growth rate is ∝ r. (In the full version we
investigate the more general case where the growth rate is ∝ rβ for arbitrary β ∈ (0, 1].) We also
allow an additive term α to cover the case that an α fraction of the stochastic gradients always need
to be recalculated, regardless of the distance. We illustrate the meaningfulness of Assumption 2 in
Figure 2.

Our result of this section can be summarized as follows. Hiding ‖x0−x∗‖, L, C in the big-O notion,
and letting Ttime be the gradient complexity, we can modify GD so that it finds a point x with

f(x)− f(x∗) ≤ O
(α

Ttime
+ 2−Ω(Ttime)

1/3)
.

We emphasize that our modified algorithm does not need to know α or C.

3.1 Algorithm Description

In classical gradient descent (GD), starting from x0 ∈ Rd, one iteratively updates xk+1 ← xk −
1
L∇f(xk). We propose GDlin (see Algorithm 1) which, at a high level, differs from GD in two ways:

4

Algorithm 1 GDlin(f, x(0), S, C,D)

Input: f(x) = 1
n

∑n
i=1 fi(x) convex and L-smooth, starting vector x(0) ∈ Rd, number of epochs

S ≥ 1, parameters C,D > 0.
Output: vector x ∈ Rd.

1: for s← 1 to S do
2: x0 ← x(s−1); m← d

(
1 + C2

16D2

)se; and ξ ← C
m .

3: g← ~0 and gi ← ~0 for each i ∈ [n].
4: for k ← 0 to m− 1 do
5: Calculate Λk ⊆ [n] from x0, . . . , xk according to Definition 3.1.
6: for i ∈ Λk do
7: g← g + ∇fi(xk)−gi

n and gi ← ∇fi(xk).
8: xk+1 ← xk −min

{
ξ
‖g‖ ,

1
L

}
g � it satisfies g = ∇f(xk)

9: x(s) ← xm;
10: return x = x(S).

1

5

8
0

9

6
0

7

2

8
0

9

3
0

4

𝚲𝟎 Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 𝚲𝟖 Λ9 Λ10 Λ11 𝚲𝟏𝟐 Λ13 𝚲𝟏𝟒 𝚲𝟏𝟓 Λ16

𝟏 = 𝐵0 8

𝟐 = 𝐵0 12 ∖ 𝐵0(8)

𝟑 = 𝐵0 14 ∖ 𝐵0(12)

𝟒 = 𝐵0 15 ∖ 𝐵0(14)

𝟓 = 𝐵8 4

𝟔 = 𝐵8 6 ∖ 𝐵8 4

𝟕 = 𝐵8 7 ∖ 𝐵8 6

𝟖 = 𝐵12 2

𝟗 = 𝐵12 3 ∖ 𝐵12(2)

𝟎 = 𝐵14 1

(a)

1

5

8
0

9

6
0

7

2

8
0

9

3
0

4

𝚲𝟎 𝚲𝟖 𝚲𝟏𝟐 𝚲𝟏𝟒 𝚲𝟏𝟓

⊕

⊕

⊕

⊕

⊗

⊗

⊖

⊙

(b)
Figure 1: Illustration of index sets Λk

• It performs a truncated gradient descent with travel distance ‖xk − xk+1‖ ≤ ξ per step.
• It speeds up the process of calculating∇f(xk) by using the lingering of past gradients.

Formally, GDlin consists of S epochs s = 1, 2, . . . , S of growing length m = d
(
1 + C2

16D2

)s⌉
. In

each epoch, it starts with x0 ∈ Rd and performs m truncated gradient descent steps

xk+1 ← xk −min
{

ξ
‖∇f(xk)‖ ,

1
L

}
· ∇f(xk) .

We choose ξ = C/m to ensure that the worst-case travel distance ‖xm − x0‖ is at most mξ = C.

In each iteration k = 0, 1, . . . ,m− 1 of this epoch s, in order to calculate∇f(xk), GDlin constructs
index sets Λ0,Λ1, . . . ,Λm−1 ⊆ [n] and recalculates only ∇fi(xk) for those i ∈ Λk. We formally
introduce index sets below, and illustrate them in Figure 1.

Definition 3.1. Given x0, x1, . . . , xm−1 ∈ Rd, we define index subsets Λ0, . . .Λm−1 ⊆ [n] as
follows. Let Λ0 = [n]. For each k ∈ {1, 2, . . . ,m − 1}, if (k0, . . . , kt) is k’s lowbit sequence from
Definition 2.2, then (recalling k = kt)

Λk
def
=
⋃t−1
i=0

(
Bki(k − ki) \Bki(kt−1 − ki)

)
where Bk(r)

def
= Λk ∩B(xk, r · ξ) .

3.2 Intuitions & Properties of Index Sets

We show in this paper that our construction of index sets satisfy the following three properties.

Lemma 3.2. The construction of Λ0, . . . ,Λm−1 ensures that g = ∇f(xk) in each iteration k.

5

Claim 3.3. The gradient complexity to construct Λ0, . . . ,Λm−1 is O
(

1
n

∑m−1
k=0 |Λk|

)
under

Assumption 1. The space complexity is O(n log n).

Lemma 3.4. Under Assumption 2, we have 1
n

∑m−1
k=0 |Λk| ≤ O(αm+ log2m) .

Claim 3.3 is easy to verify. Indeed, for each Λ` that is calculated, we can sort its indices j ∈ Λ` in
the increasing order of δ(xk, j).3 Now, whenever we calculateBki(k−ki)\Bki(kt−1−ki), we have
already sorted the indices in Λki , so can directly retrieve those j with δ(xki , j) ∈

(
kt−1−ki, k−ki

]
.

As for the space complexity, in any iteration k, we only need to store dlog2 ke index sets Λ` for
` < k. For instance, when calculating Λ15 (see Figure 1(b)), we only need to use Λ0,Λ8,Λ12,Λ14;
and from k = 16 onwards, we no longer need to store Λ1, . . . ,Λ15.

Lemma 3.2 is technically involved to prove (see full version), but we give a sketched proof by
picture. Take k = 15 as an example. As illustrated by Figure 1(b), for every j ∈ [n],

• If j belongs to Λ15 —i.e., boxes 4, 0, 9, 7 of Figure 1—
We have calculated∇fj(xk) so are fine.

• If j belongs to Λ14 \B14(1) —i.e., ⊕ region of Figure 1(b)—
We have ∇fj(x15) = ∇fj(x14) because ‖x15 − x14‖ ≤ ξ and j 6∈ B14(1). Therefore, we can
safely retrieve gj = ∇fj(x14) to represent∇fj(x15).

• If j belongs to Λ12 \B12(3) —i.e., ⊗ region of Figure 1(b)—
We have ∇fj(x15) = ∇fj(x12) for similar reason above. Also, the most recent update of gj
was at iteration 12, so we can safely retrieve gj to represent∇fj(x15).

• And so on.

In sum, for all indices j ∈ [n], we have gj = ∇fj(xk) so g = g1+···+gn
n equals ∇f(xk).

Lemma 3.4 is also involved to prove (see full version), but again should be intuitive from the picture.
The indices in boxes 1, 2, 3, 4 of Figure 1 are disjoint, and belong to B(x0, 15ξ), totaling at most
|B(x0, 15ξ)| ≤ nψ(15ξ). The indices in boxes 5, 6, 7 of Figure 1 are also disjoint, and belong to
B(x8, 7ξ), totaling at most |B(x8, 7ξ)| ≤ nψ(7ξ). If we sum up the cardinality of these boxes by
carefully grouping them in this manner, then we can prove Lemma 3.4 using Assumption 2.

3.3 Convergence Theorem

So far, Lemma 3.4 shows we can reduce the gradient complexity from O(m) to Õ(1) for every m
steps of gradient descent. Therefore, we wish to setm as large as possible, or equivalently ξ = C/m
as small as possible. Unfortunately, when ξ is too small, it will impact the performance of truncated
gradient descent (see full version). This motivates us to start with small value of m and increase
it epoch by epoch. Indeed, as the number of epoch grows, f(x0) becomes closer to the minimum
f(x∗), and thus we can choose smaller values of ξ.

Formally, we have

Theorem 3.5. Given any x(0) ∈ Rd and D > 0 that is an upper bound on ‖x(0) − x∗‖. Suppose
Assumption 1 and 2 are satisfied with parameters C ∈ (0, D], α ∈ [0, 1]. Then, denoting by ms =

d
(
1+ C2

16D2

)se, we have that GDlin(f, x0, S, C,D) outputs a point x ∈ Rd satisfying f(x)−f(x∗) ≤
4LD2

mS
with gradient complexity Ttime = O

(∑S
s=1 αms + log2ms

)
.

As simple corollaries, we have

Theorem 3.6. In the setting of Theorem 3.5, given any T ≥ 1, one can choose S so that GDlin finds
a point x in gradient complexity Ttime = O(T) s.t.

f(x)− f(x∗) ≤ O
(
LD4

C2 · αT
)

+ LD2

2Ω(C2T/D2)1/3 .

We remark here if ψ(r) = 1 (so there is no lingering effect for gradients), we can choose C = D

and in this case GDlin gives back the convergence f(x)− f(x∗) ≤ O
(
LD2

T

)
of GD.

3Calculating those lingering radii δ(xk, j) require gradient complexity |Λ`| according to Assumption 1, and
the time for sorting is negligible.

6

4 Our Modification to SVRG

In this section, we use Assumption 1 to improve the running time of SVRG [19, 36], one of the most
widely applied stochastic gradient methods in large-scale settings. The purpose of this section is
to construct an algorithm that works well in practice: to (1) work for any possible lingering radii
δ(x, i), (2) be identical to SVRG if δ(x, i) ≡ 0, and (3) be faster than SVRG when δ(x, i) is large.

Recall how the SVRG method works. Each epoch of SVRG consists of m iterations (m = 2n
in practice). Each epoch starts with a point x0 (known as the snapshot) where the full gradient
∇f(x0) is computed exactly. In each iteration k = 0, 1, . . . ,m − 1 of this epoch, SVRG updates
xk+1 ← xk − ηg where η > 0 is the learning rate and g is the gradient estimator g = ∇f(x0) +
∇fi(xk)−∇fi(x0) for some i randomly drawn from [n]. Note that it satisfies Ei[g] = ∇f(xk) so
g is an unbiased estimator of the gradient. In the next epoch, SVRG starts with xm of the previous
epoch.4 We denote by x(s) the value of x0 at the beginning of epoch s = 0, 1, 2, . . . , S − 1.

Our Algorithm. Our algorithm SVRGlin (pseudocode in full version) maintains disjoint subsets
Hs ⊆ [n], where each Hs includes the set of the indices i whose gradients ∇fi(x(s)) from epoch s
can still be safely reused at present.

At the starting point x0 of an epoch s, we letHs = [n]\(H0∪· · ·∪Hs−1) and re-calculate gradients
∇fi(x0) only for i ∈ Hs; the remaining ones can be loaded from the memory. This computes the
full gradient ∇f(x0). Then, we denote by m = 2|Hs| and perform only m iterations within epoch
s. We next discuss how to perform update xk → xk+1 and maintain {Hs}s during each iteration.

• In each iteration k of this epoch, we claim that∇fi(xk) = ∇fi(x0) for every i ∈ H0∪· · ·∪Hs.5

Thus, we can uniformly sample i from [n]\
(
H0∪· · ·∪Hs

)
, and construct an unbiased estimator

g← ∇f(x0) +
(

1−
∑s
s′=0

|Hs′ |
n

)
[∇fi(xk)−∇fi(x0)]

of the true gradient ∇f(xk). Then, we update xk+1 ← xk − ηg the same way as SVRG.
We emphasize that the above choice of g reduces its variance (because there are fewer random
choices), and it is known that reducing variance leads to faster running time [19].

• As for how to maintain {Hs}s, in each iteration k after xk+1 is computed, for every s′ ≤ s, we
wish to remove those indices i ∈ Hs′ such that the current position x lies outside of the lingering
radius of i, i.e., δ(x(s), i) < ‖x − x(s)‖. To efficiently implement this, we need to make sure
that whenever Hs′ is constructed (at the beginning of epoch s′), the algorithm sort all the indices
i ∈ Hs′ by the increasing order of δ(x(s′), i). We include implementation details in full version.

5 Preliminary Empirical Evaluation

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04

B
(x
,r
)/
n

r

Figure 2: |B(x, r)|/n as a function of r. We
choose θ = 5. Dashed curve is
when x = ~0, and solid curve is
when x is near the optimum.

In this section, we construct a revenue maximization
LP (2.1) using the publicly accessible dataset of Yahoo!
Front Page Today Module [6, 22]. We describe details of
the experimental setup in full version. Based on this real-
life dataset, we validate Assumption 2 and our motivation
behind lingering gradients. We also test the performance
of SVRGlin from Section 4 on optimizing this LP.

Illustration of Lingering Radius. We calculate linger-
ing radii on the dual problem (2.2). Let θ > 0 be a pa-
rameter large enough so that e−θ can be viewed as zero.
(For instance, θ = 20 gives e−20 ≈ 2× 10−9.) Then, for
each point x ∈ R≥0 and index i ∈ [n], we let

δ(x, i) = min
j∈[n],j 6=j∗

(rj∗ − xj∗)pi,j∗ − (rj − xj)pi,j − θpiµ
pi,j∗ + pi,j

where j∗ = arg max
j∈[n]

{
(rj−xj)pi,j

}
.

4Some authors use the average of x1, . . . , xm to start the next epoch, but we choose this simpler version.
5This is because for every i ∈ Hs, by definition of Hs we have ∇fi(xk) = ∇fi(x(s)) = ∇fi(x0); for

every i ∈ Hs′ where s′ < s, we know ∇fi(xk) = ∇fi(x(s
′)) but we also have ∇fi(x0) = ∇fi(x(s

′))
(because otherwise i would have been removed from Hs′).

7

(a) SVRGlin vs. SVRG and SAGA.

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1
0 5 10 15 20 25 30

P
ri

m
al

 E
rr

o
r

#grad/n

SVRG SAGA SVRG_lin

(b) SVRGlin vs. SVRG and SAGA

Figure 3: Comparison of (a) dual objective optimality (for which different learning rates are presented) and (b)
primal objective optimality (for which the learning rates are best tuned).

It is now a simple exercise to verify that, denoting by ej the j-th basis unit vector, then6

∇fi(y) ≈ (b1, . . . , bd) + npi,j∗ej∗ for every ‖y − x‖∞ ≤ δ(x, i) .

In Figure 2, we plot |B(x, r)| =
∣∣{j ∈ [n]

∣∣ δ(x, j) < r
}∣∣ as an increasing function of r. We see

that for practical data, |B(x, r)|/n is indeed bounded above by some increasing function ψ(·). We
provide more justification on why this happens in the full paper.
Remark 5.1. This δ(x, i) differs from our definition in Section 2 in two ways. First, it ensures
∇fi(y) ≈ ∇fi(x) as opposed to exact equality; for practical purposes this is no big issue, and we
choose θ = 5 in our experiments. Second, ‖y − x‖∞ ≤ δ(x, i) gives a bigger “safe region” than
‖y − x‖ ≤ δ(x, i); thus, when implementing SVRGlin, we adopt ‖ · ‖∞ as the norm of choice.

Numerical Experiments. We consider solving the dual problem (2.2). In Figure 3(a), we plot the
optimization error of (2.2) as a function #grad/n, the number of stochastic gradient computations
divided by n, also known as #passes of dataset.

Figure 3(a) compares our SVRGlin to SVRG and SAGA (each for 3 best tuned step lengths).7 We can
see SVRGlin is close to SVRG or SAGA during the first 5-7 passes of the data. This is because initially,
x moves fast and cannot usually stay in the lingering radii for most indices i. After that period,
SVRGlin requires a dramatically smaller number of gradient computations, as x moves slower and
slower, becoming more easily to stay in the lingering radii. It is interesting to note that SVRGlin does
not significantly improve the optimization error as a function of number of epochs; the improvement
primarily lies in improving the number of gradient computations per epoch. The comparison is

More Plots. In Figure 3(b), we also compare the primal objective value for the LP (2.1). (We
explain how to get feasible primal solutions from the dual in the full version.) It is perhaps worth
noting that we have chosen µ = 10−5 as the regularization error, and the primal objective error
indeed reaches to 10−6 which is roughly µ. In the full version, we also compare the running time of
the algorithms. Those plots are almost identical to Figure 3(b).

6 Conclusion

In this paper, we study convex problems where the stochastic gradients ∇fi(x) can be reused when
we move away from x. In our theoretical result, we model the number of stochastic gradients that can
be changed (and thus cannot be reused) as a function of how much distance we travel away from x,
and show faster convergence for gradient descent (in terms of the number of gradient computations).
On the empirical side, we show how to modify the SVRG method to use reuse stochastic gradients
efficiently. Figure 3(a) and Figure 3(b) summarize our findings on a hypothetic experiment.

6For any other coordinate j 6= j∗, it satisfies e
(rj−yj)pi,j/(piµ)

e
(rj∗−yj∗)pi,j∗/(piµ) ≤ e−θ and hence is negligible.

7Each epoch of SVRG consists of a full gradient computation and 2n iterations, totaling 3n computations of
(new) stochastic gradients. (We do not count the computation of∇fi(0) at x = 0.)

8

